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Quantized calculus and Teichm\"uller space

MASAHIKO TANIGUCHI 谷口 雅彦 (京大)

Department of Mathematics, Faculty of Science, Kyoto University

1. quantized calculus.

The famous duality theorem by Fefferman states that the dual space of ${\rm Re} H^{1}(S^{1})$

is $BMO(S^{1})$ . On the other hand, $H^{1}$ can be represented as a product of two elements

in $H^{2}(S^{1})$ ,

$h\in{\rm Re} H^{1} h=g_{1}Hg_{2}+(Hg_{1})g_{2}$ , $g_{j}\in L^{2}(S^{1})$

Here, $H$ is the Hilbert transformation. Further Fefferman showed that

1 $\int fhd\theta|\leq C\Vert f\Vert_{BM}0\Vert g_{1}\Vert_{2}\Vert g_{2}\Vert_{2}$

Hence for every function $f$ on $S^{1}$ , set

$[H, f](g)=H(fg)-fH(g)$ $g\in L^{2}(S^{1})$ ,

and we have

$\int fhd\theta=\int[H, f](g_{1})g_{2}d\theta$ .

THEOREM ([1]). The orerator $[H, f]$ is bounded if and only if $f\in BMO(S^{1})$ .

Following A. Connes, this operator is called the quantized derivative $d^{Q}(f)$ of $f$ .

In fact, considering on the real line, we have

$[H, f](g)=Const. \int_{R}\frac{f(x)-f(y)}{x-y}g(y)dy$

and hence can considered as the “polarization” of usual differentiation.

Moreover we know
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THEOREM ([1]). The opera$tor[H, f]$ is compact if an$d$ only if $f\in VMO(S^{1})$ .

Here $VMO(S^{1})$ is the closure of $C(S^{1})$ in $BMO(S^{1})$ . In particular, if $f\in C(S^{1})$ ,

then $[H, f]$ is compact. Recall that the dual space of VMOA$(S^{1})$ is $H^{1}(S^{1})$ and that

an element of $VMO(S^{1})$ is not necessarily continuous but only ‘quasicontinuous’.

More precisely,

$L^{\infty}\cap VMO=QC(=(H^{\infty}+C)\cap(\overline{H^{\infty}}+C).=C+HC)$

REMARK ([2]). If $f\in L^{\infty}$ and $|f|\in C(S^{1})$ , then $f\in QC$ .

Now, “smoother” $f(S^{1})$ in fractal sense, better $f$ as a compact operator.

THEOREM ([3]). The operator $[H, f]$ belongs to the Schatten class $\mathcal{L}^{p}$ if and only

if $f\in B_{p}^{1/p}(S^{1})$ , where $B_{p}^{1/p}(S^{1})$ is the Besov space as below.

Here $f\in \mathcal{L}^{p}$ means that the sequence of eigenvalues of $|T|=(T^{*}T)^{1/2}$ belongs

to $\ell^{p}$ . (In particular, ,C2 is the Hilbert-Schmidt class.)

Next $f\in B_{p}^{1/p}(S^{1})$ means that $f$ satisfies the inequality

$\iint_{S^{1}\cross S^{1}}|f(x+t)-2f(x)+f(x-t)|^{p}t^{-2}dxdt<+\infty$ .

Recall that, if $p>1$ , this inequality is equivalent to

$\iint_{S^{1}\cross S^{1}}|f(x+t)-f(x)|^{p}t^{-2}dxdt<+\infty$ .

On the other hand, considering the harmonic extension on $D,$ $f\in B_{p}^{1/p}(S^{1})$ if
and only if

$\int_{D}\Vert D^{2}f\Vert^{p}(1-|z|)^{2p-2}|dz\wedge d\overline{z}|<+\infty$ .

(When $p>1$ , this is equivalent that $f$ is pintegrable l-form, namely



116

$\int_{D}\Vert Df\Vert^{p}(1-|z|)^{p-2}|dz\wedge d\overline{z}|<+\infty.)$

COROLLARY. $B_{2}^{1/2}(S^{1})$ is the Sobolev space (the harmonic Dirichlet space) $HD(D)$

$=W_{1}^{2}(D)\cap H(D),$ where $D$ is the $unit$ disk.

Boundary values form $H^{1/2}=$ { $(a_{n})$ I $\sum|n||a_{n}|^{2}<+\infty$} (, which S. Nag used).

2. On Hausdorff dimension of quasicircles.

A Riemann map $f$ onto a K-quasi disk has a (l/K)-H\"older continuous boundary

value. Hence, for instance (, also see Astata, to appear), we have

PROPOSITION (CF. FALCONER). The Hausdorff dimension of a K-quasicircle is at

most $2- \frac{1}{K}$ .

On the other hand,

THEOREM (SULLIVAN). Assume that there is a cocompact quasiFuchsian group $\Gamma$

whose limit set is a quasicircle $C$ as the limit set. Then The Hausdorff dimension of
$C$ is $p$ if and only if a Riemman map $f$ onto the interior of $C$ belongs to $B_{q}^{1/q}(S^{1})$

for every $q>p$ .

COROLLARY ([4]). A quasicircle $C$ as in Theorem 4 has Hausdorff dimension $p$ if

and only if

$p= \inf\{q|[H, f]\in,C^{q}\}$ .

PROBLEM. Characterize such quasicircles that corresponds to finit$ely$ generated

Kleinian groups.

3. Teichm\"uller spaces.

Here we will give new representation of the Universal Teichm\"uller sapce. First

we recall (cf. Astala-Gehring, 86) the foUlowing
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THEOREM (KOEBE). {$\log f’|f$ is univalent on $D$} is bounded in the Bloch space

$\mathfrak{B}=\{f|\sup(1-|z|^{2})|f’(z)|<+\infty\}$ .

On the other hand, the boundary value of $\log f’$ , where $f\in T(1)$ , does not

necesarily belong to $BMO(S^{1})$ . (cf. Astata-Zinsmeister, 91)

Now, if $f$ is a Riemann map onto a quasidisk, $f$ itself has a continuous boundary

value. Hence we can consider to represent Riemann maps in the above spaces.

First we set

$\Sigma=$ { $f|f$ is univalent on $D$ and has aform $= \frac{1}{z}+\sum_{n=1}^{\infty}c_{n}z^{n}$ near $z=\infty,$ }

and equip $\Sigma$ with the Bers topology. Then $\Sigma$ has the subset $\Sigma_{1}$ which we can
identify with the universal Teichm\"uller space $T(1)$ .

THEOREM. $\Sigma$ can be $m$apped injectively in $VMO(S^{1})$ .
This injection is contin$uo$us at least on $\Sigma_{1}$ .

In general, $BMO(S^{1})\subset \mathfrak{B}$ and hence $VMO(S^{1})\subset \mathfrak{B}_{0}$ , and it is known that, for
$g\in \mathfrak{B}_{0},$ $g$ has a finite angular limit on a set of Hausdorff dimension 1 (Makarov 89).

Also recall that $AD(D)\subset VMOA(D)$ (S.Yamashita 82. Further, see Aulaskari 88),

and that $f\in\Sigma$ has a finite angular limit almost everywhere as is seen by classical
Plessner’s theorem.

On the other hand, Pommerenke ([6]) showed that, under the locally uniformly

boundedness assumption of average multiplicity,

$f\in BMOA(S^{1})$ if and only if $f\in \mathfrak{B}$ , $f\in VMOA(S^{1})$ if and only if $f\in \mathfrak{B}_{0}$ .

On the other hand, since multiplication by $z$ is an invertible VMO-multiplier, we

can identify $\Sigma$ with $z\Sigma\subset VMOA(S^{1})$ . In particular, we have the following
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COROLLARY. $\Sigma$ can be mapped injectively in $\mathfrak{B}_{0}$ .

This injection is continuous at least on $\Sigma_{1}.$

.

REMARK. Recall that a Riemann map $h$as a continuous boundary value if and only

if the complement is locally connected. Hence the locally connectedness conjecture

of the limi$t$ set (cf. $Abikoff([7])$) can be restated as follows;

The image of $\Sigma(G)$ is contained in $C(S^{1})$ for a fini$tely$ generated Kleinian gorup
$G_{f}$ where $\Sigma(G)$ corresponds to $T(G)$ ?

It seems interesting to characterize Riemann maps, or elements of $\Sigma$ , belonging

to $VMO(S^{1})-C(S^{1})$ geometrically.

Now to prove Theorem, we note the following fact, which follows at once from

the equivalence of $VMO(S^{1})$ and $\mathfrak{B}_{0}$ , and from the geometrical characterization of

Bloch functions by Pommerenke ([5]).

PROPOSITION. Let $f$ be a holomorphic injection ofD. If $f(D)$ is bounded, then the

boundary value $f$ belongs to $VMO(S^{1})$ .

But this fact has an interesting

COROLLARY. Let $G$ be any Kleinian group which has $\infty$ as an ordinary point, and $f$

be a Riemann $map$ onto a simply connected component ofG. Then $f\in VMO(S^{1})$ .

Here we note that VMO-ness is a local property.

LEMMA (GOTOH). Let $f$ be meromorphic on $D$ and $h$as no poles near $\partial D$ . If, for

every $\zeta\in\partial D$ , there is a neighborhood $U$ of $\zeta$ such that $fo\phi_{\zeta}\in VMOA(S^{1})_{Z}$ where
$\phi_{\zeta}$ is a Rieman$nmap$ onto $U\cap D$ , then $f\in VMOA(S^{1})$ .

COROLLARY. Let $f$ be a meromorphic injection of D. If $\infty\in f(D)$ , then the

boundary value $f$ belongs to $VMO(S^{1})$ .
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PROOF OF THEOREM: Since the injectivity is clear, the first assertion follows from

the above Corollary.

Next suppose that $f_{n}$ converges to $f$ in $\Sigma_{1}$ . Then by uniform convergence proverty

of normalized quasiconformal maps, we can see that $f_{n}$ converges to $f$ uniformly on
$\overline{D}$. In particuler, $f_{n}$ converges to $f$ in $L^{\infty}(S^{1})$ an$d$ hence in $BMO(S^{1})$ , which shows

the second assertion, continuity of injection on $\Sigma_{1}$ .

REMARK. Local character of functions in $VMO(S^{1})$ can be restated as Axler-

Shapiro’s theorem ([8]). On the other hand, when $C$ is the limit set of a b-group,

every prime end of the invariant component is area $0$ by Ahlfors-Thurston’s 0–1

theorem. Hence these facts give another proof of the above Theorem for this case.

PROBLEM. Is the above injection, say $E$ , continuous on the whole $\Sigma 7$ If not,

determine the corona, i.e. the set $\overline{E(\Sigma_{1})}-E(\overline{\Sigma_{1}})$ .

Some further discussion on this problem will appear elsewhere.

Next, another representation can be obtained by considering the set

$\tilde{S}=$ { $f|f$ is univalent an$d$ holomorphic on $D$}

Again we write as $\tilde{S}_{1}$ the set corresponding to $T(1)$ , namely, the set of Riemann

map$s$ which admits a quasiconformal extension. Then the ‘VMO-ness at a point’

can measure the local complexity at the point metrically. For instance, we have

PROPOSITION. Suppose that $f$ is a Riemann map onto a component $B$ ofa Kleinian

group G. If $\infty$ belongs to the boundary of $B$ and is fixed by an element of $G$ with

infini$te$ order, then $f$ does not belongs to $BMO(S^{1})$ .

PROOF: If $\infty$ is a parabolic fixed point, then the existence of a cusp neighborhood

implies that $f\not\in BMO(S^{1})$ by Pommerenke’s characterization of Bloch functions
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([5]).

If $\infty$ is a loxodromic fixed point, then from self-similarity (invarience) of the limit

set, we can conclude the assertion again by Pommerenke’s characterization.

Outside of the fixed points set, the limit set of $G$ may have high complexity, at

least, in the finitely generated $c$ase. Hence the Riemann map $f$ may also behave

very wildly. So we may put the following

PROBLEM. If $G$ is a finitely generated Kleinian group with a component $f(D)$ and
$\infty$ is not fxed by any non-trivial element of $G$ , does $f$ belong to $VMO(S^{1})$ ?
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