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On Auslander-Reiten components for group algebras of finite groups

Shigeto KAWATA (Osaka City Univ.)

河田成人 (大阪市立大学理学部)

Throughout $G$ is a finite group and $k$ denotes an algebraically closed field of

characteristic $p>0$ . Let $B$ be a block of the group algebra $kG$. Let $\Gamma_{s}(B)$ be the stable

Auslander-Reiten quiver of $B$ and $\Theta$ a connected component of $\Gamma_{s}(B)$ . Then it is known that

if $\Theta$ is not a tube and a defect group of $B$ is not a Kleinian four group, $\Theta$ is isomorphic to
$ZA_{\infty},$ $ZD_{\infty}$ or $ZA_{\infty}^{\infty}$ (see [Bn], [Bs], [E1], [E-S] and [W]). In Section 1, we give some
condition which implies that $\Theta$ is isomorphic to $ZA_{\approx}$ . In Section 2, we consider a connected

component of the form $ZA_{\infty}$ which contains a simple module.

The notation is almost standard. All $kG$-modules considered here are finite dimensional

over $k$ . For a non-projective indecomposable $kG$-module $W$, we write $A(W)$ to denote the

Auslander-Reiten sequence (AR-sequence for short) $0arrow\Omega^{2}Warrow m(W)arrow Warrow 0$

terminating at $W$, where $\Omega$ is the Heller operator, and we write $m(W)$ to denote the middle

term of $d(W)$ . Concerning some basic facts and terminologies used here, we refer to [Bn]

and [E1].

1. $ZA_{\infty}$-components

The purpose of this section is to show the following theorem.

Theorem 1.1. Let $\Theta$ be a connected component of $\Gamma_{s}(B)$ and $M$ an indecomposable
$kG$-module in O. Let $P$ be a vertex of $M,$ $S$ a P-source of $M$ and $\Delta$ the connected

component of $\Gamma_{s}(kP)$ containing $S$ . Suppose that $\Delta$ is isomorphic to $ZA_{\approx}$ . Then $\Theta$ is

isomorphic to $ZA_{\infty}$ .
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Assume the same hypothesis as in Theorem 1.1. Then since $\Delta$ is isomorphic to $ZA_{\infty}$ ,

$P$ is not cyclic, dihedral, semidihedral or generalized quaternion (see for example [E1]).

Moreover $\Theta$ is isomorphic to either $ZA_{\infty},$ $ZD_{\infty}$ or $ZA_{\infty}^{\infty}$ since $k$ is algebraically closed.

By [Bn, Theorem 2.30.6], if we have an unbounded additive function on $\Theta$, we can conclude

that $\Theta$ is isomorphic to $ZA_{\infty}$ . Following the argument of [E2, Section 5], we will construct

an unbounded additive function.

In order to prove Theorem 1.1, we recall the result of Okuyama and Uno[O-U].

Theorem 1.2([O-U, Theorem]). Let $\Gamma$ be a connected component of $\Gamma_{s}(kG)$ . Suppose

that $\Gamma$ is not a tube. Then one of the following holds.

(i) All the modules in $\Gamma$ have the vertices in common.
(ii) We can take $T:X_{1}-X_{2}-X_{3}-\cdots X_{n}-\cdots$ in $\Gamma$ with $\Gamma\cong ZT$ and

$vx(X_{1})\leqq vx(X_{2})\leqq vx(X_{3})\leqq vx(X_{4})=vx(X_{5})=\cdots=vx(X_{n})=\cdots$ .

(iii) $p=2$ , $\Gamma=ZA_{\infty}^{\infty}$ , and only two distinct vertices $P$ and $Q$ occur, with $Q<P$ .

Moreover, one of the following holds.

(iiia) $|P$ : $Q|=2$ with $|a>4$, and the modules with vertex $Q$ lie in a subquiver $\Gamma_{Q}$

such that both $\Gamma_{Q}$ and $\Gamma\backslash \Gamma_{Q}$ are isomorphic to $ZA_{\infty}$ as graphs.

(iiib) $Q$ is a Kleinian four group and $P$ is a dihedral group of order 8, and the

modules with vertex $Q$ lie in two or four adjacent $\tau$-orbits.

Let $a_{k}(G)$ be the Green ring. For an exact sequence of $kG$-modules $y_{;O}arrow Aarrow Barrow$

$Carrow 0$, let $[y]\in a_{k}(G)$ be the element $[\Re=B-A-C$ .

Lemma 1.3. Let $V$ and $W$ be non-projective indecomposable $kG$-modules with the

same vertex $P$, and $S$ a P-source of $W$. Suppose that there is an irreducible map from $V$ to

$W$. Then for some P-source $U$ of $V$, there exists an ineducible map from $U$ to $S$ .

Proof. Let $d(W)$ be the AR-sequence $0arrow\Omega^{2}Warrow m(W)arrow Warrow 0$ terminating at $W$.

Then $V|m(W)$ . By [K2, Lemma 1.6(2)], we have $[A(W)\downarrow_{P}]=(\Sigma_{g\in N/H}[A(S^{g}])$ , where $N=$

$N_{G}(P),$ $H=$ { $g\in N$ I $S^{g}\cong S$ } and $t$ is the multiplicity of $M$ in $s\uparrow G$ . This implies that some
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P-source $U$ of $V$ is isomorphic to a direct summand of the middle term $m(S)$ of the AR-

sequence $A(S)$ .

Lemma 1.4. Under the same hypothesis as in Theorem 1.1, assume that $\Theta$ is

isomorphic to either $ZD_{\infty}$ or $ZA_{\infty}^{\infty}$ . Then;

(1) We have a connected subquiver $\Xi$ of $\Theta$ and a tree $T_{1}$ :
$Marrow M_{1}arrow M_{2}arrow\cdotsarrow M_{n}arrow\cdots$ in $\Xi$ such that $\Xi\cong ZT_{1}$ and $P=vx(M)=vx(M_{i})$ for all $i$ .

(2) We have a tree $T_{2}$ : $U_{1}arrow\cdotsarrow U_{m}arrow Sarrow S_{1}arrow\cdotsarrow S_{n}arrow\cdots$ in $\Delta$ such that

$\Delta\cong ZT_{2}$ and $S_{i}$ is a P-source of $M_{i}$ for all $i(m$ may be zero, and in this case $S$ lies at the

end of $\Delta$ ).

Proof. (1) follows immediately from Theorem 1.2.
(2) By Lemma 1.3, we have P-sources $S_{i}$ of $M_{j}$ and a subquiver

$Sarrow S_{1}arrow\cdotsarrow S_{n}arrow\cdots$ in $\Delta$ . Thus we have only to show that $S_{j+1}\not\cong\Omega^{2}S_{i-1}$ for all $i\geqq 1$ .

Assume contrary that $S_{i+1}\cong\Omega^{2}S_{i-1}$ for some $i$ . Let $r_{i}$ be the multiplicity of $S_{j}$ in $M_{j}\downarrow P$ . By

[K2, Lemma 1.6(2)], we have $[A(M_{i})\downarrow_{P}]=t_{i}(\Sigma_{g\in N}d^{d}(S_{i^{g}})])$ , where $N=N_{G}(P)$ , $H=$

{ $g\in N$ I $S_{i}^{g}\cong S_{i}$ } and $t_{j}$ is the multiplicity of $M_{i}$ in $s_{j}\uparrow G$ . Since $\Delta$ is isomorphic to $ZA_{\infty}$ ,

it follows that $r_{i-}$ . $+r_{i+1}\leqq t_{i}\leqq r_{i}$ and $r_{i+1}<r_{i}$ . On the other hand, we have $[A(M_{i+1})\downarrow_{P}]=$

$t_{i+1}(\Sigma_{g\in N/H}[d(S_{i+l^{g}})])$ , where $t_{i+1}$ is the multiplicity of $M_{i+1}$ in $s_{i+1}\uparrow G$ This implies that $r_{i}\leqq$

$t_{i+1}\leqq r_{i+1}$ , a contradiction.

Proof of Theorem 1.1. We continue to use the same notation in Lemma 1.4. Let $Q$ be

a minimal p-subgroup of $G$ such that $M\downarrow_{Q}$ is not projective. Since $M$ is not projective,
$M\downarrow_{Q}$ is periodic from [$C$ , Lemma 2.5]. By the Mackey decomposition $M\downarrow_{Q}|(S\uparrow^{c})\downarrow_{Q}\cong$

$\oplus_{g\in P\backslash G/Q}(S^{g}\downarrow_{P^{g}\cap Q})\uparrow_{Q}$ , Since $M\downarrow_{Q}$ is not projective, $s^{g}\downarrow_{P^{8}\cap Q}$ is not projectivefor some $g\in$

$G$ . Then $S^{g}\downarrow_{P^{9}\cap Q}|M\downarrow_{P^{8}\cap Q}$ and thus $M\downarrow_{P^{\ell}\cap Q}$ is not projective. This implies that $Q=$

$P^{9}\cap Q$ and $Q<P^{g}$ by our choice of $Q$ . Therefore we may assume that $Q<P$ and $s\downarrow_{Q}$ is

periodic and non-projective (if necessary, replace $P,$ $S$ and $\Delta$ by $P^{g},$ $S^{g}$ and $\Delta^{g}$ ). We

claim that $Q$ satisfies the following two conditions for any indecomposable $kG$-module $W$ in
$\Theta$ (and any $kP$-module $V$ in $\Delta$):
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(A1) $W$ and $V$ are not Q-projective; (A2) $W\downarrow_{Q}$ and $V\downarrow_{Q}$ are not projective.

Indeed, since both $M\downarrow_{Q}$ and $s\downarrow_{Q}$ are periodic and non-projective, it follows that for any $W$

in $\Theta$ and any $V$ in $\Delta$ , $W\downarrow_{Q}$ and $V\downarrow_{Q}$ are periodic and non-projective, and thus both $W$

and $V$ are not Q-projective. Let $d_{Q}(W)$ (resp. $d_{Q}(V)$) be the number of non-projective

indecomposable direct summands of $W\downarrow_{Q}$ (resp. $V\downarrow_{Q}$). Then $d_{Q}$ is an additive function on
$\Theta$ and also on $\Delta$ (see, $e$ . $g.,$ $[O]$ , [E-S] and [K3]). Note that $d_{Q}$ commutes with $\tau=\alpha$ .

Now $\Theta$ is isomorphic to either $ZA_{\infty},$ $ZD_{\infty}$ or $ZA_{\infty}^{\infty}$ . Assume by way of contradiction

that $\Theta$ is isomorphic to either $ZD_{\infty}$ or $ZA_{\infty}^{\infty}$ . Then by [Bn, Lemma 2.30.5] any additive

function on $\Theta$ which commutes with $\Omega^{2}$ is bounded. On the other hand, since $\Delta$ is

isomorphic to $ZA_{\infty}$ , an additive function $d_{Q}$ on $\Delta$ is unbounded. Since $s_{i}\downarrow_{Q}|M_{i}\downarrow_{Q}$ by

Lemma 1.4, it follows that $d_{Q}(S_{i})\leqq d_{Q}(M_{j})$ for all $i$ . This implies that an additive function

$d_{Q}$ on $\Theta$ is unbounded, a contradiction.

Corollary 1.5. Assume that $k$ is algebraically closed and let $\Theta$ be a connected

component of $\Gamma_{s}(kG)$ . Let $M$ be an indecomposable $kG$-module in $\Theta,$ $P$ a vertex of $M$ and
$S$ a P-source of $M$. Suppose that $P$ is not cyclic, dihedral, semidihedral or generalized

quatemion and that the k-dimension of $S$ is not divisible by $p$ . Then $\Theta$ is isomoIphic to

ZA.

Proof. By [K2, Theorem 2.1], the connected component of $\Gamma_{s}(kP)$ containing $S$ is

isomorphic to $ZA_{\infty}$ . Hence the result follows by Theorem 1.1.

In particular we have the following.

Corollary 1.6. Let $B$ be a block of $kG$ whose defect group is not cyclic, dihedral,

semidihedral or generalized quatemion and $M$ a simple module in $B$ of height $0$ . Then $M$

lies in a $ZA_{\infty}$ -component.

Remark. In [E2], Erdmann proved that if a p-group $P$ is not cyclic, dihedral,

semidihedral or generalized quatemion, then there are infinitely many $kP$-modules of
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dimension 2 or 3 lying at the ends of $ZA_{\approx}$ -components ([E2, Propositions 4.2 and 4.4]).

Consequently she showed that for a wild block $B$ over an algebraically closed field, the stable

Auslander-Reiten quiver $\Gamma_{s}(B)$ has infinitely many $ZA_{\infty}$-components ([E2, Theorem 5.1]).

2. $ZA_{\infty}$ -components and simple modules

In this section we consider a $ZA_{\infty}$-component which contains a simple module. Note

that if $B$ is a wild block ($i.e.$ , a defect group of $B$ is not cyclic, dihedral, semidihedral or
generalized quatemion), then $\Gamma_{s}(B)$ has a $ZA_{\infty}$-component containing a simple module by

Corollary 1.6.

Proposition 2.1. Let $M$ be a simple $kG$-module and $\Theta$ a connected component

containing $M$. Suppose that $\Theta\cong ZA_{\infty}$ and $M$ does not lie at the end. Then;

(1) For some simple modules $T_{1},$ $T_{2},$ $\cdots$ , $T_{n}$ , the projective covers $P_{i}$ of $T_{i}$ are
uniserial of length $n+2$ and the Loewy series for $P_{i}^{\mathfrak{j}}s$ are as follows for some simple

module $S$ :

$P_{1}$ : $[_{T_{1,}^{n}}^{T_{n- 1^{\backslash }}^{T_{\frac}^{1}}}TTS$ $P_{2}$ : $\{\begin{array}{l}T_{2}T_{I}ST_{n}T_{n- 1}\vdots T_{3}T_{2}\end{array}\}$, $\cdots$ , $P_{i}$ : $\{\begin{array}{l}T_{i}T_{i- 1}\vdots T_{2}T_{1}ST_{n}T_{n- 1}\vdots T_{+1}T_{i}\end{array}\}$ , $\cdots$ , $P_{n}$ : $\{\begin{array}{l}T_{n}T_{n- 1}\vdots T_{2}T_{1}ST_{n}\end{array}\}$ .

$-(2)$ A part of $\Theta$ or $\Omega\Theta$ is as follows for $(n+1)(n+2)/2$ uniserial modules:
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$ST_{n}$
$S^{1}T$

$T_{1}^{2}T$

$T_{n- 1}$

:
$T_{n}$

$T_{n}$ $S$ $T_{\underline{\gamma}}$

$T_{n- 1}$

:
$T_{:^{n- 1}}$

$T_{\underline{o}}$

$T_{:^{n- 1}}$
$T_{:^{n}}$

$S^{1}T$
$T_{1}^{\underline{2}}T$

$T_{1}$ $T_{\underline{9}}$ $T_{3}$ $T_{n}$ $S$

$\nearrow$ $\searrow$ $\nearrow$ $\searrow$ $\nearrow$ $\searrow$ $\nearrow$ 1 $\searrow$ $\nearrow$ $\searrow$

$.$

$S$ $T_{1}$ $T_{2}$ $T_{n- 1}$

$T_{:^{n}}$
$S_{:}$

.
$T_{:^{1}}$ $T_{:^{n-\underline{o}}}$

$T_{\sim}\circ$ $T_{3}$ $T_{4}$ $S$

$\nearrow$ $\searrow$ $\nearrow$ $\searrow$ I $\searrow$ $\searrow$ $\nearrow$ $\searrow$

. $S$ $T_{1}$ $T_{n- 2}$

.

$T_{:^{n}}$
$S_{:}$

$T_{:^{n- 3}}$

$T_{3}$ $T_{4}$ $S$

$\nearrow$ $\searrow$ $\nearrow$ $\searrow$ $\nearrow$ $\searrow$

. . . .

..
$\searrow$ $\nearrow$

$T_{1}$

$S$

.
$T_{n}$ .

$\searrow$ $\nearrow$ $\searrow$ $\nearrow$

S $T_{1}$

$T_{n}$ $S$

$\nearrow$ $\searrow$ $\nearrow$ $\searrow$

$.$

$S$
.

$\nearrow$ $\searrow$

In particular the Cartan matrix of the block containing $M$ is as follows:

$\{\begin{array}{lllllll}2 1 1 1 0 01 2 1 \ddots \vdots \vdots \vdots 1 1 \ddots \ddots 1 0 \vdots\vdots 2 1 0 01 1 1 * 0 0 0 \vdots \vdots 0 0 \end{array}\}$.
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In [T], Thushima studied blocks $B$ ofp-solvable groups in which the Cartan integer

$c_{N}=2$ for some $\varphi\in IBr(B)$ . From [$T$ , Theorem], we have

Corollary 2.5. Assume that $G$ is p-solvable and $B$ is a wild block of $kG$ . Let $M$ be a
simple module in $B$ . Suppose that $M$ lies in a $ZA_{\infty}$ -component. Then $M$ lies at the end of its

component. In particular simple modules in $B$ of height $0$ lie at the end of $ZA_{\infty}$-components.

Also using the result of Tsushima[T, Lemma 3], we have

Corollary 2. 6. Assume that $G$ has a non-trivial normal p-subgroup and $B$ is a wild

block of $kG$ . Let $M$ be a simple module in $B$ . Suppose that $M$ lies in a ZA -component.

Then $M$ lies at the end of its component. In particular simple modules in $B$ of height $0$ lie at

the end of $ZA_{\infty}$-components.
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