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A POINCARE-BENDIXSON TYPE THEOREM
FOR HOLOMORPHIC VECTOR FIELDS

TOSHIKAZU ITO

INTRODUCTION

Let Z; be a linear vector field on the two-dimensional complex space c?:
2 ‘
Zl=Z/\ija/aZj, Aj eC, )\j#O.
=1

We have the following well-known

Fact ([1]). If A;/); does not belong to R_ , the set of negative real numbers,
then the three-dimensional unit sphere S3(1) = S3(1:0) centered at the
origin 0 in C? is transverse to the foliation F(Z;) defined by the solutions
of Zl .

- If A1/)A; belongs to R_, S3(1) is not transverse to F(Z;).
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We carry: S3(1 : 0) tothesphere S3(1: (2, 2)) centered at the point (2, 2)
in C?. Next we deform S$3(1:(2, 2)) to 53(1:(2, 2)) as shown in Figures 5
and 6.

Intuitively it appears that $3(1:(2, 2)) and S53(1:(2, 2)) are not trans-
verse to F(Z;). The above figures suggest to us a topological property of
the transversality between spheres and holomorphic vector fields. This obser-
vation leads us to the following Poincaré~Hopf type theorem for holomorphic
vector fields.
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Theorem 1. Let M be asubset of C" | diffleomorphic to the 2n-dimensional
closed disk D*™(1) consisting of all z in C™ with ||z]| < 1. We write F(Z)
for the foliation defined by solutions of a holomorphic vector field Z in some
neighborhood of M . If the boundary of M is transverse to F(Z), then Z
has only one singular pomt say p, in M . Furthermore, the index of Z at
p Is equal to one. :

- From Theorem 1, we get an answer to the problem suggested by Figures 5
and 6.

Corollary 2. Consider a linear vector field in C™: Z = 37, A\jz; 0/0z; ,
A; € C, X\ # 0. If a smooth imbedding ¢ of (2n — 1)- sphere $**~! in
C"—{O} belongs to the zero element of the homotopygroup Tan-1(C"—{0}),
* then ¢ is not transverse to F(Z).

Since the distance function for solutions of a holomorphic vector field Z
with respect to the origin 0 is subharmonic, each solution of Z is unbounded
except the singular set of Z. Therefore we have formulated a Poincaré-
Bendixson type theorem for holomorphic vector fields.

Theorem 3. Let M denote a subset of C™ holomorphic and difleomorphic
to the 2n-dimensional closed disk D?"(1). Let Z be a holomorphic vector
field in some neighborhood of M . If the boundary dM of M is transverse
to the foliation F(Z), then each solution of Z which crosses @M tends
to the unique singular point p of Z in M, that is, p is in the closure



of L. Further, the restriction F(Z)|p_gpy of F(Z) to M — {p} is C*-
diffeomorphic to the foliation F(Z)|aar X (0, 1] of M —{p}, where F(Z)|am
denotes the restriction of F(Z) to OM .

Adrien Douady proved Theorem 3 in the case n=2.
From Theorem 3 we get an affirmative answer to a special case of the Seifert
- conjecture.

Corollary 4. Let Z be a holomorphic vector field in some neighborhood of
D*(1) C CG*. If the boundary 8D*(1) = S3(1) is transverse to F(Z), then
the restriction F(Z)|ss(1) to S has at least one compact leaf.

The author wishes to thank César Camacho for valuable discussions.
§1. DEFINITION OF TRANSVERSALITY BETWEEN MANIFOLDS
AND HOLOMORPHIC VECTOR FIELDS

Let Z = Z;f:l f;(2) 8/0z; be a holomorphic vector field in the complex

- space C™ of dimension n. We identify C™ with the real space R?® of
dimension 2n by the na.tura.l correspondence. We have a real representation
of Z:

7= Z fi(2) 0/0z;

-E(gj(z,y)-ﬂh (z,9)5 (3/3% 19/9y;)

=1

- %{ [Z(g, (=, 9)8/023 + hy(z. v 6/6%)]

=1

{Z( hi(e, y)a/az,+g,(z,y)3/3y,)]} |

i=1
= -l-(X-z'Y), - (1.1)
2 _
where we set
X =3 g5z %) 8/9z; + hj(=z , ) 3/y;) (12)
ij=1
and _
Y =) (~hj(z,y)8/3z; +g;(z, y) /3y;)- (1.3)

ji=1



Let J be the natural almost complex structure of C"” . The vector fields X
and Y satisfy the following equations:

JX=Y, JY=-X and [X,Y]=0. (1.4)

Let N be a smooth manifold of dimension 2n — 1. We define below
the transversality of a smooth map ® : N — C” to the foliation F(Z)
determined by solutions of Z .

Definition 1.1. We say that the map & is transverse to the foliation F (Z)
or the holomorphic vector field Z if the following equation is satisfied for each
point p€ N : :
8. (T,N) + {X, Y}sp) = Ta)R™,

where T, N and Tq,(P)Rz“ are the tangent space of N at p and the tangent
space of R2® at ®(p) respectively, and {X, Y}s(p) is the vector space
generated by Xg(,) and Yg(p) - In particular, if N is a submanifold in C",
we say that N is transverse to F(Z).

For example consider the (2n—1)-dimensional sphere $2"~1(r), consisting
of all z € C™ with ||z]] =r. §2"-1(r) is tangent to F(Z) at p € $*"~1(r)
if and only if the following equation is satisfied at p:

Y fi(2)E = (X, N) = (Y, N) = 0, (1.6)

where we denote by N = 37_, (z; 8/0z; +y; 8/y;) the usual normal vector
field on S?"~1(r). Weset = {z€ C*| 3_7_, fj(2)% =0} andsay that
is the total contact set of spheres and F(Z). We denote by R(z) = 37, |2 [?
the distance function between z € C™ and the origin 0 in C™. A critical
point of the restriction R|r of R to a solution L of Z is a contact point of
L and the sphere.

We will ¢onclude this section by giving some examples of the contact set
N S2-1(r) of S?*~1(r) and F(Z).

Example 1.2. Consider Z = z1(2+42;+23)0/0zy +22(1+2,) 8/0z; defined
in C2?. The set Sing(Z) of singular points of Z consists of three points:
(0,0), (-2,0) and (-1, —1). Now Sing(Z) N D*(1) conmsists of (0, 0)
only, where D*(1) is the four-dimensional closed disk centered at the origin
in C? with radius 1. Forany r, 0 < r <1, the contact set S3(r)NZ is
empty; that is, S3(r) is transverse to F(Z). Therefore, each solution of Z
which crosses S3(1) tends to the origin in C2.



Example 1.3. Let a be a complex number different from zero. Define Z
on C? by Z = (2z; +az2)8/0z, + z3 8/8z; . We mention here that one can
find in [3] one of the normal forms of holomorphic vector fields in C?:

Z = (Mz1+az})0/0z + A2220/0zy, A =niy

The singular set Sing(Z) consists of a single point (0, 0). There exists a
number ro > 0 such that ‘
i) f 0<r<rg, 2053(1') is empty:

(ii) if r=re, TN S3(ry) is diffeomorphic to the circle S*;

(il) if ro < r, ZNS3(r) is diffeomorphic to the disjoint union S* 11s 1 of
two copies of the circle S*

In the case (ii), the circle LN S3(ry) consists of degenerate critical points.
If L, is the solution of Z passing through p € £NS3(rp), then L, NI is
a singleton set {p}.

In the case (iii), one circle of £ N S3(r) consists of minimal points and
the other consists of saddle points. In particular, for p € £ N S3(r) the set
Lp NI consists of two points p and ¢, p # q. More precisely, one of these
two points is a saddle point of R|z, and the other a minimal point of R|r, .

Example 1.4. One finds in [4] the following example of a one—form w on
02 w = z3(1 — i — z129)dz; — z1(1 + i — z1z5)dzy. We consider here

= z;1(1 +1i— 2122)8/0z1 + z2(1 — i — z123) 8/322 on C?. The singular set
Smg(Z) consists of a single point, namely (0, 0). If 0< r < /2, 2N S3(r)
is empty. If r = /2, £N5%(v/2) is diffeomorphic to the circle S*. Indeed
YN S53(v/2) belongs to the solution z;29 =1 of Z. If r>+v2, TNS3(r) is
diffeomorphic to the disjoint union SJ]S? of two copies of the circle S!,
and consists of saddle points.

§2. PrROOF OF THEOREM 1

In this section we shall use the same notation as in the previous sections.

First, we note that the following property of analytic sets in C™: the set
of singular points of Z in M consists of isolated finite points. Since the
boundary OM of M is transverse to F(Z), there exists a smooth vector
field € in some neighborhood of M such that

- (i) € is represented by aX 4 Y # 0, where a and b are smooth functions
defined in some neighborhood of M ;
(ii) ¢ is required to point outward at each point of M .

We obtain a smooth map (a, b) of some neighborhood of M to R?—{0}.
When n > 2 using obstruction theory (see [9]), we can extend the map (a, b)
to a smooth map («, B) of some neighborhood of M to R2—{0} such that
the restriction of (a, §) to some neighborhood of M is the map (a, b).



There should be no confusion if we use ¢ for the extended smooth vector
field £ = aX+ Y . By the definition of { on a neighborhood of M , the set
Sing(Z) of the singular points of Z coincides with that of .

In order to calculate the index of £ at p € Sing(Z), we may think of
the vector field ¢ as a map € : M — R2?®. Similarly we may think of
the holomorphic vector field Z as a map Z : M C C® — C™ or as a map

: M C R*™ — R?™ . We say that the vector field Z is non-degenerate at
P 6 Sing(Z) if the Jacobian det(D(Z)(p)) of Z at p is different from zero.
By a direct calculation we obtain the following: .

et (D) = det ( 5E FOI) cer(D(2)(5) -
S

99; oy 4+ ;99 )
det (321: (p)+1 Bus (p)

where det A denotes the determinant of a matrix A and I, is the identity
matrix of GL(n, R). In particular, since det(D(Z)(p)) is positive at a non-
degenerate singular point p € Sing(Z), the index of £ at p is one (see [6]).

In order to calculate the index of £ at a degenerate singular point p €
Sing(Z) , we recall the following

= | det((e(p) + iB(p)) 1)

Proper mapping theorem ([5]). Let F : C® — C™ be a holomorphic map
such that F(0) is equal to 0. Assume that O is an isolated point in F~1(0)
and det(D(F)(0)).is 0. Then there exists a number € > 0 together with a
‘ nelghborhood W of 0 suchthat Flw : W —A(0:¢) = {z E C" lzll < €}
is'surjective.

Using the proper mapping theorem we find a sufficiently small number
€ > 0 and a neighborhood W of p € Sing(Z) such that W N Sing(Z) is a
singleton set. Since there exist regular values y of Z in A(0:¢), by (2.1),
we may select a regular value y of £ in A(0: €)= {yeR?»||ly]| < e},
0 < e < €. Theset Ny = £~Y(A(0 : &)) N W is compact. We then
choose a compact set N with W D N DO N; and a smooth function A
which takes on the value one at z € N; and zero at z ¢ N. Define
£ by €(z) = é(z) — Mz)y. Then € is different from zero at each point
z € N — Ny ; hence é-1(0)NW is compact and each point 5 € £-1(0)N W
is non-degenerate. Now we are ready to calculate the index of the vector field
¢ at a degenerate point p € Sing(Z) :

index, { = Z indexz €
Fe-1 (0w
= the number of elements of £~1(0)NW > 1, (2.2)

where index, £ denotes the index of £ at p.



On' the other hand, by the Poincaré~Hopf theorem we have the following:

1=x(M)= Z index, &, (2.3)
p€Sing(Z)nM

where x(M) denotes the Euler number of M . From (2.2) and (2.3) we
conclude that the number of elements of Sing(Z) in M is one. This completes
the proof of Theorem 1.

§3. PrOOF OF THEOREM 3

We continue to use the same notation.

Since M is holomorphic, diffeomorphic to the 2n—dimensional closed disk
D?m(1), we give a proof of Theorem 3 for D?*(1). Using a M&bius transfor-
mation, we can assume that the sole singular point of Z in D?"(1) is the
origin 0. We define a function F in some neighborhood of D?® minus the

origin 0 by
> ;=1 fi(2)%
F(z2) = =L,
) Ej:l |z; ]2

Since the boundary S$?"~1(1) of D?"(1) is transverse to F(Z), the restric-
tion Flsan-1¢3) of F to S?*~1(1) takes on the.valuesin C— {0} . Consider
a complex line I, through a point z € S?»~1(1): I, = {tze C"*|t € C}.
We define a holomorphic function F(t : z) in some neighborhood of D?(1 :
0)={teC|Jt|]<1} by

Z?:l fJ_(tz)t-EJ

7 , ift#0

F'(t:z): n )
Z g'—:—"—(ﬂ)zkfj, ift =0.

k

i, k=1

Then the degree of FIM:I is zero, because F|san-1(1) is homotopic to a
constant map. Hence, for any z € S?®~!(1), F(t: z) is not zero; that is,
the only element of £ N D?*(1) is the origin 0 in C". In other words,
S§7=1(r), 0 < r < 1, are transverse to F(Z). Let N € TF(Z) be the
vector field of the projection of N to TF(Z). The set of singular points
of N in D?*(1) is the singleton set {0} in C™. Then each solution of Z
which crosses S?"~1(1) tends to 0 along the orbit of N . Furthermore, the
restricted foliation F(Z)|san-1(¢r) of S?n-1(r) is C¥-diffeomorphic to the
foliation F(2Z)|san-1¢1) of S?*~1(1) by the correspondence along orbits of
N . This completes the proof of Theorem 3.



§4. A SPECIAL CASE OF SEIFERT CONJECTURE

The notation used in the Introduction, §1 and §3 carries over in the present
section. _

We first recall the Seifert conjecture. Consider the vector field e = z; 8/92;
+248/8z3 on CZ?. All leaves of the restricted foliation F(e)|ss(1) of S3(1)
are fibres of the Hopf fibration S3*— S2. On the other hand, consider
the vector field e, = (21 + €22) 3/0zy + 22 0/0z2 , where the number ¢ is
sufficiently small. Then the restricted foliation F(e.)|ss(1) of S3(1) has one
closed orbit |z;] = 1 but all other leaves are diffeomorphic to R!. In [8]
- H. Seifert proved the following

Theorem (H. Seifert). A continuous vector field on the three-sphere which
differs sufficiently little from F(e)|ss(;) and which sends through every point
exactly one integral curve, has at least one closed integral curve.

The Seifert conjecture says “every non-singular vector field on the three-
dimensional sphere S has a closed integral curve”

In [7] Paul Schweitzer constructed a counterexample to the Seifert conJec-
ture: There exists a non-singular- C? vector field on S3 which has no closed
integral curves.

In this section we investigate a certain property of a non-singular vector
fleld on 52 induced by a holomorphic vector field in some neighborhood of
D*(1) which is transverse to S3(1). This will prove Corollary 4.

Proof of Corollary 4. Usmg a Mobius transformatlon we can assume that
the only singular point of Z in D*(1) is the origin. First, we note that the
existence of a separatrix of Z at 0 was proved by C. Camacho and P. Sad
[2]. Let L be a separatrix of Z at 0. There is a sufficiently small number
¢ > 0 together with a holomorphic function f defined in D*(¢) such that
D*(e)NL = {f =0}. Then for each €;, 0 < &1 <€, S3(e1)N L is a circle.
Since F(F)|ss(e,) is C¥-diffeomorphic to F(F)|ss(1), the latter has at least
one compact leaf. This completes the proof of Corollary 4.
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