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Length parameters for Teichm\"uller space of punctured surfaces

by Toshihiro Nakanishi and Marjatta N\"a\"at\"anen

中西 敏浩

1. Introduction

Let $F$ be the oriented closed surface of genus $g$ and $P$ a set of
$s$ points of $F$ . The condition $2g-2+s>0$ is assumed throughout
this paper. The Teichmuller space $T_{g,s}$ is the set of marked surfaces
with complete hyperbolic metric of finite area whose underlying topological
surface is $F\backslash P$ . If an injective map $f$ : $T_{g,s}arrow R^{d}$ for some $d\geq 0$ is
given, then $f$ gives a global parametrization for the space $T_{g,s}$ . Among
several global parametrizations, the one by the geodesic length functions is
well known ([4], [7], [8], [9], [10], [11]).

In case $P=\{x_{1}, \ldots, x_{s}\}$ is non-empty, there are other parametriza-
tions originally introduced by R. C. Penner for the decorated Teichm\"uller

space ([6]); If an ideal triangulation of the punctured surface $F\backslash P$ is given,
then the $h$ -length coordinates and $L$ -length coordinates associated with it
give global parametrizations for the Teichm\"uller space $T_{g,s}$ (for the termi-
nology, see Section 2. We remark that the $L$ -length differs from Penner’s
$\lambda$-length by a constant factor.) The advantage of the parametrization by
$L$ -length coordinates (or the $h$ -length coordinates) is that it allows $T_{g)s}$

a real-algebraic representation determined by comparatively simple equa-
tions. The representation by the $L$ -lengths is found in [3]. In terms of
the $h$ -lengths, the representation of $T_{g,s}$ is described by $s$ equations
and $6g-6+3s$ so-called coupling equations whose geometric meanings are
almost trivial. In Section 2 we construct $L$ -and $h$ -length coordinates
associated with a special ideal triangulation and give the representations of
$T_{g,s}$ .

In Section 3 we establish a relation between the $L$ -lengths of ideal
arcs and the lengths of closed geodesics on a punctured hyperbolic surface
and obtain an explicit real-algebraic representation of $T_{g,s}$ by geodesic
length functions.

In Section 4 we present a changing rule from the $h$ -length coordinates
defined in Section 2 to the Fricke coordinates, that is, entries of the marked
canonical generators (each is a

$,$

$2\cross 2$ matrix) of the Fuchsian group cor-
responding to the point of $T_{g,s}$ . This supplies another proof of the fact
that the $h$ -and $L$-length coordinates give global parametrizations for the
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Teichm\"uller space $T_{g,s}$ .

2. Coordinates for the Teichm\"uller space associated with an
ideal triangulation of a punctured surface

2.1. In this paper we employ the upper half plane model $H$ with
the metric $|dz|/({\rm Im} z)$ as the hyperbolic plane. Let $c$ be a complete
hyperbolic line. Then $c$ has two endpoints $v_{a},$ $v_{b}$ in the boundary $\partial H$

of $H$ viewed as a subregion of the Riemann sphere. Choose horocycles
$C_{a}$ and $C_{b}$ based at $v_{a}$ and $v_{b}$ , respectively. Let $l$ denote the
signed distance between $C_{a}$ and $C_{b}$ along $c$ , taken with positive sign if
$C_{a}\cap C_{b}=\emptyset$ and with negative sign if $C_{a}\cap C_{b}\neq\emptyset$ . We call $e^{l/2}$ the
L-length of $c$ between $C_{a}$ and $C_{b}$ and denote it by $L(c;C_{a}, C_{b})$ .

Let $T$ be a hyperbolic surface bounded by three complete lines. We
say that $T$ is an ideal triangle if $T$ has a finite area which necessarily
equals $\pi$ . An ideal triangle has three ends. If an ideal triangle $T$ is
embedded in $H$ , then the ends determine three vertices in $\partial H$ . We adopt
the notation in Figure 2.1 (a). Suppose that a horocycle $C_{\alpha}$ based at $v_{a}$

is given. We call the hyperbolic length of the part of $C_{\alpha}$ between the
edges $b$ and $c$ the h-length of the end $\alpha$ with respect to the horocycle
$C_{\alpha}$ and denote it by $h(\alpha, C_{\alpha})$ .

For the ideal triangle $T$ equipped with horocycles as in Figure 2.1 (a),
the $L$ -lengths of the edges and $h$ -lengths of the ends associated with the
horocycles are related as in the following formulae:
(2.2)

$h( \alpha, C_{\alpha})=\frac{L(a;C_{\beta},C,)}{L(b;C_{7},C_{\alpha})L(c;C_{\alpha},C_{\beta})}$ $L(a;C_{\beta}, C_{7})= \frac{1}{\sqrt{h(\beta,C_{\beta})h(\gamma,C_{\gamma})}}$

2.3. Coupling equations. Consider a hyperbolic quadrilateral
which is cut into two ideal triangles by a diagonal. We adopt the no-
tation of Figure 2.1 (b). Then the $h$ -lengths of the ends which abut on the
diagonal $e$ satisfy the following coupling equation:

(2.4) $h(\alpha, C_{\alpha})h(\beta, C_{\beta})=h(\gamma, C_{\beta})h(\delta, C_{\alpha})$ .
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This equation follows easily from (2.2) if the expression of the $L$ -length of
$e$ in terms of the $h$ -lengths is considered in each of the two triangles.

$(\mathfrak{y})$ Figure 2.1

2.5. Let $R$ be a hyperbolic surface with finite area whose underlying
topological surface is $F\backslash P$ . Then there is a Fuchsian group $\Gamma$ acting
on the upper half plane $H$ such that $H/\Gamma=R$ . Every puncture of $R$

defines a conjugacy class of parabolic cyclic subgroups of F. Let $H$ be
a parabolic cyclic group in this class and $h$ a generator of $H$ . Let $C$

be a horocycle based at the fixed point of $H$ . We say that $C$ has length
$\alpha$ with respect to $\Gamma$ (or the hyperbolic surface $R$) if the length of the
segment on $C$ between $z$ and $h(z)$ is $\alpha$ , where $z$ is any point of $C$ .

An ideal geodesic arc $c$ on $R$ is a geodesic arc connecting punctures.
It is possible that $c$ ends in the same puncture. The L-length $L_{\alpha}(c)$ of
$c$ with respect to horocycles of length $\alpha$ is defined to be $L(\tilde{c};C_{a}, C_{b})$ ,
where $\tilde{c}$ is a lift of $c$ to $H$ and $C_{a},$ $C_{b}$ are the horocycles of length $\alpha$

based at the endpoints of $\tilde{c_{\backslash }}$ .

2.6. This section refers to Figure 2.2. Let $\tilde{F}$ denote the surface
$F\backslash \{x_{2}, \ldots, x_{s}\}$ . Choose simple closed curves $a_{1},$ $b_{1},$

$\ldots,$ $a_{g},$ $b_{g},$ $c_{1},$
$\ldots,$ $c_{s-1}$

on $\tilde{F}$ which cut $\tilde{F}$ into $(4g+2s-2)$-gon $D’$ and $s-1$ punctured
discs $D_{1},$

$\ldots,$
$D_{s-1}$ where $D_{i}$ is bounded by $c_{i}(i=1, \ldots, s-1)$ . We add

arcs $d_{1},$
$\ldots,$

$d_{s-1}$ such that $d_{j}$ connects $x_{1}$ and $x_{j+1}$ in $D_{j}$ . Let
$v_{0},$ $v_{1},$

$\ldots,$ $v_{p-1}$ , where $p=4g+2s-2$ , denote the vertices of $D’$ . We
add also $p-3$ disjoint curves $e_{1},$

$\ldots,$ $e_{p}3$ which connect the vertices of $D$
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as illustrated in Figure 2.2. Then the system of arcs

$a_{1},$ $b_{1},$
$\ldots,$ $a_{g},$ $b_{g},$ $c_{1},$

$\ldots,$ $c_{s-1},$ $d_{1},$
$\ldots,$

$d_{s-1},$ $e_{1},$
$\ldots,$ $e_{p-3}$ , $p=4g+2s-2$

forms an ideal triangulation of $F\backslash P$ which we denote by $\triangle$ . Let $D$

denote the union of $D’$ and $D_{1},$
$\ldots,$

$D_{s-1}$ .

$arrow$

2.7. $L$ -length coordinates for the Teichm\"uller space. Let $R_{m}$

be a point of the Teichm\"uller space $T_{g)s}$ . By definition $R_{m}$ is represented
by a hyperbolic surface $R$ together with an orientation-preserving home-
omorphism $f$ : $F\backslash Parrow R$ ([1, Chap.6]). We send the curves in $\triangle$ to
$R$ by $f$ and replace the images with geodesic curves homotopic to them
relative to the punctures. If $c\in\triangle$ and $\tilde{c}$ is the geodesic curve on $R$

homotopic to $f(c)$ relative to the punctures, then we denote by $L_{\alpha}(c, R_{m})$

the $L$ -length of $\tilde{c}$ relative to horocycles of length $\alpha$ .

2.8. Theorem. There is a mapping $f$ : $T_{g,s}arrow R_{+}^{6g-6+3s}$ defined
$by$

(2.9) $f(R_{m})=(L_{\alpha}(c, R_{m})|c\in\triangle)$

which gives a global parametrization for the Teichmuller space $T_{g,s}$ .

A proof of this theorem is found in [3]. In Section 4, we shall give
another proof and for this purpose we need $h$ -length coordinates defined
in the next section.
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2.10. $h$ -length coordinates for the Teichm\"uller space. We
consider triangles in the ideal triangulation $\triangle$ of $F\backslash P$ constructed in
2.6. Note that a triangle may be bounded by two curves in $\triangle$ . Examples
are the triangles bounded by $c_{j}$ and $d_{j}$ for $j=1,$ $\ldots,$

$s-1$ . Such a triangle
lifts to an ordinary triangle in the universal covering surface of $F\backslash P$ . If
we think of $P=\{x_{1}, \ldots, x_{s}\}$ as the ideal boundary of $F\backslash P$ , then each
triangle in $\triangle$ has three ends. Since there are $4g+2s-4$ triangles in $\triangle$ ,
there are $12g+6s-12$ ends. Let $E_{i}$ denote the set of ends of triangles in
$\triangle$ which abut on $x_{i}$ . Then $E_{1}$ contains $12g+5s-11$ ends and if $i\neq 1$ ,
$E_{i}$ contains only one end. Let $E$ denote the set of all ends.

Let $R_{m}$ be a point of the Teichm\"uller space $T_{g,s}$ represented by
$(R, f)$ . Let $H$ be the universal covering of $R$ equipped with horocycles
of length $\alpha$ with respect to $R$ . Send the curves in $\triangle$ to $R$ by $f$

and straighten the images to geodesic arcs by a homotopy relative to the
punctures. Then an end $\epsilon\in E$ corresponds to an end $\tilde{\epsilon}$ of a geodesic
triangle in $R$ . Lift the triangle to $H$ and consider the horocycle $C$

of length $\alpha$ based at the vertex $v$ naturally determined by $\epsilon$ . Let
$h_{\alpha}(\epsilon, R_{m})=h(\tilde{\epsilon}, C)$ . We call $h_{\alpha}(\epsilon, R_{m})$ the h-length of the end $\epsilon$ in $R_{m}$

with respect to $\alpha$ .

In Section 4 we show that the mapping $g$ : $T_{g)s}arrow R_{+}^{12g+6s-12}$ defined
by

$g(R_{m})=(h_{\alpha}(\epsilon, R_{m})|\epsilon\in E)$

gives a global parametrization for the Teichm\"uller space. The set $g(T_{g,s})$

is determined by $6g-6+3s$ coupling equations, corresponding to the arcs
of $\triangle$ , and by the following trivial equations:

(2.11)
$\sum_{\epsilon\in E;}h_{\alpha}(\epsilon)=\alpha,$

$i=1,$ $\ldots,$
$s$ .

Any point of $R_{+}^{12g+6s-12}$ satisfying these $6g-6+4s$ equations belongs to
$g(T_{g,s})$ . Actually a hyperbolic surface can be constructed from $4g+3s-4$
ideal triangles so that the triangulation is combinatorially same as $\triangle$ and
so that the triangles are equipped with horocycles which assign the same
h-length coordinates as the given point.

For $i=2,$ $\ldots,$ $s,$ $E_{i}$ contains only one end and the $h$ -length of the end
is the constant $\alpha$ . Therefore we can eliminate the $h$ -lengths of the ends
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in $E_{i},$ $i>1$ and replace $g$ with the mapping $g’$ : $T_{g,s}arrow R_{+}^{12g+5s-11}$

defined by

(2.12) $g’(R_{m})=(h_{\alpha}(\epsilon, R_{m})|\epsilon\in E_{1})$

to obtain a global parametrization.

2.13. The defining relation of the Teichm\"uller space in terms
of the $L$ -length coordinates. Let $f$ be the parametrization (2.8) for
$T_{g,s}$ in $L$ -length coordinates. By using (2.2) and (2.11), we can determine
the space $f(T_{g,s})$ explicitly. Let $\epsilon\in E$ be an end and $T$ be the triangle
in $\triangle$ which contains $\epsilon$ . If $c_{1,\epsilon},$ $c_{2,\epsilon},$ $c_{3,\epsilon}$ are the edges of $T$ and $c_{3,\epsilon}$ is
opposite $\epsilon$ , then the equation (2.11) is equivalent to

(2.14) $(R_{i})$
$\sum_{\epsilon\in E;}\frac{L_{\alpha}(c_{3,\epsilon})}{L_{\alpha}(c_{1,\epsilon})L_{\alpha}(c_{2,\epsilon})}=\alpha,$ $i=1,$ $\ldots,$

$s$ .

For $i=2,$ $\ldots,$
$s,$ $E_{i}$ contains only one end and in this case we have

$L_{\alpha}(c_{i-1}, R_{m})=\alpha L_{\alpha}(d_{i-1}, R_{m})^{2}$

So we can eliminate the coordinates $L_{\alpha}(d_{i-1}),$ $i=2,$ $\ldots,$
$s$ and replace $f$

by the mapping $f’$ : $T_{g,s}arrow R_{+}^{6g-6+2s+1}$ defined by

$f’(R_{m})=(L_{\alpha}(c, R_{m})|c\in\triangle\backslash \{d_{1}, \ldots, d_{s-1}\})$ .

The set $f’(T_{g)s})$ is determined by the single equation $(R_{1})$ in (2.14).

3. A real analytic representation of the Teichm\"uller space by
geodesic length functions

Let $A$ denote the annulus $\{1/2 \leq|z|\leq 2\}$ and $c’$ and $c$
“ the

boundary curves of A. Let $A^{*}=A\backslash \{1\}$ and $c$ denote the arc
$\{e^{2\pi i\theta}|0<\theta<1\}$ . The following lemma is a consequence of elementary
hyperbolic geometry.
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3.1. Lemma. Let $f$ be an embedding of $A^{*}$ into a surface $R$ with
complete hyperbolic metric such that $1\in A$ corresponds to a puncture of
$R$ under $f$ . If $L_{\alpha}(c)$ denotes the L-length with respect to the horocycle
of length $\alpha$ of the geodesic arc homotopic to $f(c)$ relative to the boundary
and $l(c’)$ (resp. $l(c”)$ ) the infimum of hyperbohc lengths of curves in the
free homotopy class of $f(c’)$ $($resp. $f(c”))_{f}$ then

(3.2) $\alpha L_{\alpha}(c)=2\cosh(l(c’)/2)+2\cosh(l(c’’)/2)$ .

3.3. Geodesic length parameters. Let $\triangle$ be the ideal triangula-
tion of $F\backslash P$ defined in 2.6. Each arc $c\in\triangle\backslash \{d_{1}, \ldots, d_{s-1}\}$ extends to a
closed curve in $\tilde{F}=f\backslash \{x_{2}, \ldots, x_{s}\}$ . There are at most two simple closed
curves $c$

‘ and $c”$ in $F\backslash P$ up to free homotopy which are homotopic
to the extension of $c$ in $\tilde{F}$ . More precisely, choose a small disc $D$ in
$\tilde{F}$ around $x_{1}$ . By deforming $c$ with a homotopy, we can assume that $c$

intersects the boundary circle of $D$ in two points and cuts the boundary
circle into two arcs. Then remove from $c$ the part in $D$ and add one of
the two arcs. By doing this we obtain the simple closed curves $c’$ and $c”$

on $F\backslash P$ with the desired property.
Let $R_{m}$ be a point of the Teichm\"uller space $T_{g,s}$ . If $R_{m}$ is

represented by the hyperbolic surface $R$ and the orientation-preserving
homeomorphism $f$ : $F\backslash Parrow R$ , let $l(c’, R_{m})$ and $l(c”, R_{m})$ denote the
infimum of the hyperbolic lengths of curves freely homotopic to $f(c’)$ and
to $f(c”)$ , respectively. So $l(c’, R_{m})$ (resp. $l(c”,$ $R_{m})$ ) is either the length
of the unique geodesic curve freely homotopic to $f(c’)$ (resp. $f(c”)$ ) or
zero. By applying Lemma 3.1 to the punctured annulus bounded by $f(c’)$

and $f(c$“ $)$ , we obtain

$\alpha L_{\alpha}(c)=2\cosh(l(c’)/2)+2\cosh(l(c’’)/2)$ .

Note that 2 $\cosh(l(c’)/2)$ and 2 $\cosh(l(c’’)/2)$ are absolute values of the
traces of the hyperbolic transformations corresponding to $c’$ and $c$

“ in
the Fuchsian group $\Gamma$ such that $R=H/\Gamma$ . Combining the formula above
with the results in 2.13 we obtain a real algebraic representation for $T_{g,s}$

in terms of the geodesic length functions:

3.4. Theorem. The mapping $h:T_{g)s}arrow R^{6g-6+2s+1}$ defined by

$h(R_{m})=(\cosh(l(c’)/2)+\cosh(l(c’’)/2)|c\in\triangle\backslash \{d_{1}, \ldots, d_{s-1}\})$
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gives a global parametrization of the Teichmuller space $T_{g,s}$ . Let $\lambda(c)=$

$2\cosh(l(c’)/2)+2\cosh(l(c’’)/2)$ Then the image $h(T_{g,s})$ is determined by
the equation

(3.5) $\sum_{\epsilon\in E_{1}}\frac{\lambda(c_{3,\epsilon})}{\lambda(c_{1,\epsilon})\lambda(c_{2,\epsilon})}=1$.

3.6. For the once punctured torus, the curves $c$
‘ and $c$

“ constructed
above are identical. Therefore $\lambda(c)/2$ is the absolute value of the trace
of the hyperbolic transformations corresponding to $c$ under the universal
covering $Harrow R$ . The triangulation $\triangle$ contains three curves $a,$ $b,$ $e$ . The
Teichm\"uller space $T_{1,1}$ is therefore parametrized by the trace functions
$\lambda(a),$ $\lambda(b),$ $\lambda(e)$ with the relation

$\lambda(a)^{2}+\lambda(b)^{2}+\lambda(e)^{2}=\lambda(a)\lambda(b)\lambda(e)$ .

This is a classical result.

4. Relations between the Fricke coordinates and the $L$ -and
$h$ -length coordinates

4.1. The Fricke coordinates. We consider again the triangulation
$\triangle$ constructed in Section 2.6. Let $R_{m}$ be a point of the Teichm\"uller

space $T_{g,s}$ . If $R_{m}$ is represented by the hyperbolic surface $R$ and the
orientation-preserving homeomorphism $f$ : $F\backslash Parrow R$ , send all arcs in $\triangle$

into $R$ by $f$ and deform the images to geodesic arcs under a homotopy
relative to the boundary. We cut $R$ along the geodesic arcs corresponding
to $a_{1},$ $b_{1},$

$\ldots,$ $a_{g},$ $b_{g},$ $d_{1},$
$\ldots,$

$d_{s-1}$ . Then we obtain a geodesic $4g+2s-2$-gon
$D$ which is triangulated by the images of $c_{1},$

$\ldots,$ $c_{s-1},$ $e_{1},$
$\ldots,$ $e_{p-3}$ as in

Figure 2.2. If we embed $D$ in the hyperbolic plane $H$ , we obtain also
the side-pairing transformations which generate a Fuchsian group $\Gamma$ such
that $R=H/\Gamma$ . Let

(4.2) $(A_{1}, B_{1}, \ldots, A_{g}, B_{g}, D_{1}, \ldots, D_{s-1})$
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be the ordered set of the side-pairing transformations which are matrices in
$SL(2, R)$ . To determine this ordered set uniquely for each $R_{m}\in T_{g,s}$ , we
assume that

(4.3) $trM<0$ for $M\in\{A_{1}, \ldots, D_{s-1}\}$ ,

where $trM$ is the trace of a matrix $M$ , and that $A_{1}^{-1}B_{1}A_{1}(\infty)=0$ and
also that

$D_{s}=A_{1}^{-1}B_{1}^{-1}A_{1}B_{1}\cdots A_{g}^{-1}B_{g}^{-1}A_{g}B_{g}D_{1}^{-1}\cdots D_{s-1}^{-1}$

is expressed by the matrix

$(\begin{array}{ll}-1 10 -1\end{array})$ .

Here we remark that $trD_{s}<0$ is due to the choice of matrices of neg-
ative traces (4.2) for $A_{1},$ $B_{1},$

$\ldots,$
$D_{s-1}$ , see [5]. Then entries of matrices

determine a point in $R^{8g+4s-4}$ which gives the Fricke coordinates for $R_{m}$ .
Obviously the Fricke coordinate-system gives a global parametrization for
the Teichm\"uller space $T_{g,s}$ .

4.4. Before establishing the relation between the Fricke coordinates
and the $h$ -length coordinates, we introduce the notion of an elementary
move. Let $D$ be an ideal geodesic polygon embedded in $H$ triangu-
lated by ideal geodesic arcs (for our purpose, we need only the polygon $D$

constructed in 4.1, but here we assume that $D$ is an arbitrary polygon).
Suppose that for each vertex of $D$ a horocycle is given. Then each end
of the triangles in the triangulation has an $h$ -length and each edge has an
$L$ -length with respect to these horocycles. Choose an inner edge $e$ of
the triangulation. Let $S$ and $T$ be the triangles which share the edge
$e$ . Then, by replacing $e$ with another diagonal $f$ of the quadrilateral
$S\cup T$ , we obtain another triangulation of $D$ , which is said to be the result
of an elementary move on $e$ . The next lemma refers to Figure 4.1.

4.5. Lemma $([6,p.334])$ . L-lengths of edges and h-lengths of ends
caused by the elementary move satisfy: $L_{e}L_{f}=L_{a}L_{c}+L_{b}L_{d}$ ,

$\epsilon’=\beta+\gamma$ , $\varphi’=\alpha+\delta$,



66

$\alpha’=\frac{\varphi}{\varphi}\alpha=\frac{\varphi}{\epsilon}\gamma$ , $\beta’=\frac{\varphi}{\epsilon}\beta=\frac{\varphi}{\varphi}\delta$ ,

$\gamma’=\frac{\epsilon}{\epsilon}\gamma=\frac{\epsilon}{\varphi}\alpha$ , $\delta’=\frac{\epsilon}{\varphi}\delta=\frac{\epsilon}{\epsilon}\beta$ .

Here and in what follows we make $\alpha$ etc., stand for the $h$ -length of an
end $\alpha$ (if relevant horocycles are known) in order to simplify the notation.

For given positive numbers $\alpha,\beta,$
$\gamma$ , we define a matrix

(4.6) $M(\alpha,\beta, \gamma)=-\sqrt{\frac{\gamma}{\beta}}(\begin{array}{ll}(\alpha+\beta)/\gamma \alpha 1/\gamma 1\end{array})$ .

Note that if $(a, b|c, d)=M(\alpha, \beta,\gamma)$ , then

(4.7) $\alpha=b/d,$ $\beta=1/cd,$ $\gamma=d/c$ .

$arrow$

Figure 4.1

The next lemma refers to Figure 4.2 which also indicates two elemen-
tary moves starting on $\triangle$ .

4.8. Lemma. Suppose that $L_{b}=L_{c}$ and $L_{a}=L_{d}$ hold for the
L-lengths. Then the linear fractional transformation A which sends the
horocycles $C_{\infty},$ $C_{0}$ to $C_{\alpha+\beta},$ $C_{\alpha}$ , respectively, is $M(\alpha, \beta, \gamma)$ and the linear
fractional transformation $B$ which sends the horocycles $C_{\alpha+\beta+\delta},$ $C_{\alpha+\beta}$ to
$C_{0},$ $C_{\alpha_{J}}$ respectively, $is$

$B=R^{-1}M(\beta’, \delta’, \epsilon’’)^{-1}R$ ,
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where $R$ is the linear fractional transformation such that $R(O)=\infty,$ $R(\alpha)$

$=0_{J}$ $R(\alpha+\beta)=\beta’$ , and $\epsilon$

“ is the h-length of the end marked by the
same letter in Figure 4.2.

Figure 4.2

4.9. Let $S=(\alpha,$ $\beta,$
$\gamma,$

$\delta,$ $\epsilon$ , $(, \eta, \theta, \kappa)$ be the ordered set of $h$ -lengths of
ends as in Figure 4.2. Then we denote by $A(S),$ $B(S)$ the linear fractional
transformations $A$ and $B$ in the previous lemma.

4.10. We shall establish relations between the Fricke coordinates and
the $L$ -length and $h$ -length coordinates. Since a one-to-one correspon-
dence between the $L$ -length coordinates and the $h$ -length coordinates is
easily obtained by using (2.2), we need only to consider the $h$ -length co-
ordinates. In what follows we consider the case of $g>0$ and $s>1$
and the h-lengths of ends are those with respect to horocycles of length 1.
Other cases can be treated in a similar manner.

Let $D$ be the geodesic polygon constructed in 4.1. This $D$ is trian-
gulated as illustrated in Figure 4.3. Suppose that the $h$ -length coordinates
are given. We shall produce the Fricke coordinates from the $h$ -lengths.
For $i=1,$ $\ldots,g$ , let

$S_{i}=(\alpha_{i}, \beta_{i,\gamma_{i}}, \delta_{i}, \epsilon_{i}, \zeta;, \eta_{i}, \theta_{i}, \kappa_{i})$ .

Then by Lemma 4.8 we have $A_{1}=A(S_{1}),$ $B_{1}=B(S_{1})$ . For $i=$
$2,$

$\ldots,$
$g$ , consider the polygon with vertices $v_{0}(=\infty),$ $v_{4i-4},$ $v_{4i-3},$ $v_{4i-2}$ ,

$v_{4i-1},$ $v_{4i}$ . By operating elementary moves three times, we can obtain a
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new triangulation by vertical edges which connect $v_{0}$ and other vertices
$v_{4i-4},v_{4i-3},v_{4i-2},v_{4i-1},v_{4i}$ . Lemma 4.5 implies that $v_{4i-4},$ $v_{4i-3},$ $v_{4i-2}$ can
be expressed in terms of the $h$ -lengths in $S_{i}$ and $\lambda_{i},$

$\mu_{i},$ $\nu_{i}$ . Let $R_{i}$ be
the linear fractional transformation such that $R_{i}(v_{4i-4})=\infty,$ $R_{i}(v_{4i-3})=$

$0,$ $R_{i}(v_{4i-2})=\alpha_{i}$ . Then we have

$A_{i}=R_{i}^{-1}A(S_{i})R_{i}$ , $B_{i}=R_{i}^{-1}B(S_{i})R_{i}$ .

Next consider the polygon with vertices $v_{0},$ $v_{4g+2i-2},$ $v_{4g+2i-1},$ $v_{4g+2i}$ , for
$i=1,$ $..,$ $s-2$ . Operating an elementary move we obtain a triangula-
tion of this polygon by the vertical edges connecting $v_{0}$ and vertices
$v_{4g+2i-2},$ $v_{4g+2i-1},$ $v_{4g+2i}(=v_{4g+2i-2}+\psi_{i})$ . Then by Lemma 4.5, we can
express $v_{4g+2i-1}$ by $\sigma_{i},$ $\tau_{i},$ $\varphi_{i},$

$\psi_{i}$ . Now the transformation $D_{i}$ is de-
termined, because $D$ ; fixes $v_{4g+2i-1}$ and sends $v_{4g+2i-2}$ to $v_{4g+2i}$ .
Finally $D_{s-1}$ is determined by the fact that $D_{s-1}$ fixes $v_{4g+2s-3}$ and
sends $v_{4g+2s-4}$ to $\infty$ . Thus the Fricke coordinates are determined by the
$h$ -length coordinates and hence we conclude:

$v_{0}\Rightarrow\infty$

Figure 4.3

4.11. Theorem. The h-length coordinates defined in 2.10 give a
global parametrization for the Teichmuller space $T_{g,s}$ .
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