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1 Introduction
Epstein and Penner [1] showed that every noncompact complete hyperbolic
manifold of finite volume admits canonical ideal polyhedral decomposition.
Here “ideal polyhedral decomposition” means that all the edges are geodesic
and all the faces are totally geodesic and all the vertices correspond to the
cusps of the manifold. In this article we are only concerned with hyper-
bolic manifolds with the same conditions as above, so we can always assume
that some cusps exist and this definition of “ideal polyhedral decomposition”
makes sense. We have asked whether the above (ideal polyhedral decompo-
sition” can be replaced with “ideal triangulation” –i.e. tetrahedral decom-
position –though it may not be canonical anymore. The arguments of [1]
work in any dimension but in the following we are only concerned with three
dimensional case. (In dimension less than three it is easy. In dimension
greater than three we can not say anything.)

If we can get a triangulation of a given hyperbolic 3-manifold, we can
calculate the explicit hyperbolic structure and especially the deformations of
the hyperbolic structures of this manifold easier than working on only with
polyhedral decomposition. Such deformations are investigated only in the
very simplest cases and one of the difficulties to proceed is the amount of
the calculations. So we hope that our way of getting the simple expression
of the hyperbolic manifolds will be helpful to do such calculations.

数理解析研究所講究録
第 882巻 1994年 132-138



133

Our second motivation comes from Weeks’s works. He has developed a
mathematical computer software called “Snappea”. Using this nice software
he made the list of all hyperbolic -manifolds which can be constructed by
at most 7 ideal tetrahedra with the faces glued with each other. If there
exist some counter examples of our question, his way can not list all the
noncompact complete hyperbolic 3-manifolds with finite volume from the
simplest ones. But experiments showed that decomposition by tetrahedra is
always possible. This experience is another motivation of this work.

We could not get the complete answer to the question. But some partial
answer is possible. Here is our main result.

Theorem 1 Let $M$ be a hyperbolic 3-manifold. If the canonical decomposi-
tion of $M$ in the sense of [1J $\omega nsists$ of one polyhedron, we can subdivide this
decomposition to get the ideal triangulation of this manifold. If it consists
of two polyhedra and one of them has all the faces glued only to the other
polyhedron ($i.e$ . without self gluing), then the same conclusion holds.

Remark 1 Though one of our motivation is [1], the triangulations that we
want do not have to be the subdivisions of Epstein and Penner’s. But our
argument depends their work and we don’t know any other way without pass-
ing their decompositions to the triangulations. There are still possibilities
that 1. our question has counter examples. or 2. our question does not have
any counter examples but it is not possible to get the triangulation from the
subdivision of the Epstein and Penner’s.
Remark 2 Our primary concem is to investigate the geometry of the hyper-
bolic manifolds. But our triangulations which is not canonical could break
the symmetry the original polyhedral decomposition had. We should be
careful on this setback.

2 Sketch of the proof
As we have mentioned in remark 1 our starting point is the canonical polyhe-
dral decomposition of Epstein and Penner’s. In the following we show that in
some simple cases it is possible to subdivide the polyhedra to get tetrahedra.
General idea is that for given convex polyhedra with the identifications of
their faces specified (and with the conditions in the theorem satisfied), we
will try to show that we can subdivide them into tetradehra in a way that
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each face of the tetrahedra is glued to only one face of another tetrahedron
i.e. it gives a triangulation–we say that it is “compatible” with the original
identification.

We first remark that our argument in this section is purely combinatorial
and does not use any geometry. For now the author don’t know whether
geometry is really needed to get the complete answer to our question.

2.1
Let $P$ be a (ideal) polyhedron. Note that the triangulation (subdivision into
tetrahedra) of $P$ is always possible if we forget the gluing.

We’ll do this by specifying one vertexv ofPand regardP asacone with
top vertex $v$ and regard the faces adjacent to $v$ as the slopes of the cone and
the other faces of $P$ as the bottom faces of the cone.

$v$

$v$

Figure 1

Then triangulation of the all “bottom” faces gives us the collection of the
tetrahedra each of which having the triangles as the bottom face and having
top vertex $v$ in common.
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$v$

Figure 2

We can subdivide the bottom faces arbitrary but the triangulation of the
faces regarded as slopes can not be changed –all the diagonal edges should
be adjacent to $v$ .

Given polyhedra with identifications of the faces specified (which come
from Epstein and Penner’s decomposition), to solve our problem, we try
to find top vertices for each polyhedra whose tetrahedral decomposition is
compatible with respect to the specified identifications.

Picking up a vertices for every polydehra as the top vertices means that
every faces including these vertices (slope) will be divided by the lines adja-
cent to this vertex in the triangulation. But how the other faces (bottom)
will be divided can be chosen whatever we like at this point to make this
decomposition compatible.

If there exist slope faces with respect to the chosen top vertices having
subdivision conflicting with each other, this set of vertices is not suitable to
get the compatible one.

Our next step is to show the existence of (good’ set of vertices.

2.2
If the decomposition consists of one polyhedron $P$ , it is fairly easy to show
the existence of good vertex.

In this case top vertex that we have to choose is only one and triangu-
lation associated with this vertex could be incompatible if some of the faces
including this vertex are identified with each other. To make this situation
happen these two faces must be adjacent. In other words each identification



136

of the faces can produce at most two “bad” vertices (two: when two faces
are connected by an edge, one: when connected by a vertex).

Now we have some calculation. Let $V,$ $E,$ $F$ denote the set of all vertices,
edges, and faces of the polehedron $P$ . We write the number of good and bad
vertices by $V_{G}$ and $V_{B}$ respectively. Let $F_{n}$ be the number of n-gonal faces
of the polydegron.

The above argument showed that:

$V_{G}=\geq$
$\#_{V-\sum_{n\geq 4}^{-V_{B}}F_{n}}\#^{V}$

(Note that pair of triangle faces does not cause any vertex becoming bad
because they don $t$ have to be subdivided.)

By the Euler’s formula:

$\# V=2+\# E-\# F$

$=2+ \frac{1}{2}\sum_{n\geq 3}nF_{n}-\sum_{n\geq 3}F_{n}$

$=2+ \sum_{n\geq 3}(\frac{n}{2}-1)F_{n}$

$\geq$
$2+ \sum_{n\geq 4}(\frac{n}{2}-1)F_{n}$

$\geq\sum_{n\geq 4}(\frac{n}{2}-1)F_{n}$

$\geq$

$\sum_{n\geq 4}F_{n}$

If follows that
$V_{G}>0$

We can say that there exist at least one good vertex and $P$ has is subdivision
compatible with respect to its identifications.

2.3
The case when we have two polyhedra $P_{1},$ $P_{2}$ is not so easy. Let us assume
that the faces of the polyhedra are glued only to the other polyhedron’s faces.
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(This condition is stronger than we have mentioned in the theorem. But we
restrict our attentions to this condition for the sake of simplicity.) Note that
using the Euler $s$ formula and the above conditions, the number of vertices,
edges, faces of $P_{i}s$ are the same.

As in the above argument let us call $(v_{1},v_{2})\in V_{1}\cross V_{2}$ , where $V_{1}$ is the set
of all vertices of $P_{i}$ , “good pair” if the associated triangulation is compatible.
“bad pair” otherwise.

Again we count the number of bad pairs by the gluing of the faces.
Let us think about what happens when two pentagons are glued together.

E $E’$

B C $C’$ $B’$

Figure 3

Look at the figure 3. Suppose that $A,$ $B,$ $C,$ $D,$ $E$ are identified with $A’$ ,
$B’,$ $C’,$ $D’,$ $E’$ . Then the bad pairs are:

$(A, B’)$ $(A, C’)$ $(A, D’)$ $(A, E’)$

$(B, A’)$ $(B, C’)$ $(B, D’)$ $(B, E’)$

$(C, A)$ $(C, B)$ $(C, D)$ $(C, E)$

$(D, A’)$ $(D, B’)$ $(D, C’)$ $(D, E’)$

$(E, A’)$ $(E, B’)$ $(E, C’)$ $(E, D’)$

and the number is $20=5\cross(5-1)$ . The same arguments show that:

triangle no bad pair occurs by the gluing of triangles

square $8(=4\cross 2)$ bad pairs (a little bit different from $n\geq 5$ )

n-gon $n(n- 1)$ bad pairs $(n\geq 5)$
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Let $D$ : $Farrow\{0,1, \ldots\}$ where $F$ is the set of faces of the polehedron $P_{1}$ be
defined as follows:

$D(f)=\{\begin{array}{l}0iffistriangle8iffissquaren(n-1)iffisn- gon(n\geq 5)\end{array}$

Then we have to show that

$\#$ { $al1$ pairs} $= \# V^{2}>\sum_{v\in V}\sum_{f\ni v}D(f)$
.

This inequation follows from a complecated computations and calculations
so we omit here. Difficulties come from irregular behaviors of $D$ when the
face is triangle or square. Also if the polyhedra are big enough it becomes
easier to show the existence of a good pair.

Remark The above inequation can be sharpened to make the condition of
the theorem weaker. But to prove (or disprove?) our first question, it seems
that we need other methods to work on.
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