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ON FREE PRO-p-EXTENSIONS OF ALGEBRAIC NUMBER FIELDS
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INTRODUCTION

In number theory, there often appear free pro-p-extensions (p a prime), i.e. Galois
extensions whose Galois groups are free pro-p-groups. For example:

(1) The maximal pro-p-extension of a p-adic number field not containing a primitive
p-th root of unity is free (Safarevic [S1], Theorem 1).

(2) The maximal unramified pro-p-extension of an algebraic function field over an
algebraically closed field of characteristic p is free (Safarevié [S1], Theorem 2).

(3) The maximal pro-p-extension of the cyclotomic Z,-extension of an algebraic number
field is free (Iwasawa [I1]). '

(4) The maximal pro-p-extension unramified outside p of the cyclotomic Z,-extension
of an algebraic number field is free if and only if the associated Iwasawa p-invariant
vanishes (cf. [I3], Theorem 2), and this is conjecturally always true.

(5) The freeness of the maximal unramified pro-p-extension of the cyclotomic Z,-
extension of a CM-field has been investigated by Wingberg [W1].

Now we are interested in the following problem:

How large free pro-p-extension can be realized over a fixed algebraic number
field ?

We denote by p the maximal rank of free pro-p-extensions of an algebraic number
field k. Since the Leopoldt conjecture states that £ has exactly ro + 1 independent Z,-
extensions, where r, denotes the number of complex places of k, we have an obvious
inequality p < r9 + 1 under this conjecture. Some examples of k and p with p = ro + 1
have been known. In [Y], the author gave an explicit formula for p in some special cases,
and in particular, gave some examples of k£ and p with p < ro + 1. We shall briefly review
the results of [Y] in §1.

Our main purpose of this talk is to report a simple remark on the uniqueness of a free
pro-p-extension of rank ro + 1 (when it exists). Such a uniqueness has been already proved
by Iwasawa under the assumption that the Leopoldt conjecture at p is true for any finite
Galois p-extension of k which is unramified outside p (cf. [Y], Proposition 2.2). We claim
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that we have only to assume the validity of the Leopoldt conjecture for the ground field k,
in order to conclude the uniqueness (Theorem 2.2). We shall prove this in §2.

Finally, in §3, we shall refer to a very recent result by Wingberg [W2| on the existence
of free pro-p-extensions of rank 79 + 1 in the case of CM-fields (Theorem 3.1).

Acknowledgements. This report was written while I stayed at the RIMS, Kyoto Uni-
versity. I would like to thank the institute for the hospitality. I also express my sincere
gratitude to Professor Kay Wingberg, who kindly allowed me to refer to his newest, hottest
result in my talk.

1 FREE PRO-p-EXTENSIONS

In this section, we review some known facts. See [Y] for the details. Let p be a prime
and let F; denote a free pro-p-group of rank d. In particular, Fy = Z, (the additive group
of p-adic integers). Let k be an algebraic number field, i.e. a finite extension of the rational
number field Q.

Definition 1.1. An Fy-extension K of k is a Galois extension such that the Galois group
Gal(K /k) is isomorphic to Fy as a topological group.

We define the invariant
p = p(k,p) := max{d; k has an Fy-extension},
and would like to know the exact value of p. The following Lemma is basic in our study.

Lemma 1.2. An Fy-extension of an algebraic number field is unramified outside the
primes above p.

Let S denote the set of the primes of k above p, ks the maximal pro-p-extension of
k which is unramified outside S, and let Gs := Gal(ks/k). By Lemma 1.2, k has an
Fy-extension if and only if Gg has a quotient isomorphic to Fy. Concerning the structure
of the maximal abelian quotient G2 of Gg, it is known by class field theory that G2° has
Z,-rank at least r2 + 1, and there is the following famous

Conjecture 1.3. (The Leopoldt conjecture in the sense of [I2], page 254) The Z,-rank of
G is equal to o + 1;
G¥ = Z;?*! x (finite).

Hence we obviously have p < r9 + 1 if the Leopoldt conjecture is true for k£ and p. Note
that we always have p > 1 because k has the cyclotomic Z,-extension. Some examples of
k and p with p = r9 + 1 and also with p < r9 + 1 are known in the following way.

First, the case where G itself is free would be the simplest. Since an explicit formula
for the minimal number of relations of G5 was given by Safarevi¢ ([S2],Theorem 5, where
one can replaée “<” by “=" using Tate’s duality theorem when S contains all primes above
D), a necessary and sufficient condition for Gs to be free is known. In particular, when k

contains a primitive p-th root of unity, G is free if and only if the following two conditions
hold: '

(1) p does not decompose in k/Q,
(2) p does not divide the order of the S-ideal class group of k.
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Here, the S-ideal class groﬁp is, by definition, the quotient group of the usual ideal class
group by the subgroup generated by the classes of prime ideals in S. Furthermore, it is
known that if Gg is free then its rank must be equal to 79 + 1, hence p = 72 + 1 holds in
this case.

Example 1.4. (cf. [S2], §4) For k = the p-th cyclotomic field Q(up), Gs is free if and
only if p is a regular prime, i.e. p does not divide the class number of k.

On the other hand, based on a result by Wingberg about free-product decomposition
of Gg, the author obtained an explicit formula for p in some special cases.

Theorem 1.5. ([Y], Corollary 4.6) Suppose that p is an odd prime, k contains a primitive
p-th root of unity, and that there exists a prime vg of k which does not decompose in kg
at all (then vy must divide p). Then we have

1
p=rat1-2 Y10

vlp
v#Vo

where k, denotes the completion of k at v. In particular, for such k and p, p < ro +1
holds if and only if there exist more than one primes of k above p.

Example 1.6. ([Y], page 174) Let p = 3, k = Q(v/=3,V15) or k = Q(+/—3,v/—26). The

assumptions of Theorem 1.5 are satisfied, and we have p = 2 while ro + 1 = 3.

In general, the existence of vy in Theorem 1.5 can be checked in finite steps, provided
that we explicitly know a basis of the ideal class group and fundamental units of k. The
author knows no other example with p < ro + 1 for which we can apply Theorem 1.5, but
there should be many such examples.

2 UNIQUENESS OF Fj.,1-EXTENSIONS

We keep the notation and, in addition, let LC(k,p) denote the statement that the
Leopoldt conjecture for k and p is true. All algebraic extensions of k appearing in this
section are considered as subfields of kg.

Proposition 2.1. (Remark by Iwasawa, cf. [Y], Proposition 2.2) Assume LC(L,p) for
any finite subfield L of ks/k. If k has an F,, . -extension K, then the following hold.

(1) K is unique.

(2) Any Fy-extension (d < rq+ 1) of k is contained in K.

We shall show that the assumption of this proposition can be weakened as follows.

Theorem 2.2. Ifk has an F,.,;;-extension K which contains the cyclotomic Z,-extension

of k, then K is unique. In particular, we can prove Proposition 2.1 (1) assuming only
LC(k,p).

Remark 2.3. There are few examples of k£ and p which satisfy the assumptlon of Proposmon
2.1, while there are many examples with LC(k,p).
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Remark 2.4. When p < 72 + 1, an F-extension is not necessarily unique. For example,
p(k,2) =1 for k = Q(v/—7) (cf. [Y], page 174). Since ro + 1 = 2, k has infinitely many
F,(= Zj)-extensions.

Remark 2.5. At present, the author knows no proof of Proposition 2.1 (2) under only
LC(k,p). '

Proof of Theorem 2.2. Let K/k be an F,, i-extension which contains the cyclotomic Z,-
extension ko, of k.

We first prove the uniqueness of k2N K, where ®® means the maximal abelian extension.
Let I' := Gal(koo/k) and X := Gal(k2> N K/ko) = Gal(K/ks)?. The exact sequence of
pro-p-groups

1 — Gal(K/koo) — Gal(K/k) - ' = 1

induces a natural action of I" on X, hence a A-module structure on X, where A = Z,[[I']] is
the completed group ring. Since Gal(K/k) is a free pro-p-group of rank 7o+ 1, Gal(K/ko)
is a free pro-p-I'-operator group of rank r2, and we have X = A™ (cf. [W1], Section I).
We therefore have a surjection of A-modules

Gal(ks/koo)?® — X =2 A,
On the other hand, by Iwasawa theory, there exists an injection of A-modules
Gal(kg/keo)®® < A™ @& (A-torsion)

(cf. [I2], Theorem 17). That ks is cyclotomic is necessary only for this fact. Combining
these two facts, we know that the kernel of the natural surjection

Gal(ks/koo)?® = X

is just the maximal A-torsion A-submodule of Gal(ks/kso )2, which is independent of K.
Since k2> N K is the fixed field of this kernel, it also is independent of K.
Now let

ko =KoCK, CKyC---CK

be the tower of subfields of K/ko, which corresponds to the derived series of Gal(K/k).
Since the intersection of the derived series of a pro-p-group reduces to the identity element,

we have |J K, = K. It therefore suffices to prove the uniqueness of each K,,. This is trivial
n>0

for n = 0. Assume the uniqueness of K,. We have clearly K,, 11 = Kf{b N K, and writing
K, = JL, where L runs over all finite subfields of K, /k, we have K,.1 = |J(L?® N K).
By Schreier’s formula, Gal(K/L) is a free’ pro-p-group of rank [L : Klra +1 = ro(L) + 1
(cf. Lemma 1.2), and clearly K contains the cyclotomic Z,-extension Lo, of L, therefore
L?NK is independent of K by applying what we have proved above to L. Hence L2*NK =
L3 N (L2 N K) is also independent of K, and thus K, is unique. [
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3 A RECENT RESULT BY WINGBERG
ON THE EXISTENCE OF F,, . ;-EXTENSIONS

Recently, Wingberg obtained a remarkable result on the existence of F,, +1-extensions
of CM-fields.

Notation.

p: an odd prime,
k: a CM field containing a primitive p-th root of unity,
k*: the maximal totally real subfield of k,
k;: the n-th layer of the cyclotomic Z,-extension kZ, of kt,
Cls(k;): the S-ideal class group of k;F, where S is the set of the primes of k;} above p.

Theorem 3.1. (Wingberg, [W2], Theorem 2.4, Corollary 2.7)
(1) Assume that

(a) the Iwasawa p-invariant of the cyclotomic Zp—extensibn of k is zero,

(b) no prime of k™ above p splits in k.
If p does not divide the order of Clg(k;) for all n > 0, then k has an F,,-extension.
(2) Conversely, assume that

(c) the Leopoldt conjecture is true for k and p, _. '
(d) the Greenberg conjecture is true for k* and p, i.e. the Iwasawa A, p-invariants of
kX Jkt are zero.

If k has an F,,q-extension (i.e. p = ro + 1, because of (c)), then p does not divide the
order of Clg(k}) for all n > 0.

Note that the assumptions (a) and (c) are known to be true when k is an abelian exten-
sion of Q, and note also that when p does not split in k*/Q the following are equivalent
(Iwasawa):

(1) p does not divide the order of Clg(k™),
(2) p does not divide the order of Clg(k;) for all n > 0.

We therefore have the following interesting

Corollary 3.2. ([W2], Theorem in the introduction) Let k = Q(u,) be the p-th cyclotomic
field. Then the following are equivalent:

(1) p(k,p) = (p +1)/2 holds and the Greenberg conjecture is true for k* and p.

(2) The Vandiver conjecture is true for p, i.e. p does not divide the class number of
kt.

Finally, we give some examples with p < ro9 + 1 using Theorem 3.1.

Example 3.3. Let p = 3, k = Q(v/-3, \/3), where d is a square-free positive integer.
Assumptions (a) and (c) are true as we mentioned above. Suppose, for simplicity, that 3
does not decompose in k, i.e. d =2 (mod 3) or d = 3 (mod 9). Assuming the Greenberg
conjecture at 3 for kt = Q(v/d), we see by Theorem 3.1, that p(k) < 3 if and only if the
class number of k is divisible by 3. (In that case, the exact value of p(k) is 2 because the
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subfield Q(v/—3) has an Fy-extension). Thus we have many examples with p < 7y + 1.
Here is the list of such d’s (except for the Greenberg conjecture) in the range d < 1000.

(1) d =2 (mod 3):
d = 254, 257,326, 359, 443, 473, 506, 659, 761, 785, 839, 842, 899.

2) d=3 (mod 9): o
d = 786,894, 993.

Among these, the Gfeenberg conjecturev has been verified for
d = 257,326, 359, 443, 506,659, 761, 839, 842
as far as the author knows.!
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