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Biarc Spline Interpolation

鹿大理 酒井 宦 (Manabu sakai)

1. Introduction. Biarc splines made of circular arcs and straight line segments are
ofmuch use for approximating discrete data in a plane since they are the paths by a
drafting machine that can not draw a cubic curve directly ([2], [5]). In finding an
interpolating biarc spline, most authors specify the tangents at the given data points, and
then determine biarcs (abiarc is a pair of circular arcs having geometric continuity of
degree $one-G^{1}$ continuity) that join the points and match those tangents. That is, for the
data points $P_{i}(i=1,2)$ and the tangents $m_{i}$ at $P_{i}$ , letting $D_{1}$ and $D_{2}$ be the two circular
arcs, then the biarcjoining $P_{i}(i=1,2)$ satisfies :

(1) $D_{i}(i=1,2)$ pass through $P_{i}$ and are tangential to $m_{i}$ at $P_{j}$

(2) $D_{i}(i=1,2)$ are tangential to each other at theirjoint.
The biarc has six degrees of freedom, but the above conditions (1) and (2) use only five.
This shows that the biarc is not unique. Therefore, various restncting conditions have
been used to make the biarc unique. For example, the difference of the curvatures of the
two circular arcs could be minimized, with the result that the joint is the on the right
bisector of the line segmentjoining the two end points.

The object of Section 2 is to obtain some relations between the radii of the two circular
arcs of the biarc. The object of Section 3 is to derive the locus of the joint of the biarc that
have been used for the unique biarc [5]. Algoritluns for finding of the biarc spline
interpolation and some examples are given in Section 4.

2. Relations between radii of biarcs. It is easy to check that the following
affme transfomlation corresponds points $(-1,0)$ and $(1, 0)$ to ones ($X_{j,y_{j})}$ and
$(x_{j+1}, y_{j+1})$ , respectively:

(1) $[_{y’}^{X},1_{=}](1/2)[(y_{j+1}^{j+1}-y_{j}^{j})(x-x)-(y_{j+1}-\mathcal{Y}_{)^{)_{-}}}(x_{j+1}-x_{j^{j}}\rceil\{\begin{array}{l}xy\end{array}\}+(1/2)I_{y_{j}^{j}+y_{j+1}^{j+1}}^{x+x}]$

and that an angle between any two vectors in the plane is invariant under the above affine
transfornation since the coeffcient matrix on the right hand side of (1) means a rotation
of the coordinate axes and a change of scale in any direction. Hence, it suffices to
consider the case when a biarc passes through $(-1,0)$ and $(1, 0)$ and matches two given
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(or specified) unit tangents $t\iota(=(\cos\theta_{i}, \sin\theta_{i}))(i=1,2)$ at those points. In what
follows, $m_{i}=\tan\theta_{i}(|\theta_{l}\{\leq ld2)$ and $r_{i}(i=1,2)$ are the radii of the circular arcs passing
$througharrow 1,0)$ and $(1, 0)$ , respectively. Depending on the signs of $\theta_{i}(i=1,2)$ , we
shall derive relations between the radii $r_{i}(i=1,2)$ of the biarc. First we consider the
case when $\theta_{1}\theta_{2}<0$ for which the biarc is C-shaped.

$(-1-m_{1}c_{1}, c_{1})$

$(1-n\iota_{2}c_{2}, c_{2})$

$(1-m_{2}c_{2}, c_{2})$

Fig. 1. $C$ -shaped biarc $(\theta_{1}<0, \theta_{2}>0)$ . Fig. 2. $S$-shaped biarc $(\theta_{1}<0, \theta_{2}<0)$ .
Case 1: $\theta_{1}<0,\theta_{2}>0$. In this case, the centers of the two circular arcs are $(-1-m_{1}c_{1},c_{1})$

and $(1-m_{2}c_{2},c_{2})$ , where $cr/\sqrt{1+m_{i}^{2}}(=r_{i}\cos\theta_{i})$ . The two circular arcs are joined
in a $G^{1}$ manner if the distance ffom the one center to the other is equal to the difference of
the radii, i.e.,

(2) $(r_{2}-r_{1})^{2}=(c_{2}-c_{1})^{2}+(2-m_{2}c_{2}+m_{1}c_{1})^{2}$

or equivalently

(3) $r_{1}r_{2} \sin^{2}\frac{\theta_{1}-\theta_{2}}{2}=-r_{1}\sin\theta_{1}+r_{2}\sin\not\in-1(=r_{1}|\sin\theta_{1}|+r4\sin\theta_{2}|-1)$ .

Here we note that $r_{1}\neq r_{2}$ for $|\theta_{1}|\neq|\theta_{2}|$ . Supposing that $r_{1}=r_{2}$, then (3) becomes

(4) $r_{1}^{2} \sin^{2}\frac{\theta_{1}-\theta_{2}}{2}-r_{1}\eta_{s}in\theta_{1}|+|\sin\theta_{2}|$) $+1=0$.

This quadratic equation has no real roots since the discreminant is equal to $-(\cos\theta_{1}-$

$\cos\theta_{2})^{2}(<0)$ , proving $r_{1}\neq r_{2}$ . Hence, the joint $(x, y)$ of the biarc is given by

(5) $(r_{1}-r_{2})x=r_{1}+r_{2}-r_{1}r_{2}(\sin\theta_{2}-\sin\theta_{1}),$ $(r_{1}-r_{2})y=r_{1}r_{2}(\cos\theta_{2}-\cos\theta_{1})$.

Now, in order for the biarc to be C-shaped shown in Fig. 1, it would be quite natural to
demand the conditions:
(6) $-1<x<1,$ $y<0$ .
We can easily check that two inequalities in (6) are valid if $r_{1}>\cdot r_{2}$ (or $r_{1}<r_{2}$ ) for
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$|\theta_{1}|<|\theta_{2}|$ (or $|\theta_{1}|>|\theta_{2}|$ ). For example, assume that $r_{1}>r_{2}for|\theta_{1}|<|\theta_{2}|$ , the case
$of|\theta_{1}|>|\theta_{2}|$ being similarly checked. Since $r_{1}>r_{2}$ , $y<0$ is immediate. Next, by (3)

(7) $r_{1}>1/|\sin\theta_{1}|$ , $r_{2}<| \sin\theta_{1}|/\sin^{2}\frac{\theta_{1}-\theta_{2}}{2}$.

This gives
(8) $r_{2}<2/(\sin\theta_{2}-\sin\theta_{1})<r_{1}$, i.e., $-1<x<1$ .

Thus, for the biarc to be C-shaped, we obtain relation (3) between the two radii $r_{i}(i=1$ ,

2) where $r_{1}>r_{2}$ for $|\theta_{1}|<|\theta_{2}|$ and $r_{1}<r_{2}$ for $|\theta_{1}|>|\theta_{2}|$ .
Case 2: $\theta_{1}>0,$ $\theta_{2}<0$ . The two circular arcs with $centersarrow 1-m_{1}c_{1},c_{1}$ ) and (1-
$m_{2}c_{2},c_{2})(c_{i}=-r_{i}/\sqrt{1+m_{i}^{2}}(=-r_{i}\cos\theta_{i}))$ are joined in a $G^{1}$ manner if

(9) $r_{1}r_{2} \sin^{2}\frac{\theta_{1}-\theta_{2}}{2}=r_{1}\sin\theta_{1}-r_{2}\sin\theta_{2}-1(=r_{1}|\sin\theta_{1}|+r4\sin\theta_{2}|-1)$ .

Similarly as in case 1, for the biarc to be C-shaped, we require the condition
(10) $r_{1}>r_{2}$ (or $r_{1}<r_{2}$ ) $for|\theta_{1}|<|\theta_{2}|$ (or $|\theta_{1}|>|\theta_{2}|$ ).

Trivially in the case when $\theta_{1}\theta_{2}<0and|\theta_{1}|=|\theta_{2}|$, a single circular arc with radius $r=$

$14\sin\theta_{1}|$ passes through $(\pm 1,0)$ and matches $(\cos\theta_{i}, \sin\theta_{i})$ at those points. This case is
considered to be a special one of (3) (or (9)) since then equation (3) (or (9)) becomes
($r_{1}|\sin\theta_{1}|_{-1)(\gamma}4\sin\theta_{1}|_{-1)}=0$ from which we get $r_{1}$ or $r_{2}=r(=1\sqrt{}\sin\theta_{1}|)$ . Hence we
have

THEOREM 1. For the case in which $\theta_{1}\theta_{2}<0$, there exists a $C$-shaped biarc (apair

of two circular arcs with radii $r_{i}(i=1,2))$ that joins $(-1,0)$ and $(1, 0)$ and matches two
given or specified unit tangents $ti(=(\cos\theta_{j}, \sin\theta_{i}))(i=1,2)$ at those points if

$r_{1}r_{2} \sin^{2}\frac{\theta_{1}-\theta_{2}}{2}=r_{1}|\sin\theta_{1}|+r4\sin\theta_{2}|-1$

where $r_{1}\geq r_{2}$ (or $r_{1}<r_{2}$ ) for $|\theta_{1}|\leq|\theta_{2}|$ (or $|\theta_{1}|>|\theta_{2}|$ ).

Next we consider the case when $\theta_{1}\theta_{2}\geq 0$ for which the biarc is $S$-shaped.
Case 3: $\theta_{1}<0,$ $\theta_{2}<0$ . In this case, the centers of the two circular arcs that pass through
$(-1,0)$ and $(1, 0)$ and match the given or specified unit tangents $tt(=(\cos\theta_{i}, \sin\theta_{i}))$

$(i=1,2)$ at those points are $(-1-m_{1}c_{1},c_{1})$ and $(1-m_{2}c_{2},c_{2})$ where $c_{1}=r_{1}/\sqrt{1+m_{1}^{2}}$

$(=r_{1}\cos\theta_{1})$ and $c_{2}=-r_{2}/\sqrt{1+m_{2}^{2}}(=-r_{2}\cos\%)$ . As shown in Figure 2, the two
circular arcs are joined in a $G^{1}$ manner if the sum of the radii is equal to the distance
between the two centers, i.e.,

(11) $(r_{2}+r_{1})^{2}=(c_{2}-c_{1})^{2}+(2-m_{2}c_{2}+m_{1}c_{1})^{2}$

or equivalently

(12) $r_{1}r_{2} \sin^{2}\frac{\theta_{1}-\theta_{2}}{2}=r_{1}\sin\theta_{1}+r_{2}\sin\%+1(=-r_{1}|\sin\theta_{1}|-r4\sin\infty+1)$.
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Case 4: $\theta_{1}>0,$ $\theta_{2}>0$ . The centers of the two circular arcs $aIe(-1-m_{1}c_{1},c_{1})$ and (1-

$m_{2}c_{2},c_{2})$ where $c_{1}=-r_{1}/\sqrt{1+m_{1}^{2}}(=-r_{1}\cos\theta_{1})$ and $c_{2}=r_{2}/\sqrt{1+m_{2}^{2}}(=r_{2}\cos\%)$ .
Similarly to Case 3 we obtain

(13) $r_{1}r_{2} \sin^{2}\frac{\theta_{1}-\theta_{2}}{2}=-r_{1}\sin\theta_{1}-r_{2}\sin\theta_{2}+1(=-r_{1}|\sin\theta_{1}|-r*in\theta_{2}|+1)$ .

Trividly note that we can let $\theta_{1}$ or $\theta_{2}$ be zero in (12) and (13). Hence we have
THEOREM 2. For $\theta_{1}\theta_{2}\geq 0$ , there exists an $S$-shaped biarc (apair of two circular

arcs with radii $r_{i}$ ) thatjoins $(-1,0)$ and $(1, 0)$ and matches the specified unit tangents $ti$ $($

$=(\cos\theta_{i}, sip\theta_{i}))(i=1,2)$ at those points if
$r_{1}r_{2} \sin^{2}\frac{\theta_{1}-\theta_{2}}{2}=-r_{1}|\sin\theta_{1}|-\Gamma 4\sin\theta_{2}|+1$

where for $\theta_{1}=\theta_{2}=0$, the biarc reduces to the $intervalarrow 1,1$ ).

Fig. 3. Relations between $r_{1}$ and $r_{2}$ . Fig. 4. Relations between $k_{1}$ and $k_{2}$ .
In Figs 3 and 4, solid and dashed lines mean the relations between the radii $r_{i}$ (or the

curvatures $k_{i}$ ) $(i=1,2)$ for $C$-shaped and $S$-shaped biarcs, respectively where $(p;, q_{i})$

$=(1 l\sin\theta\oint, |\sin\theta\psi\sin^{2}\{(\theta_{1}-\theta_{2})/2\})$. Therein, the points of tangent of straight line

segments (1) $-(4)$ and the relations in Theorems 1 and 2 correspond to choices for the

mnimnization $of|r_{1}/r_{2}-1|,$ $|r_{1}-r4,$ $|k_{1}-k_{2}|$ and $|k_{1}+k_{2}|$ .

3. Locii ofjoints. In this section, we shall show that a locus of the joint of the

biarc joining $(\pm 1,0)$ is a circular arc passing through $(\pm 1,0)$ .
THEOREM 3. In cases 1 and 2 (i.e., $\theta_{1}\theta_{2}<0$ ), the joint of the biarc is on the circle

$C$ with center $C(0, -1/\tan\{(\theta_{1}-\theta_{2})/2\})$ and radius $r=14\sin\{(\theta_{1}-\theta_{2})/2\}|,$ $i.e\cdot.$ ,
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$x^{2}+(y+1/\tan\{(\theta_{1}-h)/2\})^{2}=1/\sin^{2}\{(\theta_{1}-\theta_{2})/2\}$ , $(x, y)\neq(\pm 1,0)$

where for case 1,

(14) $y \leq(x-1)\tan(\frac{\theta_{1}+\theta_{2}}{2})(|\theta_{1}|\leq|\theta_{2}|)$ or $y \leq(x+1)\tan(\frac{\theta_{1}+\%}{2})(|\theta_{1}|>|\theta_{2}|)$

and for case 2,

(15) $y \geq(x-1)\tan(\frac{\theta_{1}+\theta_{2}}{2})(|\theta_{1}|\leq|\theta_{2}|)$ or $y \geq(x+1)\tan(\frac{\theta_{1}+\%}{2})$ $(|\theta_{1}|>|\theta_{2}|)$ .

PROOF ofTheorem 3. In case 1, solving for $k_{i}(=1/r_{i})(i=1,2)$ from (5), and
manipulating to obtain

(16) $k_{1}(=1/r_{1})=(p-q)\sin\{(\theta_{1}$ -%)/2 $\}$ , $k_{2}(=1/r_{2})=(p+q)\sin\{(\theta_{1}-\theta_{2})/2\}$

where $py=x\sin\{(\theta_{1}+\%)/2\}-y\cos\{(\theta_{1}+\theta_{2})/2\},$ $qy=\sin\{(\theta_{1}+\theta_{2})/2\}$ .
Substituting these quantities of $k_{i}$ into relation(4) and rearranging, we get

(17)
$=- \{\sin(\frac{\theta}{})/\sin(\frac{-\{q-\theta_{1}-\theta_{2}}{2})\}\{p+\cos(\frac{\theta_{1}+\theta_{2}}{1+,22_{\theta_{2}}})\}^{2}\sin(\frac{\theta_{1}+\theta_{2}}{22})/\tan(\frac{\theta_{1}-\theta_{2}}{2})\}^{2}$

From this, it is easy to obtain the desired circle $C$. To examine the necessity of condition
(14), we assume $that|\theta_{1}|\leq|\theta_{2}|$ , the other case $of|\theta_{1}|>|\theta_{2}|$ being similarly done. Since
$0\leq k_{1}\leq k_{2}for|\theta_{1}|\leq|\theta_{2}|$, we get $p+q\leq p-q\leq 0,$ $i.e.,$ $p\leq q\leq 0$ which are equivalent
to (18). In case 2, $k_{i}(i=1,2)$ are also given by the same equations (16) where $py=$

$-x\sin\{(\theta_{1}+\%)/2\}+y\cos\{(\theta_{1}+\theta_{2})/2\}$ and $qy=-\sin\{(\theta_{1}+\theta_{2})/2\}$ . Similarly as in
case 1, the joint is on the same circle $C$. For condition (15), we assume $that|\theta_{1}|\leq|\theta_{2}|$

since the other case $of|\theta_{1}|>|\theta_{2}|$ can be treated in a similar manner. Note that
$\sin\{(\theta_{1}-\theta_{2})/2\}>0for|\theta_{1}|\leq|\theta_{2}|$ in case 2, then $k_{2}\geq k_{1}\geq 0$ imply $p+q\geq p-q\geq 0$,

i.e., $p\geq q\geq 0$ which are equivalent to (15) $for|\theta_{1}|\leq|\theta_{2}|$, completing the proof of
Theorem 3.

For the geometric meaning of the circle $C$, we denote $(-1,0)$ and $(1, 0)$ by $P$ and $Q$,

respectively. In addition, $R$ means the intersection of the two tangents of the circular arcs
at $P$ and $Q$ whose slopes are $m_{i}(i=1,2)$ . Then we obtain the following corollary that
is of use for geometrically determining the locus of the joint.

COROLLARY 1. The center $C$ of the circle $C$ is on the circum-circle ofAPQR, and $C$

passes through the incenter I of the triangle which has been used as ajoint of the C-
shaped biarc ([5]).

PROOF. We consider case 1 where in addition $|\theta_{1}|\leq|\theta_{2}|$ , the other cases being
similarly treated. By Theorem 3, we get $\angle PCQ=\%-\theta_{1}$ . $Since\angle PRQ=\pi-(\not\in-\theta_{1})$,

$C$ is on the circum-circle of APQR. Since $\angle PIQ=\pi-(\%-\theta i)/2$, the circle $C$ passes
through the incenter I. For geometric proof of this Corollary, see [5].
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The following corollary 2 can be checked by an application of Lagrange’s method of
indeterminate coefficient to the relation between the two radii of the biarc in Theorem 1.

COROLLARY 2. (i) $|1/r_{1}-1/r4= \min$ if $1/r_{1}+1/r_{2}=|\sin\theta_{1}|+|\sin\theta_{2}|$ ,

(ii) $|r_{1}-r4= \min$ if $r_{1}+r_{2}=(| \sin\theta_{1}|+|\sin\theta_{2}|)/\sin^{2}\frac{\theta_{1}-\theta_{2}}{2}$,

(iii) $|r_{1}/r_{2}-1|= \min$ if $|\sin\theta_{1}|+r4\sin\theta 4=2$ ,

where case (i) has a unique solution $(r_{1}, r_{2})$ if and only if $1/3 \leq|\theta_{1}|\int\theta_{2}|\leq 3$ .
The restnction on the magnitude $of|\theta_{1}M\theta_{2}|$ in corollary 2 will be seen from the

following geometric meaning of the joints $D,$ $H$ and I on the circle $C$ in assertion $(i)-$

(iii). We consider case 1 where in addition $|\theta_{1}|\lrcorner\theta_{2}|$ , case 2 being similarly done. In
view of (i), the x-coordinate of the joint $D$ is given by

(18) $\{r_{1}+r_{2}-r_{1}r_{2}(\sin\%-\sin\theta_{1})\}/(r_{1}-r_{2})=0$.

That is, the joint $D$ is on the y-axis, i.e., the bisector of the line segmentjoining the two
end points $(\pm 1,0)$ , and in addition $\angle QPD=(\%-\theta_{1})/4$ . Next in (ii), the vectorjoining
the two centers is equal to

(19) $(1-m_{2}c_{2},c_{2})-(-1-m_{1}c_{1},c_{1})=(2+r_{1}\sin\theta_{1}-r_{2}\sin\theta_{2}, r_{2}\cos\theta_{1}-r_{1}\cos\theta_{2})$ .

Since the magnitude of this vector is $|r_{1}-r4$ letting the angles subtended by the two

circular arcs be $\alpha$ and $\beta$ , then
(20) $r_{1}|r_{1}-r4\cos\alpha=r_{1}^{2}+2r_{1}\sin\theta_{1}-r_{1}r_{2}\cos(\theta_{1}$ -% $)$

and
(21) $r4r_{1}-r4\cos\beta=-r_{2}^{2}+2r_{2}\sin\theta_{2}+r_{1}r_{2}\cos(\theta_{1}-h)$.

From these, the angles of the two circular arcs are equal if

(22) $r_{1}+2\sin\theta_{1}-r_{2}\cos(\theta_{1}-\theta_{2})=-r_{2}+2\sin\%+r_{1}\cos(\theta_{1}-\theta_{2})$

or equivalently

(23) $r_{1}+r_{2}=\eta_{\sin\theta_{1}|}+|\sin\theta_{2}|$)$/ \sin^{2}\frac{\theta_{1}-\theta_{2}}{2}$

as is the given relation in (ii). Then, a simple calculation gives $\angle QPH=(-3\theta_{1}-\theta_{2})/4$ .
FinaUy, in view of (iii), by (19) the x-component of the vectorjoining the two centers

is equal to $2+r_{1}\sin\theta_{1}-r_{2}\sin\theta_{2}=0$ from which the common tangent vector at the joint
is parallel to the x-axis, i.e., the vectorjoining the points of the tangent of the two

circular arcs. Since then the angles subtended by the two arcs of the biarc are equal $to-\theta_{1}$

and $\theta_{2}$ respectively, Sabin‘ choice is the one that makes the ratio of the radii as close to

one as possible ([2]). A simple calculation gives $\angle QPI=-\theta_{1}/2$ and in addition, the
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joint I is the incenter of the triangle $\Delta PQR$. Here note that $\angle QPD>\angle QPI>\angle QPH$ .
In Fig. 5, $L$ is the joint of $C$ and the straight line segment: $y=(x-1)\tan\{(\theta_{1}+h)/2\}$

and is also the joint of $C$ and the straight line segment: $y=(x+1)\tan\theta_{1}$ , i.e.,
$\angle QPL=-\theta_{1}$ . Therefore, assertion (i) has its solution if and only if $\angle QPL\geq\angle QPD$ ,

i.e., $-\theta_{1}\geqarrow\theta_{1}-\theta_{2}$)$/4$ or $|\theta_{2}|\leq 3|\theta_{1}|$ .
THEOREM 4. In cases 3 and 4 (i.e., $\theta_{1}\theta_{2}>0$ ), thejoint $(x, y)$ is on the same circle

$C$ in Theorem 3 where $y<0(\theta_{1}<\theta_{2})$ or $0<y(\theta_{2}<\theta_{1})$ . For $\theta_{1}=\theta_{2}(>or<0)$ ,

the circle $C$ reduces to the $intervalarrow 1,1$ ).

PROOF ofTheorem 4. In case 3, note that the joint $(x, y)$ is given by $(r_{1}+r_{2})x=$

$r_{1}-r_{2}-r_{1}r_{2}(\sin\theta_{1}-\sin\theta_{2})$ and $(r_{1}+r_{2})y=r_{1}r_{2}$($\cos\theta_{1}$ -cos%) since the centers of the
two circular arcs $arearrow 1-r_{1}\sin\theta_{1},$ $r_{1}\cos\theta_{1}$ ) and $(1+r_{2}\sin h-r_{2}\cos\not\in)$ ( $see$ Fig. 2).

Hence, $k_{i}(=1/r_{i})(i=1,2)$ are given by the same (16) in the proof ofTheorem 3
where $py=-\sin\{(\theta_{1}+\theta_{2})/2\}$ and $qy=-x\sin\{(\theta_{1}+\theta_{2})/2\}+y\cos\{(\theta_{1}+\theta_{2})/2\}$ .
Substituting $k_{i}(i=1,2)$ into (12) and manipulating to obtain,

(24) $\{p+\sin(\frac{\theta_{1}+\theta_{2}}{2})/\tan(\frac{\theta_{1}-\theta_{2}}{2})\}^{2}-\{q-\cos(\frac{\theta_{1}+\theta_{2}}{2})\}^{2}$

$= \{\sin(\frac{\theta_{1}+\theta_{2}}{2})/\sin(\frac{\theta_{1}-\theta_{2}}{2})\}^{2}$

which becomes the desired circle $C$. For the restriction on $y$, we assume $\theta_{I}<\theta_{2}(<0)$,

the other case of $\theta_{2}<\theta_{1}(<0)$ being similarly treated. Then, since $\sin\{(\theta_{1}-\theta_{2})/2\}<0$,

$k_{i}\geq 0(i=1,2)$ oequire $p-q,$ $p+q\leq 0$ , i.e., $(x+1)\tan\{(\theta_{1}+h)/2\}\leq y<0$ . Since
the slope of the tangent of the circle $Catarrow 1,0$) is greater than the that of the straight line
on the right hand side of the frst inequality, i.e., $\tan\{(\theta_{1}-\%)/2\}>\tan\{(\theta_{1}+\theta_{2})/2\}$ , the
frst inequality is always valid. Hence we have $y<0$ for $\theta_{1}<\theta_{2}(<0)$ . In case 4, $k_{i}(i$

$=1,2)$ are also given by (16) where $py=\sin\{(\theta_{1}+\not\in)/2\}$ and $qy=x\sin\{(\theta_{1}+\theta_{2})/2\}-$

$y\cos\{(\theta_{1}+\mathfrak{g})/2\}$ . Substitute $k_{i}$ into (13), and then rearrange the terms appropriately to
get

(25) $\{p-\sin(\frac{\theta_{1}+\theta_{2}}{2})/\tan(\frac{\theta_{1}-\theta_{2}}{2})\}^{2_{-}}\{q+\cos(\frac{\theta_{1}+\theta_{2}}{2})\}^{2}$

$= \{\sin(\frac{\theta_{1}+\theta_{2}}{2})/\sin(\frac{\theta_{1}-\theta_{2}}{2})\}^{2}$

From this, it is straightforward to get the desired circle $C$. For the Iestriction on $y$, we
assume that $(0<)\theta_{1}<\%$, the other case $(0<)\theta_{2}<\theta_{1}$ being smilarly treated. From
$k_{j}\geq 0(i=1,2)$, we get $p-q,$ $p+q\leq 0$ , i.e., $(x-1)\tan\{(\theta_{1}+h)/2\}\leq y<0$ where
the frst inequality is always valid since the slope of the tangent line of the circle $C$ at
$(1, 0)$ and the straight line segment are given $by-\tan\{(\theta_{1}$ -%)/2 $\}$ and $\tan\{(\theta_{1}+\%)/2\}$ ,

respectively. Hence $y<0$ . For $\theta_{1}=\theta_{2}$ , trivially $x=(r_{1}-r_{2})/((r_{1}+r_{2})$ and $y=0$ with
($r_{1}+r_{2}\lambda\sin\theta_{1}|=1$ from which the locus reduces to the $intervalarrow 1,1$ ), Theorem4 being
proved.
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Using the same notation in Corollary 1, we have the following corollaries that are of
use for a geometric $dete-ination$ of the joint for the S-shaped biarc.

COROLLARY 3. The center $C$ of the circle $C$ is on the circum-circle of APQR.

Proofof Corollary 3. We consider case 3 where in addition $\theta_{1}<\theta_{2}<0$, the other
cases being similarly treated. Since then $\angle PCQ=\%-\theta_{1}(=\angle PQR)$ by Theorem 4, $C$

is on the circum-circle of $\Delta PQR$ .
Here we remark that the circle $C$ passes through the excenter ofAPQR lying on its

opposite side with respect to QR (or PR) for $|\theta_{2}|<|\theta_{1}|$ (or $|\theta_{1}|<|\theta_{2}|$ ) where the
excenter itself can not be used as the joint but it is of use for detemining the locus of the
joint. Lagrange‘s method of indeterminate coefficient to the relation between the radii of
the biarc in Theorem 2 or an elementary calculation gives (i) and (ii), respectively.

COROLLARY 4. (i) The difference of the signed curvatures $|k_{1}-arrow k_{2}$)$|(=1/r_{1}+1/r_{2})$

=nin if $1/r_{1}-1/r_{2}$ $( =k_{1}-k_{2})=|\sin\theta_{1}|-|\sin\theta_{2}|$.
(ii) $r_{1}=r_{2}$ if $r(=r_{1}=r_{2})$ is the positive root of the quadratic equation:

$r^{2} \sin^{2}\frac{\theta_{1}-\theta_{2}}{2}+r\phi\sin\theta_{1}|4\sin\theta_{2}|)-1=0$ .
Since then the x-coordinate of the joint $D$ in (i) is equa 1 to $r_{1}(1-m_{2}c_{2})+$

$r_{2}arrow 1-m_{1}c_{1})=r_{1}r_{2}(k_{2}-k_{1^{+}}|\sin\theta_{1}|-|\sin\theta_{2}|)=0$, thejoint $D$ is on the bisector of the
line segmentjoining the end points $(\pm 1,0)$ , i.e., y-axis. For $r_{1}=r_{2}$ in case 3, the proof
of Theorem 4 easily shows that the coordinate $(x, y)$ of the joint $K$ in (ii) satisfies $y/x=$

$\tan\{(\theta_{1}+\theta_{2})/2\}$ , i.e., $\angle QOK=-(\theta_{1}+\theta_{2})/2$ . In case 4, $\angle POK=(\theta_{1}+\theta_{2})/2$ .
In Fig. 5, is given the graph of the locus of the joint in case 1 where $(1\leq)|\theta_{2}M\theta_{1}|\leq$

3; otherwise the solid circle (the liniting case when one of the circular arcs of the biarc
is a straight line segment) is in the fourth quadrant instead of the third one, i.e., the
locus does not pass through the point $D(0, -\tan\{(\theta_{1}-\theta_{2})/4\})$ corresponding to the

Fig. 5. Locus of joint in case 1 $(|\theta_{1}|<|\theta_{2}|)$ .
4. Finding of biarc spline and Examples. In numerical examples, for a

unique determination of biarcs is used the conditions that minimzes the difference of the
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(signed) curvatures. By Corollaries 3 and 4, the point $D$ is chosen as thejoint of the
biarc, i.e., we can use the following algorithm for a unique detennination of a biarc
joinmg $P$ and $Q$:

(i) draw APQR where $R$ is the intersection of the tangents at $P$ and $Q$ specified by
means of an appropriate method without solving alarge system of equations

(ii) determine the point $C$ (the center of the circle $C$ ) as the intersection the circum-
circle APQR and the bisector of the line segment PQ where $C$ and $R$ are on the
opposite (or same) sides of PQ for $\theta_{1}\theta_{2}<0$ (or $\theta_{1}\theta_{2}\geq 0$ )

(iii) determine the point $D$ as the intersection of the circle $C$ passing through $P(Q)$

and the bisector of PQ
(iv) determine the center of each circular arc as the joint of the straight line passing

through $P$ (or Q) which is perpendicular to the tangent line at $P$ (or Q) and the
bisector of the line segment PD (or QD) and draw each circular arc.

Some numerical examples are given where the data points are shown as small circles.
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