On the topology of the space of representations

Yohei Komori

Osaka City University 小森 洋平 (大阪市大)

Abstract

We give a proof that the set of discrete and faithful SL_2 representations of the fundamental group of a topologically finite Riemann surface is closed in the set of all SL_2 representations. This result is well known.

1 Introduction

If we treat Teichmüller space as Fricke moduli, we first study the set of discrete and faithful $SL_2(\mathbf{R})$ or $SL_2(\mathbf{C})$ representations of the fundamental group of a topologically finite Riemann surface. And making it as a topological space we consider it as a subspace of all $SL_2(\mathbf{R})$ or $SL_2(\mathbf{C})$ representations of the fundamental group of a topologically finite Riemann surface. Then it is well known (for example [MS]) that it is a closed subset. The key idea to prove this result is using so called Jørgensen's inequalities [J]. In this article we show a proof of this result in the elementary style. It should be remarked that if we consider the set of discrete and faithful representations as a subset of the more restricted space of representations, we can also show the openness of it for the case of $SL_2(\mathbf{R})$ representations by using the rigidity of the finite sided fundamental domains (for example [M]. for compact case see [W]). Fron this topological properties Teichmüller space of a topologically finite Riemann surface has the structure of a semi algebraic set.

2 Preliminaries

In this paper Γ means a non abelian free group of finite rank or surface group.

Assertion 1 Γ is torsion free.

Proof.

Because of the uniformization theorem, Γ can be considered as a discrete subgroup of $PSL_2(\mathbf{R})$ the analytic automorphism group of the upper half plane H and Γ acts on H fixed point freely. Hence any non identity element of Γ is hyperbolic or parabolic element of $PSL_2(\mathbf{R})$ and this shows that Γ is torsion free.

Assertion 2 For any $\alpha, \beta \in \Gamma$ with $\alpha\beta \neq \beta\alpha$, put $G := < \alpha, \beta >$ the subgroup of Γ generated by α and β . Then G is a free group of rank two.

Proof.

As in the proof of Assertion 1, we may assume that Γ is a discrete subgroup of $PSL_2(\mathbf{R})$ and acts on H fixed point freely. Then the quotient space $G \setminus H$ has the structure of a Riemann surface and its first homology group $H_1(G \setminus H, \mathbf{Z})$ is a quotient group of \mathbf{Z}^2 . If $G \setminus H$ is compact, then $H_1(G \setminus H, \mathbf{Z})$ is isomorphic to \mathbf{Z}^{2g} where $g (\geq 2)$ is the genus of this surface. Hence $G \setminus H$ is an open Riemann surface and its fundamental group G is a free group. Because G is generated by two elements which are not commutative, it is a free group of rank two.

Assertion 3 The center of Γ is trivial.

Proof.

Let γ be a center of Γ . If there exists a hyperbolic element α of Γ (where we take some realization $\Gamma \subset PSL_2(\mathbf{R})$), we may assume by conjugation that the representative of α in $SL_2(\mathbf{R})$ is a diagonal matrix. Then the assumption $\gamma \alpha = \alpha \gamma$ implies that γ has also a diagonal matrix as its representative. Since Γ is non abelian, there exists $\beta \in \Gamma$ whose representative is not diagonal and $\gamma \beta = \beta \gamma$ shows that γ must be an identity. Similar argument holds for the case that α is parabolic.

3 Results

Theorem 1 A representation $\rho : \Gamma \to SL_2(\mathbf{C})$ is discrete (i.e. $\rho(\Gamma) \subset SL_2(\mathbf{C})$ is a discrete subgroup) and faithful (i.e. ρ is injective) if and only if the following inequalities hold:

for any $\alpha, \beta \in \Gamma$ with $\alpha\beta \neq \beta\alpha$, put $A := \rho(\alpha)$ and $B := \rho(\beta)$. Then $A, B \in SL_2(\mathbb{C})$ satisfy so called Jørgensen's inequality

$$|tr^2A - 4| + |tr[A, B] - 2| \ge 1$$

Proof.

(if) We assume that ρ is not faithful. Then there exists $\alpha \neq id$. $\in \Gamma$ such that $A = \rho(\alpha) = E$ (identity matrix). As the center of Γ is trivial by Assertion 3, there exists $\beta \in \Gamma$ with $\alpha\beta \neq \beta\alpha$ and put $B = \rho(\beta)$. Then

$$|tr^{2}A - 4| + |tr[A, B] - 2| = 0$$

a contradiction. Hence ρ is faithful. Next suppose that ρ is faithful but not discrete. Then there exists a sequence $(X_n)_{n\geq 1} \subset \rho(\Gamma)$ with $X_n \to E$ in $SL_2(\mathbf{C})$. Then for any $B \in \rho(\Gamma)$, $|tr^2X_n - 4| \to 0$ and $|tr[X_n, B] - 2| \to 0$. Therefore there exists $N(B) \in \mathbf{N}$ depending only on B such that for $n \geq N(B)$

$$|tr^{2}X_{n} - 4| + |tr[X_{n}, B] - 2| < 1.$$

Hence if there exists $n \ge N(B)$ such that $X_n B \ne B X_n$ then because of the faithfulness of ρ , we put $A = X_n$ and get a contradiction of the assumption. Therefore we may assume in the following that $X_n B = B X_n$ for all $n \ge N(B)$. If B is not parabolic, we may suppose that B is a diagonal matrix by conjugation. Then X_n is also diagonal. By Assertion 3, there exists $C \in \rho(\Gamma)$ such that $CB \ne BC$ in other words C is not diagonal, hence $CX_n \ne X_n C$ for any $n \ge N(B)$. Then there exists $N(C) \in \mathbb{N}$ depending only C such that for $n \ge N(C)$

$$|tr^2X_n - 4| + |tr[X_n, C] - 2| < 1.$$

and $CX_n \neq X_nC$ which contradicts the assumption. Similar argument holds for the case that B is parabolic and we conclude that ρ is discrete and faithful.

(only if) Because ρ is faithful and by Assertion 2, $\langle A, B \rangle$ is a free subgroup of $SL_2(\mathbb{C})$. Assume that

$$|tr^{2}A - 4| + |tr[A, B] - 2| < 1$$

and put $B_0 := B$, $B_{n+1} := B_n A B_n^{-1}$ $(n = 0, 1, 2, \cdots)$. Then the completely same proof of Lemma 1 of [J] shows that B_{n+1} converges to A in $SL_2(\mathbb{C})$ but the discreteness of ρ means that $\langle A, B \rangle$ is a discrete subgroup of $SL_2(\mathbb{C})$ hence $B_{n+1} = A$ for sufficiently large $n \in \mathbb{N}$. But this contradicts that $\langle A, B \rangle$ is a free group of rank two. **Corollary 1** A representation $\rho : \Gamma \to SL_2(\mathbf{R})$ is discrete and faithful if and only if the following inequalities hold:

for any $\alpha, \beta \in \Gamma$ with $\alpha\beta \neq \beta\alpha$, put $A := \rho(\alpha)$ and $B := \rho(\beta)$. Then $A, B \in SL_2(\mathbf{R})$ satisfy so called Jørgensen's inequality

$$|tr^2A - 4| + |tr[A, B] - 2| \ge 1.$$

Proof.

(if) We can use the same argument in the proof of the above Theorem to show the faithfulness of ρ . Then $\rho(\Gamma)$ is a non abelian subgroup of $SL_2(\mathbf{R})$, we can find a hyperbolic or parabolic element of $\rho(\Gamma)$ and we can prove the discreteness of ρ in the same way.

(only if) The natural inclusion $\mathbf{R} \subset \mathbf{C}$ induces the discrete and faithful representation

$$\rho: \Gamma \to SL_2(\mathbf{R}) \subset SL_2(\mathbf{C}).$$

Corollary 2 The set of discrete and faithful $SL_2(\mathbf{C})$ (resp. $SL_2(\mathbf{R})$) representations of the fundamental group of a Riemann surface of topologically finite type is closed in the set of all $SL_2(\mathbf{C})$ (resp. $SL_2(\mathbf{R})$) representations.

References

- [J] T.Jørgensen. On discrete groups of Möbius transformations, Amer.J.Math.98(1976), 739-749
- [M] A.Marden. The geometry of finitely generated Kleinian groups, Ann.of Math.99(1974), 383-462
- [MS] J.W.Morgan and P.B.Shalen. Valuations, trees and degenerations of hyperbolic structures, Ann.of Math.120(1984), 401-476.
- [W] A.Weil. On discrete subgroups of Lie groups, Ann.of Math.72(1960), 369-384, Ann.of Math.75(1962), 578-602.

Yohei Komori Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku OSAKA 558, Japan email: h1799@cc.osaka-cu.ac.jp