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On positively ramified extensions of algebraic number fields

BY KAy WINGBERG

By a famous theorem of Grothendieck the structure of the étale fundamental group of a
smooth projective curve of genus g over an algebraically closed field k is known for the
part prime to the characteristic of k. Precisely there are 2¢ generators with one defining

relation .

II lzowl=1.

i=1
The purpose of this note is to introduce an arithmetical site for number fields whose
corresponding fundamental group has an analog structure as in the function field case.
This approach is due to A.-Schmidt [1], [2] generalizing some ideas of the author [4], [5].

1. Algebraic number fields of CM-Type

The starting point for establishing an analogue in the number field case was to define a
natural extension K of a number field K of CM-type containing the group y, of p-th roots
of unity where pis an odd prime number. In order to immediate a geometric situation one
considers the cyclotomic Zp-extension K, of K as a ground field. Since the p-part of the
étale fundamental group of K, i.e. the Galois group the maximal unramified p-extension
of K, is too small for being an analogue and the Galois group of the maximal p-extension
Ks,(p) of Ky unramified outside the set S, of primes of K above p is much too big (not
even finitely generated), one looks for something in between. The idea is to restrict the
ramification at p using the primes at infinity. In some sence one compactifizes the affine
scheme Spec(Ok). For this approach the following assumptions were needed in the paper

[4]:
Let p be an odd prime number,

K is a CM-field containing p,,
K+ is the maximal totally real subfield of K, i.e. K = K*(y,),
K, is the cyclotomic Z,-extension of K.

We assume
(i) No prime of K* above p splits in K.

(i1) The Iwasawa p-invariant of K, /K is zero.
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Theorem 1.1, [4]: Under the assumptions and notations given above there ezists a natural
p-eztension K of K unramified outside p such that the Galois group Gal(I?/Koc-,) s a
Poincaré group of dimension 2 and of rank 2g,, where g, ts the minus part A\~ of the
Twasawa A-invariant of Ko /K. More precisely, there are generators z;,y;,i = 1,...,¢p,
of Ga(K/K,,) with one defining relation

ﬁ [xiayi] =1.

=1

Corollary 1.2: The Galois group Gal(f{’/K) 18 isomorphic to Z, or a Poincaré group of
dimension 3. '

The definition of K is as follows. Let K(p) and K*(p) be the maximal p-extension of K
and K¥, respectively. Let I,(K(p)/K) be the inertia group of Gal(K(p)/K) with respect
to a prime v. Then for a finite set S of primes of K containing S, we define

Ns := (L(K(p)/K*(p)K)v € Sp; L(K(p)/K), v¢5),

i.e. the normal subgroup of G(K(p)/K) generated by all inertia groups for the primes not
in S and the “minus-parts” of the inertia groups for the primes above p. Now

Gal(K/K) = Gal(K(p)/K)/Ns,
and more generally
Gal(Ks/K) := Gal(K(p)/K)/Ns for $>S,.

Using an analogue of Riemann’s existence theorem proved by J. Neukirch and more general
by O. Neumann one can show

Theorem 1.3, [4]: With the assumptions and notations given above let S;ZZ Sy be a finite

set of primes of K. Then Gal(Ks/K,,) is a free pro-p-group of rank 29, + #S\Sp(Ks) —1
and there exist generators z;,yi,t = 1,...,¢p, and u, € I,(K(p)/K), v € S\Sp)(Ko) with

one relation
9p
H[mhyi] H uu=1 .
i=1 v€S\Sp(K o)

2. Generalization to admissible number fields and primes

The following approach, due to A. Schmidt, is a part of the content of the paper [1]. This
generalization of the situation described in §1 has the disadvantage to that given in §3
that again one needs a CM-field on the bottom and it is not possible to handle all prime
numbers. So let :
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K be a CM-field with maximal totally real subfield K+ and let
P™(K) = {primes p # 2 | primes of K* above p do not split in K}.

Let F(odd) be the maximal Galois extension of a local or global field F of odd degree.

Definition 2.1:

(i) A number ﬁcld L C K(odd) is called a,dmzsszble at p € P(K) if L, C K+(odd)Kp
for all primes p of L above p. Furthermore let P*(L) := {p € P"’(K) | L/K
admissible at p}.

(11) Let L/K be admissible at p € P**(K). Then an eztension M of L inside K (odd) is
called positively ramified (p.r.) at p € P*(L) if
1. M/L has no tamely ramified part for all p|p, i.e. the ramification indez ep is a

power of p.
2. My C L}(odd)Lyp for all plp.

Of course, in the definition given above the field L need not to be of CM-type but it is in
some sense “locally of CM-type at p” and the existence of the field L} occuring in (2 1)(ii)
is given by the following lemma.

Lemma 2.2: Let L C K(odd) be admissible at p € P**(K). Then

(1) For every prime p|p of L there ezists ezactly one field Ly 2 Kf 2 K[ such that
[Lp : L}] = 2 and the generator pp of Gal(Lp/Ly) = /2 is znduced by the complez
conjugation w.r.t. an embedding L — C.

(ii) Conversely, to every embedding L in C there ezists a prime p above p such that pp
18 induced by the complez conjugation.

Remark 2.3.: The set P™(L) in (2.1)(i) has positive density (bigger or equal to
1/[L : Q], L the Galois closure of L]/ Q).

Now, for L C K(odd) and p € P™*(L) let
LP°*? be the maximal extension of L which is positively ramified at p and
[P = LP*Pn Ls,(p) is the maximal p-extension of L which is unramified
outside p and positively ramified at p.

The field LP°S? exists since one can easily see that the compositum of extensions which are
p.r at p is again p.r. at p. Obviously L? contains the cyclotomic Z,-extension L, , of L.

Theorem 2.4, [1]: Let L C K(odd) end p € P™(L). Assume that the ITwasawa u-
invariant of Ly, /L 13 zero.
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. ~ . 9p
(1) If p, C L, then G(L?/Looyp) = (Zi,4i, i =1,...,4; | ',[Il[wi,ys] =1).

() If p, ¢ L, then G(L?P/Lyp) is a free pro-p-group of finite rank.

The non-negative number g, is called the p- genus of L (g, = Ay ifLisa CM-field). It would
be interesting to know whether the numbers g, for fixed field L are bounded independently
of p as this is the case for function fields. ' '

3. An arithmetic site

In this paragraph we are trying to give a survey of the paper [2]. We start with a new
definition of admissibility, now for local number fields. Let K, be the maximal unramified

extension of the local field

QG+ ¢, ') where (, is a primitive p-th root of unity.

Definition 3.1:

(i) Let p be an odd prime number. Then a p-adic number field kp over Q, is called
admissible, if ky C K,(odd)((,).

(ii) Every 2-adic number field 1s admaissible.

We remark that every abelian extension of @, is admissible. Since there is still no reason-
able idea of defining admissiblity in the case p = 2 we put no restriction for 2-adic number

fields.

Definition 3.2: An eztension L|K of number fields 1s called positively ramified (p.7.) at a
prime P|p if there ezists an admissible local field k such that Ly = Kpk and the normal

closure k of the extension k/k N kp has no tame ramification

L = Kypk
Ky

—_—

ENK, —

In the case that Lsp itself is admissible (3.2) means that f}sp /Ky has no tame ramification.
Furthermore we remark that
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the cyclotomic Z-extension of a number field,
the maximal p-exension of Q((, + ¢;') unramified outside p and
unramified extensions

are p.r. everywhere.
Now we are going to define an arithmetic site. The underlying category is denoted by &,.
Ob(&,): finite disjoint unions of spectra Spec(Ok,s) where

K is a (not necessarily finite) global number field with ring of integers Ox and
Ok,s is the localization of O w.r.t. a multiplicatively closed subset S.

Mor(€,): morphisms of schemes.

If K is a number field and p a prime of K then the local field Ky and its ring of integers
OKP are not in €y but the henselization (Og)p and its field of fractions. The category €,
has fibre products which are the normalizations of the fibre products of schemes.

Definition 3.3:
1) A morphism ¢: X =Y in €y s p.r. if

(i) & is flat of finite type,
(ii) the field extension K(X)/K(Y) is p.r. at every prime which corresponds to a
point of X, :

(without loss of generality we assume that X and Y are connected).

2) Let X € €, then the small site X5 i3 the category of p.r. morphisms ¥ — X with
surjective families as coverings.

Thus we defined a Grothendieck topology on €,. Now we have to enlarge the category €,
to a category € by adding “points”. '

Definition 3.4:

A point is a locally ringed space with a single point as underlying topological space together
with a henselian ring A such that SpecA € €.

Since this note only should give a survey we cannot present all properties of this site in
detail and the interested reader is requested to confer the paper [2]. In the following we
- list some important facts without proof.
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Remark 3.5:
1) There exists a morphism of sites Xpos — Xet-
2) For every sheaf F' on X = spec(R) € €, R henselian, it holds

H} (X,F)=0fori<3,and
H: (X, F) =0 for i <2 up to 2-torsion, if F is a torsion sheaf.

3) Let X € € and let n be an invertible integer on X. Then for every F' € Sh(X,os) the
canonical homomorphism

Hét(X, F)® Z(n) = H:ms(.X, F) & Z(n)
is an isomorphism for all : € Z.

4) Let X € @ and let Z C X be a closed subset. For a sheaf F on Xpos let

I'z(X,F) := ker(I(X, F) — T'(X\Z, F)),
Hy(X,F):= RTz(X,- )(F).

Then the relative cohomology sequence exists and the excision theorem is true:
H (X, F) = H;(SpecOk.., F) ,
where z is a closed point of X.

5) Let X = Spec(R) € €, Rhenselian. One can define a sheaf G,, x which plays the role
of the multiplicative group for X,os. This sheaf fits in an exact Kummer sequence
and up to 2-torsion there exists a local duality theorem with G,, x as dualizing sheaf.

Now we want to present a global duality theorem which is an analogue to Artin/Verdier-
duality on the étale site. First we have to define a global sheaf G,, , on X = Spec(Ok) € €,
which (unfortunately) depends on a natural number n € IN. Let

K be a finite extension of Q, X = Spec(Ok),

p|p is a prime of K (for simplicity we assume p # 2),

R is the henselization of Ok at p,

k = Quot(R)/Q, its field of fractions,

k' = kN ky(odd)({,) is the maximal admissible subfield of &,
(K"Y* = kN ky(odd). '

Then we define
UP(R) := RN (u® & Ug)

where u(P) are the roots of unity of k with order prime to p, Uy is the group of units in O
and Ug = 0 if ¢, is not contained in the maximal unramified extension of £ and otherwise

Ui = (1 — p)Up where (p) = Gal(¥'/(k")*) = Z/2.
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Now let

Gmn(X) = {s € 6n(X) | s € UP*(R) for every geometric point
Spec(R) — X, whose residue characteristic devides n}.

Here a geometric point is an object Spec(R) € € where R is strictly positive, i.e. there is
no connected p.r. covering of Spec(R).

Global duality theorem 3.6: Let X = Spec(Og), K a number field, and let F be a
locally constant sheaf of ZL/n-modules on Xpos. Assume that K is admissible at n. Then
the cupproduct

H. (X, F) x H (X, Hom(F, G n)) =2 Hapy(X,6mn) = Q/Z @ L)

defines a pairing of finite abelian groups which is perfect up to 2-torsion.

As an application we consider the fundamental group 77°*(X) of X = Spec(Ok) w.r.t. the
site X;0s. We assume that K is an abelian number field, hence K is admissible everywhere,
and let Kt be the maximal totally real subfield of K. Let p be an odd prime number and
suppose that all primes above p ramify in K/K*. By Cls,(K) we denote that S,-ideal class
group of K, A is the Galois group of K(u,)/K and Vs (K) = Homa(Cls,(K(pp)), tp)-
Finally let #7°°(X)(p) be the maximal pro-p factor group of 7n}**(X). '

Theorem 3.7: With the assumptions and notations given above the following is true:

1) If K = K%, then

25X )(p) = free pro-p group of finite rank, if Vs (K) =0
1 p)= duality group of dimension 2. otherwise

2) If [K : K*] = 2, then either n7°°(X)(p) & Z, (genus 0-case) or

TP X)(p) = Poincaré group of dimension 3, if (, € K

1 p)= duality group of dimension 2, if (, ¢ K.

For the concept of duality groups see [3]. The assertions of (3.7) are exactly analogue to
the function field case. Finally we would like to mention the following corollary: Denoting
the normalization of X in the cyclotomic Z,-extension K, , of K by X, then we obtain
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Corollary 3.8:
i) If (, € K the group 77" (Xop)(p) has 2g, generators z;,y;, 1 = 1,...,9, = A\, (K),

with one defining relation
Ip

H [‘ri’yi] =1.

=1

i) If (, & K the group 77 (X ,)(p) 18 a free pro-p group of finite rank. .

We remark that the structure of 77°*(Xo)(p) is different to the one given above if the
primes of Kt above p do not ramify in K. '
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