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INTRODUCTION

The Homfly polynomial is a two variable extension of the Jones polynomial. It

is an isotopy invariant of links and is a Laurent polynomial in two parameters $p$ and

$m$ defined by the skein relation

$l^{-1}P_{L_{+}}(l, m)-lP_{L_{-}}(\ell, m)=mP_{L_{0}}(\ell, m)$ ,

$)$ $($

$L_{+}$ $L_{-}$ $L_{0}$

where $L+,$ $L_{-},$ $L_{0}$ are identical except within a ball and, in this ball, they are

positive crossing, negative crossing and trivial. The Homfly polynomial of the trivial

knot is defined to be 1.

$P_{O}(l, m)=1$ .
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On the other hand, Zagire’s multiple zeta function is a generalization of the zeta

function given by

$\zeta(s_{1}, s_{2}, \cdots, s_{k})=\sum_{1\leq m_{1}<m_{2}<\cdots<m_{k}}\frac{1}{m_{1}^{s_{1}}m_{2}^{s_{2}}\cdots m_{k}^{s_{k}}}$ .

Expressing the HOMFLY polynomial by means of Kontsevich’s iterated integral,

we get some relations among values of Zagier’s mixed zeta functions

$\sum_{I}c_{J}\zeta(J)=0$ .

This is one of the applications of Kontsevich’s invanant we want to show in this

note. We have similar relations from the Kauffman polynomial of links. We can

extend such integral for tangles and this has some application to representation

theory of the Iwahori-Hecke algebras.

First of ffi, I want to give a little about the background of Kontsevich’s integral.

Kontsevich defines a knot invariant by applying an iterated integral for a knot. His

theory uses the following two things. One is the theory of Vassiliev invariants and

another is the theory of quasi-Hopf algebras by Drinfeld. Vassiliev’s idea is very

simple, but his computation is complicated and he use a spectral sequence. Then

Birman and Lin gives purely combinatorial interpretation of Vassiliev construction.

Kontsevich defines an invariant with values in a Hopf algebra $\mathcal{A}$ , and this algebra

is defined with the relation introduced in the paper of Birman-Lin, which we call

the 4-term relation. On the other hand, several years ago, Kohno studied the

monodromy of the Kunizinik-Zamodorochikov connection. Let $(\rho, U)$ be the vector

representation of the Lie algebra $sl_{m}$ and let $r$ be the image of the Casimir element

in End$(U\otimes U)$ . Kohno considered the following connection.

$\omega=\sum_{1\leq i<j\leq n}r_{ij}\frac{dz_{i}-dz_{j}}{z_{i}-z_{j}}$ ,
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where $r_{ij}$ is the operator acting on $U\otimes\cdots\otimes U$ by $r$ on the i-th and j-th component.

He uses Chen’s iterated integral and he found that the monodromy corresponds to

the Iwahori-Hecke algebra. The monodromy is given by a braid and so he gives a

representation of the braid group to the Iwahori-Hecke algebra. Inspired by this

result, Drinfeld construct theory of quasi-Hopf algebras.

The amazing fact is that the 4-term relation given by Birman-Lin corresponds

to the condition for the flatness of the KZ-equation. Let us replace $r$ by an abstract

operator $\Omega$ like this. Let $\omega$ denote this form then $\omega$ is flat if it satisfies

$d\omega+\omega\wedge\omega=0$ .

This relation is satisfied if

$[\Omega_{ij}, \Omega_{ik}+\Omega_{jk}]=0$ ,

and this relation corresponds the relation for the Vassiliev invariant. Let us explain

$\Omega$ graphically by a dashed arc like this, then this relation is illustrated like this.

This correspondence may be one motivation for Kontsevich’s construction.

1. KONTSEVICH’S INTEGRAL

Kontsevich defines an invariant of knots by using iterated integrals, and we

generalize his constmction for links for later use.

1.1. Cord diagrams. Let $k$ be a positive integer. A cord diagram on $k$ circles

is $k$ oriented numbered circles with finitely many dashed cords marked on it. The

circles are called Wilson loops. Here dashed cords just mean parings of points on

the circles and nothing more. The placement of the cord has no meaning except

the end points. Let $\mathcal{D}^{(k)}$ denote the collection of all cord diagrams on $k$ circles.
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Let the vector space $\mathcal{A}^{\prime(k)}$ be the quotient

$\Rightarrow 0$

The module $\mathcal{A}^{\prime(k)}$ is graded by the number of cords. Let $A^{(k)}$ be the completion of

$\mathcal{A}^{\prime(k)}$ by this grading.

Proposition. $(\mathcal{A}^{(1)})^{\otimes k}$ acts on $\mathcal{A}^{(k)}$ by connected sums, where the i-th component

of $(\mathcal{A}^{(1)})^{\otimes k}$ is summed to the i-th circle of a cord diagram in $\mathcal{A}^{(k)}$ . Due to the 4-term

relation, the above action does not depend on the place on the circle to connect

diagrams. Especially, $\mathcal{A}^{(1)}$ is a commutative algebra.

The structure of $\mathcal{A}^{(1)}$ is studied intensively by Bar-Natan and Kontsevich.

1.2. Iterated integral. Let $L$ be a k-component link embedded in $R\cross C$ , whose

components are numbered from 1 to $k$ . We assume that $L$ is in a general position.

Let $Z(L)$ be

$Z(L)=$

$\sum_{n=0}^{\infty}\frac{1}{(2\pi i)^{n}}\sum_{P=\{(z_{1},z_{1}’),\cdot\cdot,(z_{n},z_{n}’)\}}.\int_{t_{1}<t_{2}<\cdots<t_{n}}(-1)^{\# P_{down}}L_{P}\wedge^{n}\frac{dz_{i}(t_{i})-dz_{i}^{/}(t_{i})}{z_{i}(t_{i},)-z_{i}’(t_{i}),\backslash }$

$i=1$

horizontal configuration

$\in A^{(k)}$ .

In this equation, $P$ is a horizontal configuration of the link $L$ as in the figure.

Every horizontal cord in $P$ defines locally homeomorphic maps $t_{i}arrow z_{i},$ $t_{i}arrow z_{i}’$ .
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$\# P_{down}$ is the number of points $z_{i}$ and $z_{i}’$ at which $L$ is oriented downwards, $L_{P}$ is

the image of the cord diagram in $\mathcal{A}^{(k)}$ naturally associated with $L$ and $P$ .

This integral has singularities at the maximal and minimal points. However, it

is finite because of the framing independence relation.

Since the 4-term relation corresponds to the flatness of the KZ-equation, we have

Proposition. lf a link $L’$ is obtained from a link $L$ by a horizontal deformation,

then $Z(L)=Z(L’)$ .

Due to the factor $(-1)^{P_{d\circ wn}}$ , we have

Proposition. II $L’$ is obtained from $L$ by a vertical move of a maximal or the

minimal point, then $Z(L)=Z(L’)$ .

Proposition. For a connected $s$um of a knot $K$ and $a$ lin$kL$ ,

$Z(K\neq L)=Z(K)\cdot Z(L)$ .

Proof. Connect $K$ and $L$ vertically.

$Z$ is invariant under horizontal deformations and vertical moves of minimal and

maximal points, but not invariant by the stretching move like this. Due to the last

proposition, we get
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Lemma. Let $L$ be a link and $L’$ be a link equal to $L$ except $tIzis$ part. $T\Lambda en$

$Z(L’)=Z(\infty)\cdot Z(L)$ ,

where $Z(\infty)$ acts on this component.

Hence, if we normalize $Z(L)$ by using $Z(\infty)$ , we may get an ambient isotopy

invariant of $L$ . Let

$\kappa(L)=(Z(L)^{-s(L_{1})}\otimes\cdots\otimes Z(L)^{-s(L_{k})})\cdot Z(L)$ ,

where $L_{i}$ is the i-th component of $L$ and $s(L_{i})$ is the number of maximal points of

$L_{i}$ .

Theorem. $\kappa(L)$ is an ambient isotopy invariant of links.

We call $\kappa$ Kontsevich’s integral invariant.

2. WEIGHT AND HOMFLY POLYNOMIAL

2.1. classical limit of R-matrix. Let $U$ be the $m$ dimensional vector space acting

$sl_{m}$ , and $\{e_{1}, e_{2}, \cdots, e_{m}\}$ be a basis of $U$ . Let $R$ be the R-matrix

$R=-q \sum_{i}E_{i,i}\otimes E_{i,i}-\sum_{i\neq j}E_{i,j}\otimes E_{j,i}+(q^{-1}-q)\sum_{i<j}E_{i,i}\otimes E_{j,j}$
,

Put $q=\exp(h),$ $R’=-q^{-m}R$ and $r=P \frac{d(R’-R^{\prime-1})}{dh}h=0$
’ where $P$ is the

permutation, i.e. $P(u_{1}\otimes u_{2})=u_{2}\otimes u_{1}$ . $r$ is called the classical limit of $R$ and

$r=2$ $(P-m id)$ .

Note that $r$ is two times to the image of Casimir element in End$(U\otimes U)$ .
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2.2. State model. We define a state model (weight system) [2] for $\mathcal{A}^{(k)}$ similar to

Turaev’s model in [11]. Let $D$ be a cord diagram with $k$ Wilson loops. A mapping

$f$ : {arc of $D$ } $arrow\{1,2, \cdots , m\}$ is called a state of $D$ , where a arc is a connected

component of {circl $e$ } $\backslash$ {nord}. For every state of $D$ , we assign $r_{a_{1}a_{2}}^{a_{3}a_{4}}h$ for each cord

like this. Let $W_{r}(D)$ ge a state sum on $D$ defined by

$W(D)=$
$\sum_{f:}$ $\prod_{cordof}D^{hr_{a_{1}a_{2}}^{a_{3}a_{4}}}$

.

{arc} $arrow\{1,2,\cdots,m\}$

Proposition. The mapping $W$ is factored by $A^{(k)}$ .

This comes from the next two lemmas.

Lemma. Small $r$ satisfies the 4-term relation

$[r_{ij}, r_{ik}+r_{jk}]=0$ $(\{i,j, k\}=\{1,2,3\})$ ,

ivhere $\prime r_{i}j\in End(U^{\otimes 3})$ acts on the i-ih and j-th component of $U^{\otimes 3}$ .

Lemma. $\sum_{k}r_{ik}^{kj}=0$ .

This comes from the normalization of $R$ by $-q^{-m}$ .

The weight $W$ satisfies the following local relations between diagrams.

$W(\vee\}-\sim 1\lfloor)=2h(W(\lambda)-mW(\downarrow J, ))$ .

$W(D\cup O)=mW(D)$ ,

$W(O)=m$ .

For a cord diagram $D$ with $k$ cords, $W(D)=h^{k}\cross a$ polynomial in $m$ . It is easy

to check that $W$ is compatible with the $4T$-relation and the framing independence

relation. Hence
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Proposition. $W$ is well-defined.

From the last two relation, we have

Lemma.

$W(D_{1}\cup D_{2})=W(D_{1})W(D_{2})$ .

2.3. Invariant. Now we can construct an invariant $\kappa_{W}$ by

$\kappa_{W}(L):=\frac{W(Z(\infty))}{m}W(\kappa(L))$ .

We multiply the factor $\frac{W(Z(\infty))}{m}$ so that $\kappa_{W}(O)=1$ .
We investigate property of $\kappa_{W}$ for a disjoint union.

Proposition. The invariant $\kappa_{W}$ satisfies

$\kappa_{W}(L_{1}\cup L_{2})=\frac{m}{W(Z(\infty))}\kappa_{W}(L_{1})\kappa_{W}(L_{2})$ .

Theorem. $\kappa_{W}(L)=P_{L}(e^{mh}, e^{-h}-e^{h})$ for any link $L$ (closed braid $\hat{b}$).

We first show the following lemma to reduce the problem to a braid.

Lemma. Let $b$ be a braid $\partial Jid\hat{b}$ be its closure. Then $Z( \hat{b})=Z(b)\cdot\lim_{darrow\infty}Z(\hat{b}\backslash b)$ .

Proof. $Z(b)\cdot Z(\hat{b}\backslash b)$ does not count the integral of the middle part for a configuration

including a cord connecting $b$ and the closing strings. Hence we have to show that

the integral for such configuration goes to $0$ if $d$ tends to $\infty$ . If $d$ tends to $\infty$ , this

integral is bounded by const. $\cross\log(1+1/d)$ , while the integral for $\hat{b}\backslash b$ is bounded

by const. $x(\log d)^{k}$ , where $k$ is the number of cords. Hence the product of them

goes to $0$ if $d$ goes to infinity. $\square$
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middle
part

Proof of the theorem. We show the skein relation for $Z(b)$ . Let $U$ be the $m-$

dimensional vector space on which the Lie algebra $sl_{m}$ acts naturally. Our weight

$W$ is related to the Casimir element in End$(U\otimes U)$ . Kohno [6] shows the skein

relation from the study of monodromies of the KZ-connection. This proves the

theorem.

3. RELATION BETWEEN $ZAGIER’ S$ MIXED ZETA VALUES

3.1. $\kappa W(O\cup O)$ . The invariant $\kappa_{W}$ is equal to the Homfly polynomial and so we

have

$\kappa_{W}(O\cup O)=\frac{e^{mh}-e^{-mh}}{e^{h}-e^{-h}}=\frac{\sinh mh}{\sinh h}$ ,

while $\kappa_{W}$ satisfies

$\kappa_{W}(O\cup O)=\frac{m}{W(Z(\infty))}\kappa_{W}(O)\kappa_{W}(O)=\frac{m}{W(Z(\infty))}$ ,

by the previous proposition. Hence

$W(Z( \infty))=m\frac{\sinh h}{\sinh mh}$ .

3.2. $Z(\infty)$ . On the other hand, we can compute $Z(\infty)$ and $W(Z(\infty))$ by another

method. Let $I=(p_{1}, q_{1}, \cdots, p_{g}, q_{g}),$ $|I|= \sum_{i}p_{i}+q_{i}$ , and $g(I)=g$. Let

$\zeta_{I}=\zeta(1_{\tilde{p_{1}-1}},1, q_{1}+1, \cdots,1_{\tilde{p_{g}-1}},1, q_{g}+1)$

.

142



Theorem. $Z( \infty)=1+\sum_{g(I)\geq 1}\frac{(-1)^{\Sigma q_{j}}:}{(2\pi i)^{\Sigma\cdot p+q_{1}}*:}\zeta_{I}D_{I}$ , ivhere $D_{I}$ is the configuration

given in the next figure.

Proof. $Z(\infty)$ is a regular isotopy invariant and so we compute $Z(\infty)$ for this special

diagram. By an induction, we can show that the iterated integral from $t=0$ to

$t=x$ of the diagram is given by generalized dilogarithm function

$\sum_{0<m_{1}<m_{2}<\cdots<m_{k}}\frac{x^{s_{k}}}{m_{1}^{s_{1}}\cdots m_{k^{s_{k}}}}$

for some $s_{1},$ $\cdots,$ $s_{k}$ . $\square$

To compute $W(Z(\infty))$ , we have to compute $W(D_{I})$ .

Proposition. $W(D_{I})= \frac{(2mh)^{\Sigma_{*}\cdot p_{i}+q_{i}}}{m^{2g-1}}(1-m^{2})$ .

Proof. We compute it for $D_{1,1}$ . This case, the orientation of the two Wilson loops

at the ends of a cord are different and so we replace a cord by this way.

$W(– \uparrow)=2h(W(\bigcup_{0}/\backslash )-mW(\triangleright\int\uparrow))$ .
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First, apply this replacement to $\Omega_{1}$ . Then it decompose 2 diagrams. But this one

is $0$ because of the framing independence relation. So replace $\Omega_{2}$ of the non-trivial

one. Then we get $\frac{(2mh)^{2}}{m}(1-m^{2})$ . $\square$

Combining the above theorem and proposition, we get

$W_{r}(Z( \infty))=1+\sum^{\infty}$
$\sum$ $(-1)^{-n+\Sigma_{i}p_{i}}h^{2n}m^{2n-2g(I)}(1-m^{2}) \frac{\zeta_{I}}{\pi^{2n}}$ .

$n=11<g(I)\leq n$
$\overline{|}I|=2n$

3.3. Relation between values of Zagier’s multiple zeta functions. Comparing

the coefficient of $h^{n}m^{p}$ of this formula and $m \frac{\sinh h}{\sinh mh}$ , we get relations between

values of Zagier’s multiple zeta functions. $m \frac{\sinh h}{\sinh mh}$ has the following Taylor ex-

pansion.

Since $t \exp(xt)/(\exp(t)-1)=\sum_{n=0}^{\infty}B_{n}(x)t^{n}/n!$ where $B_{n}(x)$ is the Bernoulli

polynomial, we have

$m \frac{\sinh h}{\sinh mh}=1+\sum_{n=1}^{\infty}B_{2n+1}(\frac{m+1}{2m})\frac{(2m)^{2n+1}}{(2n+1)!}h^{2n}$.
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We also know that

$B_{2n+1}( \frac{m+1}{2m})=-\sum_{r=0}^{n}(\begin{array}{ll}2n +12r \end{array})(1-2^{1-2r})(2m)^{-2n-1+2r}B_{2r}$ ,

because $B_{n}(x+h)= \sum_{r=0}^{n}B_{r}(x)h^{n-r},$ $B_{n}(1/2)=-(1-2^{1-n})B_{n}$ and $B_{2\ell+1}=0$

for any positive integer $p$ . Here $B_{n}$ are the Bernoulli numbers. Hence we get

$\frac{1}{(2n+1)!}(\begin{array}{ll}2n +l2r \end{array})(2-2^{2r})B_{2r}=$

$\sum$ $(-1)^{-n+\sum_{i}p_{i}} \frac{\zeta_{I}}{\pi^{2n}}-$ $\sum$ $(-1)^{-n+\sum_{:}p_{i}} \frac{\zeta_{I}}{\pi^{2n}}$ .
$g(I)=n-r$ $g(I)=n-r+1$

$|I|=2n$ $|I|=2n$

Examples. If $r=0$ then

$\zeta(2^{k})/\pi^{2k}=1/(2k+1)!$ .

If $r=n$ then

$\frac{2-2^{2n}}{(2n)!}B_{2n}$ $=$ $(-1)^{1-n} \frac{1}{\pi^{2n}}[\zeta(2n)-\zeta(1,2n- 1) +\cdots+\zeta(1^{2n-2},2)]$ .

By using $B_{2n}=2(2n)!(-1)^{n-1}(2\pi)^{-2n}\zeta(2n)$ , we get

$\zeta(2n)-\zeta(1,2n-1)+\cdots+\zeta(1^{2n-2},2)=2(1-\frac{1}{2^{2n-1}})\zeta(2n)$ .

Hence

$( \frac{1}{2^{2n-2}}-1)\zeta(2n)-\zeta(1,2n-1)+\cdots+\zeta(1^{2n-2},2)=0$ .

For example, if $n=2,$ $- \frac{3}{4}\zeta(4)-\zeta(1,3)+\zeta(1,1,2)=\frac{1}{4}\zeta(4)-\zeta(1,3)=0$ since

$\zeta(1,1,2)=\zeta(4)$ , and so

$\zeta(1,3)=\frac{1}{4}\zeta(4)=\frac{1}{360}\pi^{4}$ .
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4. ANOTHER APPLICATIONS

4.1. Kauffman polynomial. We also studied the Kauffman polynomial by using

Kontsevich’s integral. To do this, we have to generalize the integral for framed links.

We have to remove the framing independence relation. Then we regularized the

integral so that the integral is finite. This case, we also get relations between values

of Zagier’s multiple zeta functions. Using this relations and other known relation, we

determined the values of $\zeta(s_{1}, \cdots , s_{k})$ for $\sum_{i}s_{i}=6$ case. Only $\zeta(6)=\zeta(1,1,1,1,2)$

is a rational number and others are in $Q+Q\zeta(3)^{2}$ . There are many other knot

invariant, so we may get much more relations between values of Zagier’s multiple

zeta functions.

4.2. Tangles and Quasi-Hopf algebras. As we regularized the integral for

framed links, we regularized the integral for a trivial tangle with three strings of

the shape N. Kontsevich’s integral depend on the all strings. However, using the

integral of this diagram of the shape $N$ , we can localize the integral. Moreover, we

can split the integral for a tangle into a multiple of fundamental parts of tangles.

This representation resembles to theory of quasi-Hopf algebra by Drinfeld. The

integral for the tangle of the shape $N$ corresponds to the associator of a quasi-Hopf

algebra. So we think our theory extracts essential part of Drinfeld’s theory.

4.3. Iwahori-Hecke algebras. Combining the weight corresponding to the Casimir

element of $sl_{m}$ and the representation of tangles by Kontsevich’s integral, we can

construct a homomorphism from the Iwahori-Hecke algebra to the group ring of a

symmetric group. We can give the actual image of the associator in this case.
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