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1. Let $M(R)$ be the Banach space of all Beltrami differentials $\mu=\mu(z)\frac{d\overline{z}}{dz}$ on
a Riemann surface $R$ with norm $\Vert\mu\Vert_{\infty}$ $:=$ ess $sup|\mu(z)|$ . We denote by $M(R)_{1}$

the open unit ball of $M(R)$ . Let $D$ be the unit disk in C. For each $\mu\in M(D)_{1}$ ,
there is a unique normalized quasiconformal self-mapping $W^{\mu}$ of $D$ whose Beltrami
coefficent $\mu(W^{\mu})$ $:=W \frac{\mu}{z}/W_{z}^{\mu}$ is $\mu$ , that is, $W^{\mu}$ : $Darrow D$ is a homeomorphism whose
generalized derivatives satisfy the Beltrami equation $f_{\overline{z}}=\mu f_{z}$ , and its continuous
extension to the closed unit disk $\overline{D}$ fixes 1, $i$ and $-1$ . Two elements $\mu$ and $\nu$ in
$M(D)_{1}$ are said to be equivalent if $W^{\mu}$ and $W^{\nu}$ have the same boundary values.
Let $R$ be a hyperbolic Riemann surface and $\pi:Darrow R$ be a universal covering
mapping. We define $\mu,$ $v\in M(R)_{1}$ are equivalent when so are their pull-backs
$\pi^{*}\mu$ and $\pi^{*}\nu$ , and quasiconformal mappings $f:Rarrow f(R)$ and $g:Rarrow g(R)$ are
equivalent if so are their Beltrami coefficients $\mu(f)$ and $\mu(g)$ . It is known that $f$ and
$g$ are equivalent if and only if there is a conformal mapping $h:f(R)arrow g(R)$ such
that $h\circ f$ is homotopic to $g$ modulo the border of $R$ . The Teichm\"uller space $T(R)$

of $R$ is the quotient space of $M(R)_{1}$ with respect to this equivalence relation. We
denote by $[\mu]$ the equivalence class containing $\mu$ , and identify it with the marked
Riemann surface $[f(R), f],$ $\mu(f)=\mu$ .

Let $V$ be a measurable subset of $R$ and set

$M(V)_{1}$ $:=\{\mu\in M(R)_{1} : \mu|_{R\backslash V}=0\}$.

A quasiconformal mapping $f$ is ‘conformal’ outside $V$ if $\mu(f)\in M(V)_{1}$ , so we
say $[f(R), f]$ is a partially conformal qc deformation of $[R, id_{R}]$ . A family of par-
tially conformal qc mapings is useful to investigate Teichm\"uller spaces and extremal
problems on them (see for example Krushkal [5], Gardiner [2], [3], Reich [10] and
Fehlmann-Sakan [1]).

2. We summarize some known facts. First of all, in general, $[M(V)_{1}]\neq T(R)$

(cf. Savin [11]). For example, if $R\backslash V$ is an incompressible annular domain, then
$[M(V)_{1}]\neq T(R)$ . But if $R\backslash V$ is a topological disk, then $[M(V)_{1}]=T(R)$ .

If $R$ is of finite conformal type, that is, $R$ is a Riemann surface obtained by
removing a finite number of punctures ffom a compact one, then $[M(V)_{k}]$ is a
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neiborhood of the origin $[0]$ of $T(R)$ for any $V$ with positive measure and any
$0<k\leq 1$ . This is a classical result. While there are $R$ of infinite conformal type
and a subset $V$ of $R$ with positive measure such that $[M(V)_{1}]$ is not a neiborhood
of $[0]$ (Oikawa [9]).

A general necessary condition for $V$ to insure that $[M(V)_{1}]$ becomes a neiborhood
of $[0]$ is

(1) $r(V)$ $:= \inf\{\iint_{V}|\phi|dxdy:\phi\in A_{2}^{1}(R),$ $\Vert\phi\Vert_{1}=1\}>0$ .

Moreover, when $R=D$, the condision (1) is equivalent to a simple geometric one:

$\inf\{Area(V\cap\Delta(z;\rho)):z\in D\}>0$ for some $\rho>0$

where $\Delta(z;\rho)$ is the hyperbolic disk with center $z$ and radius $\rho$ , and Area means
its hyperbolic area (Ohtake [7]).

On the other hand, a known sufficient condition is as follows. Set

$\omega(z)$ $:= \sup\{\lambda(z)^{-2}|\phi(z)|:\phi\in A_{2}^{1}(R), \Vert\phi\Vert_{1}=1\}$ .

It is not difficult to see that the function $\omega$ on $R$ is continuous and vanishing at the
punctures of R. ’If $V$ has positive measure and if

$\int\int_{V}\max\{\omega(z)^{2},1\}dxdy<\infty$ ,

then $[M(V)_{k}]$ contains $[0]$ in its interior for any $0<k\leq 1$ (Ohtake [6]).

3. We give here a quantative version of the necessary condition (1) above.

Theorem 1. If $[M(R)_{k}]\subset[M(V)_{k’}]$ , then we $h$ave

(2) $r(V) \geq\frac{K-1}{K-1}$

where $K$ $:=(1-k)/(1+k),$ $K’$ $:=(1-k’)/(1+k’)$ .

Proof. Take arbitrary $0<t<k$ and $\phi\in A_{2}^{1}(R)$ with $\Vert\phi\Vert_{1}=1$ . Let $f_{0}$ : $Rarrow R_{0}$

be a quasiconformal mapping whose Beltrami coefficient is $t\overline{\phi}/|\phi|$ and $\psi\in A_{2}^{1}(R_{0})$

be the terminal differential of the Teichm\"uller mapping $f_{0}$ (cf. Lehto [4]). Then
$f_{0}^{-1}$ : $R_{0}arrow R$ is a Teichun\"uller mapping with $\mu(f_{0}^{-1})=-k\overline{\psi}/|\psi|$ . By asummption,
there is a quasiconformal mapping $f:Rarrow R_{0}$ which is equivalen to $f$ and whose
Beltrami coefficient $\mu(f)$ is in $M(V)_{k’}$ . Applying Reich-Strebel inequality (Strebel
[12], [13]) $to-\psi$ and $f\circ f_{0}^{-1}$ equivalent to the identity mapping of $R_{O}$ , we have

$\Vert\psi\Vert_{1}\leq\int\int_{R_{O}}|\psi|\frac{|1+\mu(f\circ f_{0}^{-1})\psi/|\psi||^{2}}{1-|\mu(f\circ f_{0}^{-1})|^{2}}dudv$ .
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Since

$K(f_{0})|\phi(z)|dxdy=|\psi(w)|dudv$ , $w=f_{0}(z)$

$\frac{\overline{\psi}(w)}{|\psi(w)|}=\frac{p(z)}{\overline{p}(z)}\cdot\frac{\overline{\phi}(z)}{|\phi(z)|}$ $p=(f_{0})_{\overline{z}}$

$\mu(f\circ f_{0}^{-1})(w)=\frac{\mu(f)(z)-\mu(f_{0})(z)}{1-\overline{\mu}(f_{0})(z)\mu(f)(z)}\cdot\frac{p(z)}{\overline{p}(z)}$,

change of variable gives us

$K(f_{0}) \leq K(f_{0})\int\int_{R}\frac{|1-\mu(f_{0})\frac{\phi}{|\phi|}|^{2}|1+\mu(f)\frac{\phi}{|\phi|}\cdot\frac{1-\overline{\mu}(f_{0})\overline{\phi}/|\phi|}{1-\mu(f_{0})\phi/|\phi|}|^{2}}{(1-|\mu(f_{0})|^{2})(1-|\mu(f)|^{2})}|\phi|dxdy$

$= \int\int_{R}.\frac{|1+\mu(f)\phi/|\phi||^{2}}{1-|\mu(f)|^{2}}|\phi|dxdy$

$\leq K’\int\int_{V}|\phi|dxdy+\int\int_{R\backslash V}|\phi|dxdy$

$=(K’-1) \int\int_{V}|\phi|dxdy+1$ .

Letting $tarrow k$ , we have a desired inequality (2). $\square$

We can show a partial converse of Theorem 1. Its proof and the details are
omitted and will appear elsewhere.

Theorem 2. For $A>0$ and $l>0$ , there are positive constants $C$ and $t_{0}\leq 1$ such
that if a Riemann surface $R$ has hyperbolic area less than $A$ and if the length of
each closed geodesic of $R$ is not shorter than $l$ , then

$[M(R)_{t}]\subset[M(V)_{Ct/\cdot(V)^{2}}]$ for any $0\leq t\leq t_{0}$ .

where the constants $C$ and $t_{0}$ depend only on $A,$ $l$ and $r(V)$ but not on $R$ nor $V$ .
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