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On some results of the cohomology of extra special p-groups

by RYy  HieiPig
M.Tezuka and N.Yagita
(3#x £2) (kK 35k)

Extra special p-groups are central extrensions of Z/p by elementary abelian
p-groups. These groups occupy a distinctive in the cohomology and
representation theories of finite groups. Quillen decided mod 2 cohomology of
the extra special 2-groups [Q]. However the corresponding calculation for
odd p is still unknown. Tezuka-Yagita studied the varieties defined from its
mod p cohomology[T-Y]. Extending these reults, Benson-Carlson decided the mod
p cohomology modulo Jacobson radical [B-C]. The radical parts seem very

difficult. For the group of the order p*®, Lewis decided the integral
cohomology and Leary wrote down the mod p cohomology completely [Lw], [L2].
Minh computed the mod 3 cohomology of the group with the order 3° and of the
expaonent 32 [M].

One of main results of this paper, is to give the additive structutre of the
mod p cohomology of the group with the order p® and its exponent p
(Theorem 8.25). The another results are existence of groups and their modules

which period is exactly 2p® for each n.

‘§1. Extra special p-group.

. An extra special p-group G is a group such that its center is Z/p and there

is the central extension

|
(1.1) 1 —>2Z/p —> G >V >1 where V=g"Z/p.

Such group is isomorphic to the n-th central product E...E=E. or E.-:M where
E (resp.M) is the non abelian group of the order p® and exponent p (resp.p?).

" Hence we can explicitely write
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(1.2) Ea = <a1,...azn,cl[az:i-1,a2:]=c, c ¢Center
[ai,a;]=1 for i<j, (i,J)=(2k-1,2k)
ax®=c’=1 >.
The group Ea-M is written similarly except for az.’=c.
Let us write by x.€H'(V)=Hom(V,Z/p) the dual of 7l(a:) and write y.=px:
Then the cohomology of V is
H* (V) = Sza®N2n with S20=Z/plyi,...,¥y20] and Aza=Nxi,...,Xz2a).
Proposition 1.3. The extension (1.1) represents element in HZ? (V)
f = 2" Xzi-1Xz: (resp. J "Xzi-1Xaityza) for G=Ea (resp.Ea-iM).
We consider spectral sequence induced from (1.1)
(1.4) Ez* *=H*(V;H*(Z/p))
2 8:0® N2adZ/pu]l ®A(z) —> HX0)
with @ z=u. From Proposition 1.3, we know
(1.5) d.z = f.
By transgression theorem,
(1.8) dsu= Bd2z = 2 yzi-1Xz:i-YziXzi-1
(1.7) depSey u® = ev"-'-- ® dsu =3 y“-ﬂgx“—yunsx“-,.
By Kudo's transgression theorem
(1.8)  deoSiomnr s (027 0 Dgdapians®) = B0 dapsure®
= Z_yzs-x’sﬂ yZi'yZips+ly21-l-
Let us write (1.6)=za(1), (1.7)=za(s+1), (1.8)=wa(stl).Hence Eo* ° is a
quatient of
(1.9) E = Sz2.® A 24/ (£, z.,(l),...,zn(n),wn(l),...,wn(n)).
We also know that u’nﬂis a permanent cycle because which represents p"*'-th
Chern class of induced representation from a maximal elementary abelian
p-group.‘Writé by u' a corresponding element in H*(G). Then H*(G) is a
E®Z/p{u'] -module. From Benson-Carlson [B-C].
H*(G)/J = E Zp[u']/J for the Jacobson radical J.
Note the regularlity of the sequence wi(l),...,wa(n) in Sz, is shown in Tezuka-

Yagita [T-Y].
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§2. E’; the central product of G and S*'.

The spectral sequence (1.4) is very complicated even for E (see [K-S-T-Y]
(5.11)) .Hence we consider another arguments which are used by Kropholler, Leary,
Huebshmann and Moselle. Embed <c>z= Z/pGS' and cosider the central product

(21) G = GX<c>S‘.

~~ N
Note that E. & En- 1M, indeed, take aznc™'”® as azn ,if azn®=c. Then we have the

exact sequence

(2.2) 1 —> st — T >V —>1
and induced spectral sequence
(2.3) Ez* * 2 H* (V;H* (BS?'))
2 8209 N2a®Z/plu] —= R* (6)
Then diffentials (1.6)-(1.8) also hold but d.=0 by the dimensional reason.
Given H'(Gf, to see H*(G) we use the following fibration induced from (2.1)
(2.4) S'z G/ —> BG —> BG.
The induced spectral sequence is
(2.5) Ea**a H* (GH* (SY))
2 H @@Az) = 1 (6)
and dzz=f (1.5). Therefore

Proposition 2.6. H*(G) &= (Ker (f) |H*(G)) {z}®H* (G)/(f).
.§3. 2p-terms for E. for n{p.

In sections 3-5, we consider spectral sequnce (2.3) for E. for p <n. Given

graded algebra A and z A°“°,bwe define homology H(A,z) with the differential d.

(a) =za. The first non zero differential in (2.3) is dsu=z. (1).Hence

Es* z‘i\ SanAzn/(Zn (1)) j=0 mod p
(31) H(Szn@/\zn;Zn (1)) léjg’z
Kerza (1) j=p-1

E( * 25+ = .
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We can prove

(3.7) Ezp* 292§ Sza®Nn/(za (1), wa(l),2za(2)£"") j=0 mod p

Z/p{f"} 1< j< p-1
0 Jj=p-1.

3 4. Ezp+z-term.

The next differential is (1.7)
(41) dzp+1(up)=(?2n(1) = Zn (2)

Let E=S2:®N:0/(za(1),wa(1)). Then we get from (3.7)

(4.2)  Ezpe2® 2% = ( E/(za(2)) for j=0 mod p
H(E/za (2) £ ', 2a (2)) 0<j<p-2
Ker (za (2) |E/za (2) £°) jep-1
Eapen®™ 20°%4% = Z/p{£n} 0<igp-2

$5. Homology of H(E:/Ei+1).

Proposition 5.18. H(E,zz(2))°** <= H(E,z2(2))°*"°*"-Z/p{f"}
and  H(E,z2(2))°** 2 Se{xi',..,Xza'}/ (yisxs' ¥y ixu'=yuxi ")
where we express x;'=x,f*"', x:'=y:f""!, Yy = '5;',”3:—“56‘
From (4.2)' we get |
Corollary 5.19. H(E/za(2)f""',za(2)) is generated by f*~' as
S2a® N zn-module and
H(E/2a (208777, 24 (2)) 9 =H(E,za (2)) 000

H(E/z2 (2)f*" ', za(2))°V®"= S2a/(yiys:) (£ '}@Z/p{£"}.

) ~
J?S. Ezp (p-1)+1 ~-term for G.

1

» 3 LR
Let you=y: "~y A and vy =y TyeoviyetH) yavss

Therefore we can prove
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Proposition 6.4, For n=2 case

CErqpiuy g, R S4®A4/(Zz(1).lz(2).W2(1).Wz(2).()’zx"“Y4s')@(XxXz))
J=0 mod p
SO Yy yiximyaxi, £, xaxu ((h, k) =(1,2), (3,4)))
0¢j{p-1 mod p
Ezp-iypaa® 29 o 2/p{x1...x4) 0<j<p-1 mod p
0 Jj=p-1 mod p

In the next section, we wjll prove also

Theot‘em 5.15 Ez(;-n;»n'"é Ew.'.'

n/
S 8. Ker t in H*(E)).

Theorem 8.25. There is an additive isomorphism

2 (B) = (Al(f)e® (Ker(N)|A)2} @1¢,p-2 (H'{f.} © H'{f,z})
D1<1<pr-3 and t#-1, #0 mod p or c-p(p-1)(Z/P{zc:} & Z/p{z'z,}))
 ®Z/p[w’]

wh
e(r:; A% 5,@A4/(2(1), 22(2), wa(1)un(2), (v2) +v4a)B(2122), 23(3?_)
with S(®A4 = z/p[yh v )y4)®A(xh v )34)1 33(1) = ﬂf» 32(‘) -
Pﬁf, 23(3) = Pppﬂf and tUg(l) = ,Bzg(2), w3(2) = ﬂz-?l(?)
(6:5) iy = yFP) 4 yPmIXom 0yl g RO,
%:':'3)f(;rj:gsﬁ:i:nz;.:;‘)}l’(er (f)|A is generated as an Sy-module by

Yo Y Ti = YiZy, Y50,
f.zkm(k,;r) # (1,5),# (3,4)),

TiT;Tk, T1232324,

where y;; = v — y;97 7,
(iv;hz cogr/z.spon]da non zero element in H(S') = E3! in (2,.04{1)‘2 N
(v) (Proposition 5.18) H0dd H'eVe™/(Z /p{1}) and H =
54{21» v ,24}/(%]’2)', YiZx = ykzi);
(vi) fo = {fu?*} in the spectral sequence (2.2),
(vii) z, = { f2u'} = {z123252u'} in (2.2).
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.§23/ Hochschild-Serre spectral sequence.

We consider the spectral sequence with E:-term

(2.1)  Ea** = H*( 6"2/9:“'(BS‘))-
In this paper cohomology H®(-) always means the Z/p-coefficient H*(-;Z/p). Let
us write

H(+2°Z/p) =S2a® N 2a, H*(BS') & Z/plul
with S2a=Z/p[y1,...¥2a), Aaza = AlXy,...X2a), BXi=y: .
We assume first non zero differential

(2.2) dsu . Bf with f2 X ie1™Xzi-1Xa4.

Then by Cartan-Serre and Kudo transgression theorems, we know

(2.3) dzp;“ox(U’c-')=z(i). dan(pf"»1)ox(Z(i)Ou"""(~')’W(i)
‘. '.‘ '
with z (i) =@"1...P‘Bf’ Z Yz.o-l" Xas-Yas® lx:.;—x.
- , .
w(i) =3P" z(i) = Zy“-x"y”'y“")'u-h

Let us write 5(i)=8aa/(w(1),...,w(i)). Recall (w(l1),...,w(n)) is regular in Sia
(7] |
Lepma 2.4. For ig n-1 , we get
(i) 1 is S(i)-free in  Eapts,* °,
(ii) z(i+l) is S(i)-free in Eaplor® O,
(iii)  if x¢Eapl.s* ° is higher w(i+l)-torsion,then x is higher w(j)-torsion
for all jgn (i.e., w(j)*x=0 for some s and all jgn).
(iv) Espti.2* %® ig higher w(j)-torsion for all jgn.
For the proof of this lemma, we recall the base wise reduced powers defined
by Araki.
Theorem 2.5. (Araki [2]) There are cohomology operations

LI Er"' y Ep(r_z)’:oo(as-b)(n-l).pb

Bppu : E.o b —> E’(r_z)’=a+(2--b)(p-l)ox.pb

which satisfy the naturality and Cartan formula.
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Proof of Lemma 2.4. We use induction on i. Suppose (i)-(iv) for i-1. First
we will prove (iv) i.e.,
(1) H*(Eapt .+, °,2(i+1)) is higher w(j) torsion.
Here H(A,z) means the homology with the differential da=za for a€A. Let us
write by TCEap*='42* © the higher w(j)-torsion parts and F=Es,i-l..* °/T. By the
inductive assumption, H(Ez.“'.;"°.z(i))25Ehpf‘ka"”L-l is higher w(j)-torsion.
Hence for 2p'~'+24rg 2(p-1)p'~', we see imd:C T. Therefore
(2) Ersr® °/( higher w(j)-torsion) & F.
Next we consider the Kudo transgression dsp'~d(p-1)+1. Let us write simply
q=2(p-i)p"‘. Recall that Ezp'~'s2*' ® contains z(i) and is a submodule of
Ker (z(i)) &= H(Eapi~ls ™ °yz(i))e@laz(i).
Since Imz (i) in Eqs1*'® is S(i-1)-free from (ii), if Ker(des:)O Imz(i) 0, then
it is a contradiction because Eq.3* * is w(i) -torsion since so is 1. Therefore
Ker (de+:)NImz (i)=0. Since H(Espi~'si,2z(i)) is higher w(j)-torsion, given
a€Eq¢1*' % we get w(itl)*ae&Imz(i) for some large s. Hence Eq+:° * is higher
w(j)-torsion. Then we also show, for 2(p-1)p'~'+1Srg 2p!,
(37) Eevi® °/( higher w(i)-torsion) & F/(w(i))/(higher w(j)-torsion ).
Let xGEsp +1° ° and xeKerz(i+l). From (3) we can write in Espi=l.s*°
(4) z(i+l)x =w(i)a+tt with t ; higher w(j)-torsion mod (w(i)).
Therefore for large s, we have
(5) z(i+l)w(i+l)*x = w(i)a'
_ We consider Araki's reduced powers
sBP', sP" ¢ Eaplyt 0 ——5 Ezpis ®
Act .;0’:'to (5). Since w(i)=z(i+1)=0 in Esp¢.2* ° and 'r’:z(i+l)=w(i+1), we get
in Eapl,a®® '
(6) w(i+l)**'x = w(itl)pa’.
Multiply z(i+l) to (5), we know w(i)z(i+l)a'=0. Act .ﬁP"z to this, and we have
W(i*1)%a'=0 in Esptes® ° . From (6)

(7)  w(i+l)**%x=0 in  Eapt.a®?®
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From (3), this means
w(itl) ®*%x = w(i)a''+t' in Egpt..* 0.
as (4). Multiply w(i+2)* to this for large s', we get w(it+l)*®* 'x=w(i)a''’.
Operate BP’“"" on this. Thus we prer

(8)  w(i*2)* 'x = 0 in  Ezple2™ .

Continue this argument and we show (1),i.e., (iv). vThe arguments (7) to (8)
implies (iii).

We already know ,for q=2(p-1)p!~*, dae: : S(i-1){z(i)}=Ideal(w(i)) in
S(i-1), by the arguments before (3).  Suppose dq+:(au®’?)=w}0 mod (w(i)) in
S(i-1) ( or %0 mod (w(i)z(i)) in  S(i-1){z(i)}). Then w(i+l)*w$0 for all s in
S(i-1)/(w(i))=S(i) since w(i+1l) is non zero divizer in S(i). On the other hand
H(Ezs'='41,2z(i)) is higher w(j)-torsion, we get w(i+l)*ae Imz(i) for large s.
This means w(i+l)*w=0 mod (w(i)) and this is a contradiction. Hence 1 and z(i+l)
are S(i)-free in Egq+2* °. From (3), so are in Ez,i.lf'°. Therefore we show (i
) and (ii). q.e.d.

From (3) in the above proof, we also get;

Corollary 2.6. With modulo higher w(j)-torsion , there is the isomorphism

Eaple1™ ® 2 S2a®Aen/(z(1),...,2z(i),w(l),...,w(i)).

. '
§3. Extra special p-groups

let E. be the extra.épecial p-group of the order 2p"*!' and the exponent p

(3.1) E. = <ai,...,azn,claiP=c’=1, ¢ € Center
[ai,a5]= (c i=2k-1, j=2k
{ 1 other 1i{j >

~
Consider central products En=EnX<c>S' and ﬁ%S)n=Enx<c>Z/p'. Then there are

central extensions

lod

(3.2) . 1 > S! ? En —0%"Ll/p —1

"/

(3.3) 1 — Z/p* — E(s)a 5 ®**l/p —1
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and induced spectral sequence E.* * and E(s).* * from (3.2) and (3.3)
respectively. The spectral sequence E.* * satisfies (2.2) and hence Lemma 2.4.

Let H'(Z/p*) 2 Z/p[ul®A(z). If s22,then d.z=0 by @z=0 and the symmetry of
E(s)n. Thus

(3.4) ~ Els)e** &= E:*' *ONMz) for s22.
Therefore (i), (ii) in Lemma 2.4 satisfies for (3.3).

Corollary 3.5.([7]) 1In H*(Ea) or H‘(EQs)n),SZZ , the Sz.-submodule
generated by 1 is Sza/(w(l),...,w(n)).

Moreover for n=2, the spectral sequemce E.*' * is given completely in [8].

y ;
§4. Periodic modules with large period.

Let k be an algebraic closure of Fy. Let Na* (M) be the r-th kernel in the
minimal resolution of k(G)-module M, i.e., if
(4.1) 0>M:—20Q:-1 —....=> Qo 2> M —50
is exact and if each Q. is projective, then M:&$ls" (M)@Q for some projecive
module Q. A G-module M is said to be periodic if Ne™(M)x M for some m20. The
smallest of such m is called the period of M.
We denote by Va(k), the variety defined by commutative ring H®(G;k)/[0. For
a G-module M, let Ig(M) be the annihilator in H*(G;k) of Extu-(a)‘(M,M)Qi
H* (G,Homy (M,M)). Let Va(M) be the subvariety of Vas(k) associated to Is(M).
Remark that if V is a closed homogeneous subvariety of Vs (k), then there is a
K(G) -module M with Vq(M)=V (Proposition 2.1 (vii) in [3]).
We recall arguments of Andrews and Benson-Carlson [3 ]. Consider a central

extension of a finite group

(4.2) 11— Z/p — G > E > 1.
Let i?p denote the sum [ y¢z,-g as an element of the group ring k(Z/p). Then
for )0, Z/p80s%7 (k) is a k(G)-module with Z/p-acting trivially, so we may

regard it as a k(E)-module. We set
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(4.3) Ve = Ve(Z/ple*T(K) C Velk).

Theorem 4.4. (Andrews) Let M be an indecomposable k(E)-moduie regard as a
k (G) -module by inflation. Then M is a periodic k(G)=module of periodic dividing

2r if and only if Ve (M) N\ V,.={0}.

Theorem 4.4 ( Benson-Carlson (3] ) LetvEr"‘bbe the spectral sequence
induced from (4.2). Let I, cH*(E) be the Kernel of the induced map
Ez* °— Ezp%.,* °. Then V. 2=Vg(I,a).

Lemma 4.5. ([3]Proposition 2.2. ) If M is a periodic k(G)-module, then
the peiod of M devides 2[G;E] where E is a maximal elementaryrabelian p-groups
of G.

Theorem 4.6. Let G be the p-group Eqs)n ;;;2. Then there are periodic
K(G) -modules of period 2* for agn, and no higher period.

Proof. (See the proof of Corollary 6.2 in [3].) From above lemma, the only
possible periods are 2p* for agn. By Lemma 2.4 in section 2 and Theorem 4.4,
for agn we may find a closed homogeneous subvariet V of Ve(k) with VaV,a~! §{0}
and V(W,a={0}. By the remark after the definition of Vo (M), we may find a
k(E) -module M with Ve (M)=V. Then by the Andrews theorem .az=°“4un#u but

Q"M ¥, so M has period exactly 2p*. q.e.d.
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