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Global real analytic length parameters and
angle parameters for Teichmiiller spaces and
the geometry of hyperbolic transformations
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Abstract

We consider global real analytic parameters for Teichmiiller spaces. First
we show a parametrization of T°(2,0,0) by seven length parameters and de-
scribe this parameter space. Next we show a similar result about angle pa-
rameters. These parametrizations are obtained from the geometry of Mobius
transformations. We define the one-half power of a Mébius transformation
and consider the geometry of hyperbolic transformations related to these
parametrizations.

1 Introduction

A Fuchsian group G acting on the unit disk D is of type (g, n, m;vy, va,...;vy), if
the quotient space D/G is a Riemann surface of genus g with n branch points and
punctures of orders vy, vs, ..., v, and m holes. This Riemann surface is also called
of type (g,n, m;vy, vy, ...,v,). Teichmiiller space T(g, n,m;v1, va, ..., Vy) is the set
of equivalence classes of marked Fuchsian groups of type (g,n,m;v1,vs, ..., v,) and
a global real analytic manifold of dimension 6g + 2n + 3m — 6. We abbreviate
(9,n, m;n1, 3, ..., v,) and T(g, n, m; vy, s, ..., V) to (g, n, m) and T(g, n, m), respec-
tively. There are various methods parametrizing T'(g,n, m). We will parametrize
T(g,n,m) by some lengths of closed geodesics and intersection angles between
geodesics on a Riemann surface represented by a marked Fuchsian group. Such
lengths and angles are called length parameters and angle parameters, respectively.

A hyperbolic Riemann surface R of type (g,n,m) is obtained by pasting sides of
some geodesic polygon P in D which may have vertices on the circle at infinity and
the boundary of P can ever contain arcs of the circle at infinity. The uniformization
theorem implies that P is a fundamental domain of a Fuchsian group representing
R. Since a side of P corresponds to a geodesic on R and P is determined by the
lengths of the sides and the interior angles of P, R is parametrized real analytically
by some lengths of geodesics on R and angle parameters of R. Constructing a
special polygon, we can take such lengths from length parameters, that is, lengths
of closed geodesics on R. Moreover, we can parametrize R by 3g +n+ 2m — 3 length
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parameters and 3g + n + m — 3 angle parameters of R. By this plan, the following
classical result is obtained.

Theorem 1.1 [5] Teichmiller space T'(g,n,m) has global real analytic parameters
consisting of 3g + n + 2m — 3 length parameters and 3g + n+ m — 3 angle parame-
ters. These parameters correspond to some lengths of sides and interior angles of a
geodesic polygon in D which is a fundamental domain of a marked Fuchsian group
of type (g, n,m). The total number of these parameters is diim(T'(g,n,m)) and this
parameter space is R3¥7+2m=3  (q rr)dgtn+m=3,

In Section 2, we define the one-half power of a Mdbius transformation, since this
is useful for the geometry of Mdbius transformations. _

We consider a parametrization of T(g,n,m) by only length parameters. It is
well known that length parameters parametrize T'(g,n,m) global real analytically
(see for example, [3], [7], [9], [11] and [15]). Wolpert [20] and [21] announced that
in the case of T'(g,0,0), the minimal number of these parameters is greater than
dim(T'(g, 0,0)) = 6g — 6. Recently, Schmutz [13] stated that this minimal number
is 6g — 5. In the same time, the author also obtained this result and this parameter
space independently. In Section 3, we show the result in the case of 7'(2,0,0).

In the hyperbolic plane, a triangle is determined by three lengths of sides or
three interior angles. Thus lengths and angles have same significance in the hyper-
bolic geometry. In Section 4, we show a parametrization of T'(2, 0, 0) by only angle
parameters which is useful for some considerations.

These two parametrizations are obtained from the geometry of M&bius transfor-
mations. In Section 5, we show the geometry of hyperbolic transformations related
to these parametrizations.

2 Preliminaries

The group of Mdbius transformations preserving D, M(D), is the group of isometries
of D with respect to the Poincaré metric d. For distinct two points p; and p; in
D, let L(py, ps) be the full geodesic through p; and p, with the direction from p; to
P2, where this direction is sometimes ignored. An elliptic element A € M (D) has
the sole fixed point in D. We denote it by fp(A). A hyperbolic element A € M (D)
has the attracting fired point, g(A), and the repelling fized point, p(A), which are
characterized by ¢(A) = lim,_,,, A"(z) and p(A) = lim,—, ., A™™(2) for any z € D.
The azis of A, az(A) = L(p(A),q(A)), and the translation length of A, tI(A) = inf{
d(z,A(z))|z € D}, ar~ characterized by

az(A) = {z € D|d(z, A(z)) = ti(A)},

osh ti(A) _ [trA|
2 2
Let A be a hyperbolic element of a Fuchsian group G acting on D. Then az(A4)
projects on a closed geodesic on D /G whose length is t!(A) and corresponds to |trA|

real analytically. To define a marked Fuchsian group, we give the following:




Proposition 2.1 [5] Let G be a Fuchsian group of type (g9,0,m). Then G has a
system of generators

2 = (Al, Bl, ceny Ag, Bg, E], ceey Em),

E,E,._1: - E1C,Cqeq -+ Cy = identity,

where A;, B;,C; = [B;,A;] = Bi'A7'BjA; (j = 1,...,9) and Ey (k= 1,...,m) are
hyperbolic with azes illustrated as in Figure 2.1, and if g = 0 (resp. m = 0), then
A;,B; and C; (resp. Ey) are omitted.

Figure 2.1.

A system ¥ mentioned in Proposition 2.1 is a canonical system of generators
of G. A pair of G and this system &, (G,L), is a marked Fuchsian group . Two
marked Fuchsian groups (Gj, Z;) and (G, ;) are equivalent if G, = hG1h™! and
T = hZih™? for some h € M(D). Teichmiiller space T(g,0,m) is the set of
equivalence classes of (G,X) of type (g,0,m). Similarly, T'(g,n,m), n # 0 are
defined.

One of the matrix representations of a Mdbius transformation A is denoted
by A. For two Mdbius transformations A and B, tr[B, A] is invariant under the
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choice of matrix representations. The following equations of commutator traces of
X,Y,Z=(YX)! € SL(2C) are useful: for ¢, n € {£1},

tr[X,Y] = tr[X5,Y"] =tr[Y*, X7]
tr[Y®, 2"} = tr[Z°,Y"]
tr[2¢, X" = tr[X*, 27,

Finally, we define the one-half power of A € M (D).

Definition and Proposition 2.2 Let A € M(D) be hyperbolic or parabolic. Then
there is a unique X € M(D) satisfying X? = A. X is called the one-half power of
A and denoted by AM?. If A is the matriz representation of A with negative trace
(resp. positive trace), then the matriz representations of A*? are

+1 ( (resp +1
JItrA| + 2 " VitrAl+ 2
trAY?| = \/f|trA| + 2.

Since (AM?)=1 = (A71)Y/?, these are denoted by A™/2.

A-1) (A+I)).

Thus

3 Global real analytic length parameters

Theorem 3.1 T'(2,0,0) is parametrized global real analytically by seven length pa-
rameters which correspond to the absolute values of traces of the following hyperbolic
elements of a marked Fuchsian group:

Ay, By, BiA;,
Az, By, ByA;A;, ByA;BTY.

Thus these length parameters are lengths of simple closed geodesics on a Riemann
surface represented by a marked Fuchsian group. This parameter space is defined by

Z;,Y5, 21, U,V > 2) j= 1)2’

22+ y? + 22 — sz = 23 + 2 + [trBoAsf? — za1|tr BaAo| < 0,

[trByA,| = :?IT;(Z]_ \/:;lylzl —(z2+ 92+ 23)+ 4\/uvz1 —(u2+v?+23)+4
+2(z1u + y1v) — z21(y1u + 7)) > 2,
where z; = |trA;|, y; = |trB;| (j = 1,2), z1 = |[trBi1A;], u = [trByA2A;| and
v = |trBy A, BTY.

Remark 3.2 [12] In the case of T(g,n,m), m # 0, the minimal number of global
real analytic length parameters is dim(7'(g, n, m)).
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4 Global real analytic angle parameters

Let E2,0,0) = (A1, B, Az, B;) be a canonical system of generators of type (2,0,0).
Let p; be the intersection of az(4;) and az(B;) for j = 1,2. By Poincaré’s polygon
theorem, the geodesic decagon P with vertices

AT'BrY(m), AT(p1), p1, B7'(p1), Br 11‘1-1(191)

A7' By (p), A7'(p2), pay Br'(pa), B3'A7'(pa),
is a fundamental domain of the Fuchsian group generated by Z(3,0,0) (see Figure 4.1).
The axes of A;, B; and B;A; determine a triangle T; with vertices p;, A 1/ 2(p.,) and

BY 2(p,) (see Lemma 5.2). Let §(A;),0(B;) and §(B;A;) be three mtenor angles of
T We can show that az(C;) and the segment [By 1A1 l(pl) A5'B5(p,)] intersect.
Let 4 be the intersection angle between them.

A'BT'(R)

Figure 4.1.

Lemma 4.1 Seven angles 8(A;), 0(B;),0(B;4;) (j =1,2) and p determine E(3,0,0)
global real analytically, up to conjugation by a Mébius transformation. This param-
eter space is defined by

(4.1) 6(4;), 6(B;), 6(Bj4;), p € (0,m),
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(4.2) 8(A;) + 6(B;) + 8(B;A;) <,
(4.3) F(6(A1),6(B1),6(B1A1)) = F(0(A2),0(Br), 6(B2A2)) > 1,
where 7 = 1,2 and

cos?z + cos?y + cos?z + 2 cos T cosycosz — 1
F(z,y,z) = .

sin z sin y sin 2

Remark 4.2 (4.1) and (4.2) imply that F(6(4;),0(B;),0(B;A,)) > 0.

Let R be a Riemann surface represented by X5 0,0). Let (ay, b1, az,b;) be a canon-
ical homotopy basis of the fundamental group of R corresponding to Xz0,0). We
put same labels on a closed curve on R and the geodesic freely homotopic to it.
Then 8(A;), 8(B;) and 6(B;A,) are three interior angles of a triangle determined
by a;,b; and a;b;. Let g; be the intersection of a; and b;. The intersection angle of
a;b1a7!b7! and the segment [q;, ¢;] is u (see Figure 4.2).

Theorem 4.3 T(2,0,0) is parametrized global real analytically by the above seven
angle parameters. This parameter space is defined by (4.1),(4.2) and (4.3).

Figure 4.2.
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5 The geometry of hyperbolic transformations
First we show the position of the axes of two hyperbolic transformations.

Lemma 5.1 Let A,B € M(D) be hyperbolic. Then az(A) and az(B) intersect if
and only if tr[A, B] < 2.

" Lemma 5.2 Let A,B € M (D) be hyperbolic elements with intersecting axes. Then

eight elements A*B", B*A"; e,n € {£1} are hyperbolic. Let p be the intersection of
az(A) and az(B). Then

az(BA) = L(A™*(p), B'(p)),
az(B~'A) = L(A™*(p), B7'*(p)),

da7(p), B(p) = 224
dae(p), 5 (p) = HEZA)

Especially, az(A), az(B) and az(BA) determine a triangle with vertices p, A~**(p)
and BY?(p) (see Figure 5.1).

Figure 5.1. In the case that p(A), ¢(B), q(A) and p(B) are
arranged clockwise in this order on the circle at infinity.
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Let A, B € M(D) be hyperbolic. If BA is not hyperbolic, then a:c(A) and az(B)
do not intersect, by Lemma 5.2. If BA is hyperbolic, then az(A), az(B) and az(BA)
are characterized as follows:

Lemma 5.3 Let A,B,BA € M(D) be hyperbolic.

(i) az(A), az(B) and az(BA) are disjoint, if and only if some two azes are
disjoint.

(i1) az(A), az(B) and az(BA) are not disjoint, if and only if these three azes
do not intersect at one point and any two azes intersect each other. Thus there
are three cases of the positions of azes illustrated in Figure 5.2. These cases are
characterized by trA, trB and trBA as follows:

(a) & trAtrBtrBA < 0, tr[B,A] >
(b) & trAtrBtrBA > 0, tr[B,A] >

(c) & trAtrBtrBA > 0, tr[B,A] <

Remark 5.4 tr[B, A] = tr*A +tr?B+tr?BA —tr Atr Btr BA — 2 and tr Atr Btr BA
are invariant under the choice of matrix representations.

(o (b) (¢)

Figure 5.2.

Remark 5.5 Similarly, for any non trivial elements A, B, BA € M (D), the position
of their fixed points and the direction of their actions are characterized by such three
traces.

Finally, we show the following result.



Theorem 5.6 Let A, B € M(D) be hyperbolic elements with intersecting azes. Let
p be the intersection of these azes.

(1) The azes of A*B", B*A"; ¢, n € {£1} determine the parallelogram with ver-
tices A1(p), B3(5), AY/2(p) and B-2(p).

Let C = B, A] be hyperbolic. Let p(A), q(B), q(A) and p(B) be arranged clockwise
in this order on the circle at infinity. '

(i) (A,B7'A™'B,C™?), (BA,B*A"!,C~?) and (A " BA,B~,C~! ) are canon-
ical systems of generators of type (0,0, 3).

(1) Let R € M(D) be elliptic of order 2 with fized point p. Then we have

C'? = RBA,
A™' = RAR,
B! = RBR,
A = [R AV,
B = ‘[R,Bllz],
R = £l (BA - AB).

det(BA — AB)Y?
(iv) C~12A, C-12B~1 and C~Y2BA are elliptic of order 2 satisfying

fP(CTA) = (ABAY3(p) = (BAY /A7),
fp(CT2B™Y) = A7),
a(ABA) = L(fp(C™?A),p)

(v) Let Ayjy (resp. A—yjz ) be elliptic of order 2 with fized point A?(p) (resp.
A™Y2(p) ), namely, Ay = AY2RA™V? and A_yjy = AY2RAY?, Similarly, By
and B_y; are defined. Then we have

A = RA-1/2=A1/2R,
B = RB_1/2=B;[/2R.

Thus

BA = BjpA-yp,
AB = Ay;B-_yp,
C = B_j2A12B12A-1)3.

Especially, C is determined by four elliptic transformations of order 2 whose fized
points are four vertices of the parallelogram (see Figure 5.3).
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Figure 5.3.
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