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SOME EXAMPLES OF DEFORMATIONS
OF COMPLEX MANIFOLDS

ETIENNE GHYS

Let T be a discrete cocompact subgroup in SL(n,C). Recall that if n > 2, a
(special case of) a theorem of A. Weil shows that any homomorphism from I' to
SL(n,C) close enough to the embedding is conjugate to this embedding. More-
over, Raghunathan has shown that if n > 3 then the compact complex manifold
SL(n,C)/T is rigid as a complex manifold. The purpose of this note is to describe
explicit examples of non trivial deformations of the complex manifold SL(2, C)/T.

This note is extracted from [Gh] which will be published elsewhere: it corre-
sponds to the talk I gave in the meeting ’Singularities of holomorphic vector fields
and related topics’ at RIMS, Kyoto, in november 1993.

Observe that, up to a Z/2Z-extension, SL(2,C) is the isometry group of the
real hyperbolic 3-dimensional space H® so that I' is the fundamental group of a
hyperbolic 3-dimensional orbifold. Many examples have nonvanishing first Betti
number, i.e., are such that there exist nontrivial homomorphsims u : I' — C* (see
Th).

If u is such a homomorphism, we consider the right action of I' on SL(2,C)
defined by:

(@7) €SO xTrzaq = ("0 0 o,

If this action is free, proper and totally discontinuous, we denote by SL(2,C) /T
the quotient, and we say that u is admissible. We noted that there is a natural

C*-action on this quotient, coming from left translations by matrices ("g T‘ll )

Let Hy and H_ be the right invariant holomorphic vector fields in SL(2,C)

corresponding to the elements (g (1)) and ((1) g) of the Lie algebra of SL(2,C) and

denote by H* and H~ the one-dimensional holomorphic foliations generated by
H* and H~. It is easy to check that the differential of the right action by v in
SL(2,C) maps H* and H™ to u(y)?H™* and u(y)™2H~ so that H* and H~ are not
invariant (unless u? is trivial) but H* and H~ are invariant. In other words, on the
compact manifold SL(2,C)/,T', we have two natural foliations H* and H~ which
are invariant under the C*-action. When u? is trivial, H* and "~ are parametrized
by vector fields H* and H™.

In order to simplify our description of these examples, we shall assume that I is
torsion-free (this can always be achieved by replacing I' by a finite index subgroup
by a theorem of Selberg). In particular, I' injects into PSL(2, C) = SL(2,C)/{+:d}.
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Note that if € : I' — {£1} is a homomorphism, the map 7 : v € I' — €(y)y €
SL(2,C) is an injective homomorphism whose image is another discrete subgroup
I of SL(2,C). In such a situation, we shall write I' = +I". This happens precisely
when I' and I have the same projection in PSL(2,C). Of course, v : I' — SL(2, C)
is admissible if and only if e.u o 771 : I' — C* is admissible and the corresponding
actions of C* are conjugate.

Proposition. Let I' be a discrete torsion-free cocompact subgroup of SL(2,C).
Then homomorphisms u : I' — C* which are close enough to the trivial homomor-
phism are admissible.

Let T'y and T'; be two discrete torsion-free cocompact subgroups of SL(2,C) .
Then SL(2,C) /,T'1 and SL(2,C) i, T2 are homeomorphic if and only if there is a
continuous automorphism 6 of SL(2,C) such that 8(I'1) = +I';. In such a case,
there is a C'*°-diffeomorphism between SL(2,C)/,, 1 and SL(2,C) /., sending
orbits of the first C*-action to orbits of the second (without necessarily commuting
with the actions).

Proof. The first property follows from a very general fact. Let G be a Lie group
acting analytically on a manifold V and let I' — G be a homeomorphism such
that the induced action of I" on V is free, proper and totally discontinuous. Then
any perturbation of the homomorphism I' — G has the same property (see, for
instance [Th]). Assertion i) follows from the special case where V = SL(2,C) and
G = SL(2,C) x SL(2,C) acting by left and right translations.

Assume SL(2,C) /b, T1 and SL(2,C) i, Tz are homeomorphic. Then Iy and Ty
are isomorphic as abstract groups and it follows from Mostow’s rigidity theorem
that there is a continuous automorphism 6 of SL(2, C) such that §(T';) = £I';. Note
that, up to conjugacy, the only nontrivial continuous automorphism of SL(2,C) is
given by 0(z) =tz 1.

We now show that if I'; = £6(T';) then SL(2,C)/,,T'1 and SL(2,C)/,T'2 are
diffeomorphic. We can of course assume that § = id, and that I'y = I'y = I". Let
us consider first of all the quotients M; = U(1)\SL(2,C)/4; i (: = 1,2). These
are manifolds since we assumed that I' is torsion free. Note that if u; is trivial,
then SL(2,C)/T; is the 2-fold (spin)-cover of the orthonormal frame bundle of the

*3-manifold V which is the quotient of the hyperbolic 3-space by the action of I" and
M; is the unit tangent bundle of V.

On M;, we have a real one-parameter flow f; coming from the complex one-
parameter flow on SL(2,C)/,;T'. Of course when wu; is trivial the flow f} is nothing
but the geodesic flow of V.

The quotient C*\ SL(2,C) of SL(2,C) by the diagonal subgroup is isomorphic
to the complement of the diagonal in CP' x (C]l"’1 The universal cover M of M;,
naturally identified with U(1)\ SL(2, C), fibres over the complement of the diagonal
A in CP' x CP*:

D;: M; » CP' x CP' — A

and this fibration is equivariant under the diagonal embedding:

H;:v €T (y,7) € PSL(2,C) x PSL(2,C).
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The fibres of D; are the orbits of the lifted flow ff We therefore observe that
both flows f{ and f{ have the same transverse structure, i.e., equivalent holo-
nomy pseudogroups. It follows from [Ha] (see also [Gr], [Ba]) that there is a C°°-
diffeomorphism between My and M, sending orbits of fi to orbits of fi and, in
particular, that My, and M, are diffeomorphic.

We claim that the circle fibrations SL(2, C) /i, T' — M; are trivial fibrations. This
follows from the fact that orientable closed 3-manifolds are parallelizable and from
the fact that the space of homomorphisms from I" to C* is connected. Indeed, choose
a path u; (¢ € [0,1]) connecting the trivial homomorphism to «; and con31der the
right action of ' on SL(2,C) x H? (where H? is the hyperbolic 3-space) given by:

(z,p) o7 = (<Ut(()7) 5 (2)_1) x'y,'y—l(p)) € SL(2,C) x Hf.

The second factor has been introduced in such a way that the action is free, proper,
and totally. discontinuous for each t € [0,1]. The quotient spaces are homotopy
equivalent to SL(2,C)/T" and SL(2,C)/,,T for t = 0 and t = 1. Moreover, for
each ¢, the right-action of I' commutes with left translations by U(1) so that each
quotient space is the total space of circle bundle. Since we noticed that this circle
bundle is trivial of ¢ = 0, we deduce that it is also trivial for ¢ = 1. Hence the circle
bundles SL(2,C)/,; T’ — M; are trivial and the diffeomorphism between M; and
M, sending orbits of ff to orbits of fi can be lifted to a diffeomorphism between
SL(2,C) Ju, T and SL(2 C)Ju, T sending orblts of the first C*-action to orbits of the

second one.
This completes the proof of proposition 6.1. O

Proposition. Ifu : I' — C* is an admissible homomorphism such that u? is non
trivial, then the space of holomorphic vector fields on SL(2,C)/,T' has complex
dimension 1 and is generated by the vector field corresponding to the C*-action.

Proof. We have already noticed that there are two holomorphic one dimensional
foliations Ht and H~ on V = SL(2,C) /T which are invariant under the C*-action
and which provide, together with the tangent bundle to the orbits of C*, a splitting
of TcV as a sum of three line-bundles. In order to show the proposition, it is enough
to show that there is no nonzero holomorphic vector field in V tangent to H* (or
to H™) if u is nontrivial. Assume there is such a vector field £. Using the fact that
the C*-action preserves H1 and that the space of holomorphic vector fields is finite
dimensional, one can choose ¢ such that the C*- action ¢(T) (T' € C*) satisfies, for
some k € Z:

do(T)(€) = T*¢ for all T € C*.

If one lifts £ to SL(2,C), one gets a vector field € which is of the form f- Ht where

f is holomorphic on SL(2,C). Taking into account the invariance of £ under the
action of I and the non-invariance of H™ already observed, we get:

(1) f(z o) =u(y)"%f(z) for y €T and z € SL(2,C).

- Moreover, we have:

(2) f ((ig T0‘1> a:) = T* f(z) for all T"€ C* and « € SL(2,C)
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Assume ﬁrst‘ that k = 0 so that f actually defines a function f on

C*\ SL(2,C) = CP' x CP' — A.

Then, by (1), f is invariant under the action of the first commutator group I' of T
(on which u is obviously trivial). Now this action of I on CP' x CP* is topologically
transitive. This is equivalent to the fact that the geodesic flow of the homology
cover of a compact hyperbolic manifold is topologically transitive. Indeed all non
trivial normal subgroups of a discrete group of isometries of a hyperbolic space
have the same limit set and all non elementary groups act topologically transitively
on the square of their limit set (see [Th] and [G-H] page 123). Therefore f is
constant—but this is impossible if © and f are not trivial.

Now, assume that k¥ # 0. Consider the function f : V' = SL(2,C)/T' — C.
According to (2), f has to vanish on periodic orbits of the C*-action on V'. But,
on any compact hyperbolic manifold the union of closed geodesics homologous to

zero is dense (as follows also from [G-H]). This shows that the union of closed orbits
of the C*-action on V' is dense V'. Tt follows that f is zero. O

Corollary. Let T' be a discrete torsion free cocompact subgroup of SL(2,C) and
uy,ug : I' = C* be two admissible homomorphisms. Then the compact complex
manifolds SL(2,C) ;T (: = 1,2) are holomorphically diffeomorphic if and only if
there is an automorphism 6 of I such that uzil =y 0.

Proof. If u? is trivial, then SL(2,C)/,, T is a homogeneous space of SL(2,C) and
therefore admits three linearly independent holomorphic vector fields. According
to 6.2, on deduces that u2 is also trivial if SL(2,C)/,, T is holomorphically diffeo-
morphic to SL(2,C) i, . The corresponding complex manifolds are therefore of
the form SL(2,C)/T'; (: = 1,2) and I'; = £I'3. Any holomorphic diffeomorphism
between these two homogeneous spaces induces an isomorphism between the Lie
algebras of holomorphic vector fields which are themselves isomorphic to the Lie
algebra of SL(2,C). The corollary follows in this special case.

Now, assume that u2 and uZ are nontrivial and that there is a holomorphic diffeo-
morphism F between the corresponding compact complex manifolds. Proposition
6.2 implies that F' conjugates the C*-actions or one with the inverse of the other.
Let v be a nontrivial element of T and denote by A(7y), A(y)™* its two eigenval-
ues. The C*-action on SI(2,C)/,,C contains precisely two closed orbits containing
a loop freely homotopic to y*!, whose “periods” are A(y)u;(vy) and A~ (y)ui(7).
Note that periods of closed orbits related under F' should be equal or inverse. If §
denotes the automorphism of I' (defined up to conjugacy) induced by F, it follows
that either uys =u; 06 or uz_l =u;06. O

-Corollary. Let T' be a discrete torsion free cocompact subgroup of SL(2,C) and
uy,ug : I' — C* be two admissible homomorphisms. Then the C*-actions on
SL(2,C) Ju; ' are conjugate by a homeomorphism if and only if there is an automor-
phism 6 of T such that us = uy 0 6.

Proof. This is the same proof as that of the previous Corollary since we only used
preservation of periods of closed orbits. O
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