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Introduction. In this paper, we shall give an affirmative answer to an essential part of
the conjecture of Shimura on P-invariants of Hilbert modular forms.

Let $F$ be a totally real algebraic number field of degree $n$ and $J_{F}$ be the set of all
isomorphisms of $F$ into C. Let $F_{A}$ (resp. $F_{A}^{\cross}$ ) be the adele ring (resp. the idele group) of
$F$ and $F_{\infty}^{\cross}$ be the archimedean part of $F_{A}^{\cross}$ . Let $\chi$ be a primitive system of eigenvalues of
Hecke operators which occurs in the space of holomorphic Hilbert modular cusp forms on
$GL(2, F_{A})$ of weight $k$ and $f$ be the primitive form which belongs to $\chi$ . In [Sl], Shimura
introduced an invariant $u(\epsilon, f)\in C^{\cross}$ for every $\epsilon\in(Z/2Z)^{J_{F}}$ such that
(0) $D(m, f, \varphi)\sim\pi^{mn}u(\epsilon, f)$

for certain critical values $m\in Z$ whenever a Hecke character $\varphi$ of $F_{A}^{\cross}$ satisfies $\varphi_{\infty}(x)=$

$\prod_{\tau\in J_{F}}$ $($ sgn $x_{\tau})^{m+\epsilon(\tau)}$ for $x=(x_{\tau})\in F_{\infty}^{\cross}$ . Here $D(m, f, \varphi)$ is the standard L-function
attached to $f$ twisted by $\varphi$ and we write $a\sim b$ for $a,$ $b\in C$ if $b\neq 0$ and $a/b\in$ Q. Put
$U(\chi, \epsilon)=u(\epsilon, f)$ .

In [S4], Shimura introduced another invariant $Q(\chi, \delta)\in C^{\cross}$ for every subset $\delta$ of $J_{F}$

when $\chi$ occurs in the space of holomorphic automorphic forms on a quaternion algebra
over $F$ of signature $(\delta, J_{F}\backslash \delta)$ and showed that this invariant appears in critical values of
the Rankin-Selberg convolution of two Hilbert modular forms. He conjectured further the
following (Conjecture 5.12 of [S4], cf. also [S5], p. 293, (Cl), (C2), $(C3)$

) (C4) and (C9) $)$

Conjecture P. Assume $k(\tau)\geq 2$ for all $\tau\in J_{F}$ and $k(\tau)mod 2$ is independent of $\tau$ .
Put $k_{0}= \max_{\tau\in J_{F}}(k(\tau))$ . $Tl_{J}en$ for every subset $\delta$ of $J_{F}$ and every $\epsilon\in(Z/2Z)^{\delta}$ , tbere
exis$ts$ a constant $P(\chi, \delta, \epsilon)\in C^{\cross}/\overline{Q}^{X}$ ivbich satisfies the folloiving properties.

(Pl) $\pi^{(k_{0}-2)n/2-\Sigma_{\tau\in J_{F}}k(\tau)/2}U(\chi, \epsilon)\sim P(\chi, J_{F}, \epsilon)$.

$Q(\chi, \delta)\sim\pi^{|\delta|}P(\chi, \delta, \epsilon_{1})P(\chi, \delta, \epsilon_{2})$

(P2)
if $\epsilon_{1}(\tau)+\epsilon_{2}(\tau)\equiv 1$ mod2 for $ei^{r}ery$ $\tau\in\delta$ .

$P(\chi, \delta_{1}\cup\delta_{2}, \epsilon_{1}\cup\epsilon_{2})\sim P(\chi, \delta_{1}, \epsilon_{1})P(\chi, \delta_{2}, \epsilon_{2})$ if $\delta_{1}\cap\delta_{2}=\emptyset$ , where
(P3)

$(\epsilon_{1}\cup\epsilon_{2})(\tau)=\{\begin{array}{l}\epsilon_{1}(\tau) if \tau\in\delta_{1},\epsilon_{2}(\tau) if \tau\in\delta_{2}.\end{array}$

When $\chi$ is of CM-typ$e,$ $P(\chi, \delta, \epsilon)\sim\pi$
‘

$|\delta|_{pK(\xi,\eta)}$ holds,
(P4)

$wlJerepK$ stands for $t\Lambda e$ symbol of CM-periods introduced in $[S2]$ .
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The principal result of this paper is:

Main Theorem. Assume $k(\tau)\geq 3$ for all $\tau\in J_{F}$ and $k(\tau)mod 2$ is independent of $\tau$ .
$Then_{2}$ for every $\tau\in J_{F},$ $tl_{J}ere$ exist constants $c_{\tau}^{\pm}(\chi)\in C^{\cross}$ determined uniquely mod $\overline{Q}^{x}$

such tbat

(1)
$U( \chi, \epsilon)\sim\prod_{\tau\in J_{F}}c_{\tau}^{\epsilon(\tau)}(\chi)$

,

(2)
$Q( \chi, \delta)\sim\pi^{(k_{0}-1)|\delta|-\Sigma_{\tau\in\delta}k(\tau)}\prod_{\tau\in\delta}c_{\tau}^{+}(\chi)c_{\tau}^{-}(\chi)$

.

Here we understand that $c_{\tau}^{0}(\chi)=c_{\tau}^{+}(\chi),$ $c_{\tau}^{1}(\chi)=c_{\overline{\tau}}(\chi)$ identifying $Z/2Z$ with $\{0,1\}$ .
By this theorem, it is clear that $P(\chi, \delta,\epsilon)$ satisfying (Pl) $\sim(P3)$ is given by

(3)
$P( \chi, \delta, \epsilon)\sim\pi^{(k_{O}-2)|\delta|/2}\pi^{-\Sigma_{\tau\in\delta}k(\tau)/2}\prod_{\tau\in\delta}c_{\tau}^{\epsilon(\tau)}(\chi)$

.

We note that in [Y], \S 6, we have defined $Q(\chi, \delta)$ mod $\overline{Q}^{x}$ assuming only $k(\tau)\geq 3$ for all
$\tau\in\delta$ .

Let us now outline our ideas of the proof and contents of each section. In \S 1, we shall
review known properties of two basic period invariants $Q(\chi, \delta)$ and $U(\chi, \epsilon)$ . In \S 2, Lemma
1, we shall show that a necessary and sufficient condition for the existence $c_{\tau}^{\pm}(\chi)$ as in
Main Theorem is the following relations (Rl) $\sim(R3)$ .

$U(\chi, \epsilon_{1})U(\chi, \epsilon_{2})\sim\pi^{n(1-k_{O})+\Sigma_{\tau\in J_{F}}k(\tau)}Q(\chi, J_{F})$

(Rl)
if $\epsilon_{1}(\tau)+\epsilon_{1}(\tau)\equiv 1mod 2$ for every $\tau$.

(R2) $Q(\chi, \delta_{1})Q(\chi, \delta_{2})\sim Q(\chi, \delta_{1}\cup\delta_{2})$ if $\delta_{1}\cap\delta_{2}=\emptyset$ .

$U(\chi, \epsilon_{1})U(\chi, \epsilon_{2})\sim U(\chi, \mu_{1})U(\chi, \mu_{2})$

(R3)
if $\{\epsilon_{1}(\tau), \epsilon_{2}(\tau)\}=\{\mu_{1}(\tau), \mu_{2}(\tau)\}$ for every $\tau$.

We shall also prove (P4) in \S 2.
Now (Rl) is already proved in [Sl], Theorem 4.3. Harris [Ha3] proved (R2) under certain

conditions, in particular when $n,$ $|\delta_{1}|$ and $|\delta_{2}|$ are all even. In \S 3, using a base change lift
of $\chi$ to a totally real quadratic extension of $F$ , we shall remove this parity condition and
obtain (R2) (Theorem 2).

In \S 4, we shall prove (R3). By (0), we see that (R3) follows if

(4) $D(m,f, \varphi_{1})D(m, f, \varphi_{2})\sim D(m,f, \psi_{1})D(m, f, \psi_{2})$
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holds for one choice of a non-vanishing critical value $m$ and of Hecke characters $\varphi_{1},$ $\varphi_{2}$ ,
$\psi_{1},$ $\psi_{2}$ of $F_{A}^{\cross}$ whose infinity types correspond to $\epsilon_{1},$ $\epsilon_{2},$ $\mu_{1},$ $\mu_{2}$ respectively. Let $K$ be a
quadratic extension of $F$ such that the Hecke character $\eta$ of $F_{A}^{\cross}$ corresponding to $K/F$

satisfies $\eta_{\infty}=(\varphi_{1}\varphi_{2})_{\infty}=(\psi_{1}\psi_{2})_{\infty}$ . Again by (0), (4) reduces to

(5) $D(m,\tilde{f}, \varphi_{1}oN_{K/F})\sim D(m,\tilde{f}, \psi_{1}oN_{K/F})$,

where $\tilde{f}$ is the base change lift of $f$ to $K$ . By our choice of $K,$ $(\varphi_{1}oN_{K/F})_{\infty}=(\psi_{1}oN_{K/F})_{\infty}$

holds and we obtain (5) from a result of Hida [Hi] (\S 4, Theorem 3).
In \S 5, we shall prove the invariance of $c_{r}^{\pm}(\chi)$ under the base change of $\chi$ to a totally

real cyclic extension of $F$ (Theorem 4). In \S 6, we shall discuss a possible generalization of
Main Theorem including the case where $k(\tau)=2$ for some $\tau$ .

Notation. Throughout the paper, we fix an algebraic closure $\overline{Q}$ of $Q$ as the subfield of
C. A finite extension of $Q$ in $\overline{Q}$ will be called an algebraic number field. For an algebraic
number field $F,$ $F_{v}$ denotes the completion of $F$ at a place $v,$ $J_{F}$ the set of all isomorphisms
of $F$ into $C$ and $I_{F}$ the free abelian group generated by $J_{F}$ . We denote by $a_{r}^{F}$ (resp. $a_{c}^{F}$ )
the set of all real (resp. complex) archimedean places of $F$ and put $a^{F}=\mathfrak{a}_{r}^{F}\cup\alpha_{c}^{F}$ . We
shall drop the superscript $F$ when the reference to $F$ is clear from the context. When $F$

is totally real, we identify $a^{F}$ with $J_{F}$ ; a totally imaginary quadratic extension of $F$ will
be called a CM-extension of $F$ .

For an algebraic group $G$ defined over $F,$ $G_{A}$ denotes the adelization of $G,$ $G_{\infty}$ the
archimedean part of $G_{A}$ and $G_{\infty+}$ the identity component of $G_{\infty}$ . For $x\in F_{A}^{\cross},$ $|x|_{A}$

denotes the idele norm of $x$ . For an irreducible automorphic representation $\pi=\otimes_{v}\pi_{v}$ of
$GL(2, F_{A}),$ $L_{f}(s, \pi)=\prod_{v}L(s, \pi_{v}),$ $v$ extending over all finite places, denotes the finite
part of the Jacquet-Langlands L-function attached to $\pi$ . For $a,$ $b\in C$ , we denote $a\sim b$ if
$b\neq 0$ and $a/b\in$ Q.

\S 1. Review on Q-invariants and U-invariants

Let $F$ be a totally real algebraic number field of degree $n$ . Let $B$ be a quaternion
algebra over $F$ such that $B$ splits (resp. ramifies) at the archimedean places $\tau\in\delta$ (resp.
$\delta’)$ . We call such a $B$ a quatemion algebra of signature $(\delta, \delta’)$ . We assume $\delta\neq\emptyset$ . Put
$G={\rm Res}_{F/Q}(B^{\cross})$ and call $Z$ the center of $G$ . We identify $Z_{A}$ with $F_{A}^{\cross}$ . For $k= \sum_{\tau\in\delta}k(\tau)\tau$

and $\kappa=\sum_{\kappa\in\delta},$ $\kappa(\tau)\tau\in I_{F}$ , we define the space of cusp forms $S_{k,\kappa}(B)$ on $G_{A}$ of weight
$(k, \kappa)$ as in [S3], II, [Y], \S 6.

For $f,$ $g\in S_{k,\kappa}(B)$ , we define the inner product

(1.1) $\langle f,$ $g\}=\int_{Z_{\infty+}G_{Q}\backslash G_{A}}\overline{{}^{t}f(x)}g(x)dx$

normalizing the invariant measure so that $vol(Z_{\infty+}G_{Q}\backslash G_{A})=1$ . If there exists $0\neq f\in$

$S_{k,\kappa}(B)$ and a Hecke character $\psi$ of $F_{A}^{\cross}$ of finite order such that

(1.2) $f|T(\mathfrak{p})=\chi(\mathfrak{p})f$ for almost all $\mathfrak{p}$ , $f(zx)=\psi(z)f(x)$ , $z\in Z_{A},$ $x\in G_{A}$ ,
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$T(\mathfrak{p})$ being the Hecke operator at the prime ideal $\mathfrak{p}$ , we say that a system of eigenvalues
of Hecke operators $\chi$ occurs in $S_{k,\kappa}(B)$ . Strictly speaking, we should say that $(\chi, \psi)$ is a
system of eigenvalues of Hecke operators. For simplicity, we shall drop $\psi$ and regard $\chi$

accompanying the central character $\psi$ . Let $S_{k,\kappa}(B,\overline{Q})$ be the set of all $\overline{Q}$-rational elements
in $S_{k,\kappa}(B)$ . When $\chi$ is given, we set

$W(\chi, B)=\{f\in S_{k_{2}\kappa}(B)|f|T(\mathfrak{p})=\chi(\mathfrak{p})f$ for almost all $\mathfrak{p}$ ,

and $f(zx)=\psi(z)f(x)$ , $z\in Z_{A},$ $x\in G_{A}\}$ ,
$W(\chi, B, \overline{Q})=W(\chi, B)\cap S_{k,\kappa}(B)$ .

By the Shimizu-Jacquet-Langlands correspondence ([JL]), if $\chi$ occurs in $S_{k,\kappa}(B)$ , then it
also occurs in $S_{m,0}(M_{2}(F))$ , where $m(\tau)=k(\tau)$ $($ resp. $\kappa(\tau)+2)$ if $\tau\in\delta$ (resp. $\tau\in\delta’$ ).
If (1.2) holds for all $\mathfrak{p}$ with the primitive form (the new form) $f\in S_{m,0}(M_{2}(F))$ , then we
call $\chi$ primitive (cf. [S3], II, p. 583).

Assume that $\chi$ occurs in $S_{k,0}(M_{2}(F))$ . In $[$Y$]$ , \S 6, we have shown the following facts
sharpening previous results obtained by Shimura [S4], [S5].

(1.3) $\langle f,$ $f\rangle$ mod $\overline{Q}^{\cross}$ is independent of $0\neq f\in W(\chi, B,\overline{Q})$ .

If $B_{1}$ and $B_{2}$ are of signature $(\delta, \delta’)$ and $k(\tau)\geq 2$ for all $\tau\in J_{F}$ ,
(1.4)

then $\langle f,$ $f\}\sim\langle g,$ $g\rangle$ for $f\in W(\chi, B_{1},\overline{Q}),$ $0\neq g\in W(\chi, B_{2}, \overline{Q})$ .

If $W(\chi, B)\neq\{0\}$ for some quaternion algebra $B$ of signature $(\delta, \delta’)$ , we put

(1.5) $Q(\chi, \delta)=\{f,$ $f\rangle$

taking some non-zero form $f\in W(\chi, B,\overline{Q})$ . By (1.3) and (1.4), $Q(\chi, \delta)\in C^{\cross}/\overline{Q}^{X}$ is well
defined. Let $F_{1}$ be a totally real cyclic extension of degree $l$ of $F$ . We exclude the case
where $k(\tau)=1$ for all $\tau\in J_{F}$ . Then there exists a base change lift $\tilde{\chi}$ of $\chi$ which occurs in
$S_{\overline{k},0}(M_{2}(F_{1}))$ where $\tilde{k}(\tau)=k(\tau|F),$ $\tau\in J_{F_{1}}$ . We have

(1.6) If $\chi$ occurs in $S_{m,\kappa}(B)$ , then $\tilde{\chi}$ occurs in $S_{\tilde{m},\tilde{\kappa}}(B\otimes_{F}F_{1})$ .

(1.7) $Q(\tilde{\chi},\tilde{\delta})=Q(\chi, \delta)^{\iota}$ if $k(\tau)\geq 3$ for all $\tau\in\delta$ .

Here we have assumed $k(\tau)\geq 3$ for all $\tau\in\delta$ for some technical reasons (cf. \S 6); $\tilde{m}(\tau)=$

$m(\tau|J_{F}),\tilde{\kappa}(\tau)=\kappa(\tau|J_{F}),$ $\tau\in J_{F_{1}}$ and $\tilde{\delta}$ is the full inverse image of $\delta$ under the restriction
map $J_{F_{1}}arrow J_{F}$ . We can use (1.7) to deflne $Q(\chi, \delta)$ when $\chi$ does not occur in any $B$ of
signature $(\delta, \delta’)$ . In other words, we can find $F_{1}$ and $B_{1}$ of signature $(\tilde{\delta},\tilde{\delta}^{;})$ such that $\tilde{\chi}$

occurs in $S_{\overline{m},\tilde{\kappa}}(B_{1})$ and put $Q(\chi, \delta)=Q(\tilde{\chi},\tilde{\delta})^{1/l}$ . Then $Q(\chi, \delta)\in C^{\cross}/\overline{Q}^{x}$ is well defined
and (1.7) holds for this definition. We set $Q(\chi, \emptyset)=1\in C^{x}/\overline{Q}^{X}$

195



Let $\chi$ be a primitive system of eigenvalues of Hecke operators which occurs in
$S_{k.0}(M_{2}(F))$ . Put

(1.8) $k_{0}= \max_{\tau\in J_{F}}(k(\tau))$ , $k^{0}= \min_{\tau\in J_{F}}(k(\tau))$ .

Let $f\in W(\chi, M_{2}(F))$ be the primitive form. We attach a Dirichlet series $D(s, f)=$
$\sum_{\mathfrak{m}}C(\mathfrak{m}, f)N(\mathfrak{m})^{-s}$ by (2.25) of [Sl]. For a Hecke character $\varphi$ of $F_{A}^{\cross}$ , we put

$D(s, f, \varphi)=\sum_{m}C(\mathfrak{m}, f)\varphi_{*}(\mathfrak{m})N(\mathfrak{m})^{-s}$

where $\varphi_{*}$ denotes the ideal character associated to $\varphi$ and $\mathfrak{m}$ extends over all integral ideals of
$F$ . Set $L(s, \chi, \varphi)=\sum_{\mathfrak{m}}\chi(\mathfrak{m})\varphi_{*}(\mathfrak{m})N(\mathfrak{m})^{-s}$ . Then we have $L(s, \chi, \varphi)=D(s+\frac{k_{0}}{2}-1, f, \varphi)$ .
In [Sl], Theorem 4.3, Shimura obtained the following result (cf. also Rohrlich [R]) which
we shall recall in a crude form sufficient for our present purpose.

Theorem S. Assume $k(\tau)\geq 2$ for all $\tau\in J_{F}$ and $k(\tau)mod 2$ is independent of $\tau$ . For
every $\epsilon=(\epsilon(\tau))\in(Z/2Z)^{J_{F}}$ , tbere exists a constan$tu(\epsilon, f)\in C^{x}/\overline{Q}^{x}$ with the followin$g$

properties.
(I) If $\varphi$ is a Hecke cbaracter of $F_{A}^{\cross}such$ that

$\varphi_{\infty}(x)=\prod_{\tau\in J_{F}}sgn(x_{\tau})^{\epsilon(\tau)+m}$
, $x=(x_{\tau})\in F_{\infty}^{\cross}$ ,

then
$D(m, f, \varphi)\sim\pi^{mn}u(\epsilon, f)$

for $ei^{r}ery$ integer $m$ sucb $t\Lambda at$

$\frac{k_{0}-k^{0}}{2}<m<\frac{k_{0}+k^{0}}{2}$ .

(II) If $\epsilon_{1},$
$\epsilon_{2}\in(Z/2Z)^{J_{F}}$ satisfy $\epsilon_{1}(\tau)+\epsilon_{2}(\tau)\equiv 1mod 2$ for all $\tau$ , then

$u(\epsilon_{1}, f)u(\epsilon_{2}, f)\sim\pi^{n(1-k_{0})+\Sigma_{\tau\in J_{F}}k(\tau)}\langle f,$
$f\rangle$ .

Put $U(\chi, \epsilon)=u(\epsilon, f)$ taking the primitive form $f\in W(\chi, M_{2}(F))$ .

Remark. Let $f$ be as above and let $\pi=\otimes_{v}\pi_{v}$ be the irreducible automorphic represen-
tation of $GL(2, F_{A})$ generated by $f$ . Then $\pi$ is unitary.
(1) By somewhat laborious computations taking a suitable model of a local component
$\pi_{v}$ of $\pi$ and letting the Hecke operator at $v$ defined in [Sl], \S 2 act on the new vector, we
can verify the exact equality $D(s, f)=L_{f}(s-\frac{k_{0}-1}{2}, \pi)$ . However this is not necessarily
so for $D(s, f, \varphi)$ and $L_{f}(s- \frac{k_{0}-1}{2}, \pi\otimes\varphi)$ . In fact, some finitely many Euler factors of
$L_{f}(s- \frac{k_{0}-1}{2}, \pi\otimes\varphi)$ may not appear in $D(s, f, \varphi)$ . The condition for the exact coincidence
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is $L(s, \pi_{v}\otimes\varphi_{v})=1$ whenever $\varphi$ ramifies at $v$ . This condition is satisfied at $v$ if the exponent
of the conductor of $\varphi_{v}$ is greater than the exponent of the conductor of $\pi_{v}$ .
(2) Let $\psi$ be a Hecke character of $F_{A}^{\cross}$ such that

$\psi_{\infty}(x)=\prod_{\tau\in Jp}sgn(x_{\tau})^{\epsilon_{1}(\tau)}$
, $x=(x_{\tau})\in F_{\infty}^{\cross}$ .

Let $f_{\psi}$ be the primitive form which belongs to $\pi\otimes\psi$ . We have

(1.9) $u(\epsilon, f_{\psi})\sim u(\epsilon+\epsilon_{1}, f)$ for every $\epsilon\in(Z/2Z)^{J_{F}}$ .

To see this, first choose a critical value $m$ . Take a Hecke character $\varphi$ of $F_{A}^{\cross}$ so that $\varphi_{\infty}$

is given by the formula in Theorem $S,$ $(I)$ and that the conductor of $\varphi$ is divisible by $\mathfrak{p}^{e+1}$

whenever $\mathfrak{p}^{e}$ divides one of the conductors of $\pi,$ $\pi\otimes\psi,$ $\psi$ . Then we have

$D(s, f_{\psi}, \varphi)=D(s, f, \psi\varphi)=L_{f}(s-\frac{k_{0}-1}{2}, \pi\otimes\psi\varphi)$.

By a theorem of Rohrlich, we can further impose the condition on $\varphi$ that $L_{f}(s, \pi\otimes\psi\varphi)\neq 0$

for $s=m- \frac{k_{n}-1}{2}$ . Then (1.9) follows from Theorem S. As a result, we see that

(1.10) $L_{f}(m- \frac{k_{0}-1}{2}, \pi\otimes\varphi)\sim\pi^{mn}u(\epsilon, f)$

for a Hecke character $\varphi$ and critical values $m$ as in Theorem S.
(3) It can be shown, using the unitarity of $\pi_{v}$ , that $D(s, f, \varphi)/L_{f}(s-\frac{k_{n}-1}{2}, \pi\otimes\varphi)$ is

an entire function which has no zeros for $\Re(s)\geq k_{0}/2$ . We can give another proof of (1.9)
and (1.10) using this fact and the functional equation of $L(s, \pi\otimes\varphi)$ .

\S 2. Preliminary reduction of Conjecture $P$

Our main theorem states that $2^{n+1}$ quantities $U(\chi, \epsilon)$ and $Q(\chi, \delta)$ can be given by
$2n$ quantities $c_{\tau}^{\pm}(\chi)$ , which implies some highly non-trivial relations among $U(\chi, \epsilon)$ and
$Q(\chi, \delta)$ . We shall analyze these relations by the next Lemma.

Lemma 1. Let $J=\{1,2, \cdots, n\}$ and let $\Lambda_{n}$ be the set of all mappings from $J$ to $\{\pm 1\}$ .
Assume that for $ei^{r}ery\epsilon\in\Lambda_{n}$ and $e$ irery subset I of $J$ , there are given quantities $p(\epsilon)\in$

$C^{\cross}/\overline{Q}^{x}$ and $q(I)\in C^{\cross}/\overline{Q}^{X}w\Lambda ich$ satisfy the folloiving properties:

(Rl) $p(\epsilon)p(-\epsilon)=q(J)$ $w^{r}here$ $(-\epsilon)(i)=-\epsilon(i)$ , $i\in J$.

(R2) . $q(I_{1}\cup I_{2})=q(I_{1})q(I_{2})$ if $I_{1}\cap I_{2}=\emptyset$ .

(R3) $p(\epsilon_{1})p(\epsilon_{2})=p(\mu_{1})p(\mu 2)$ if $\{\epsilon_{1}(i), \epsilon_{2}(i)\}=\{\mu_{1}(i), \mu_{2}(i)\}$ for every $1\leq i\leq n$ .
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Then there exist $2n$ constants $c_{i}^{\pm}\in C^{\cross}/\overline{Q}^{\cross},$ $1\leq i\leq n$ such that

(2.1) $p( \epsilon)=\prod_{i=1}^{n}c_{i}^{\epsilon(i)}$ , $\epsilon\in\Lambda_{n}$ ,

(2.2)
$q(I)= \prod_{i\in I}c_{i}^{+}c_{i}^{-}$

, if $I\subseteq J$.

Moreover $c_{i}^{\pm}\in C^{\cross}/\overline{Q}^{x},$ $1\leq i\leq n$ are unique. In (2.1) and (2.2), we understand that
$c_{i}^{1}=c_{i}^{+},$ $c_{i}^{-1}=c_{i}^{-},$ $\prod_{i\in\emptyset}c_{i}^{+}c_{i}^{-}=1$ .

Proof. By (R2), we have $q(\emptyset)=1$ . Hence (2.2) for $I=\emptyset$ holds. If $n=1$ , the assertion
holds with

$c_{1}^{+}=p(\epsilon)$ , $c_{1}^{-}=p(-\epsilon)$ for $\epsilon:1arrow l$ .

Now we assume $n\geq 2$ and that the assertion holds up to $n-1$ . Let $J’=\{1,2,$ $\cdots$ , $n-$
$1\}=J\backslash \{n\}$ and let $\Lambda_{n-1}$ be the set of all mappings from $J’$ to $\{\pm 1\}$ . Define $\omega\pm,$ $\omega_{\pm}’\in\Lambda_{n}$

by

$\omega+:\{1,2, \cdots, n-1, n\}arrow\{1,1, \cdots, 1,1\}$ ,
$\omega_{+}’$ : $\{1, 2, \cdots, n-1, n\}arrow\{-1, -1, \cdots, -1,1\}$ ,
$\omega_{-}:\{1,2, \cdots, n-1, n\}arrow\{1,1, \cdots, 1, -1\}$ ,
$\omega_{-}’$ : $\{1, 2, \cdots , n-1, n\}arrow\{-1, -1, \cdots, -1, -1\}$ .

By (Rl), we have

(2.3) $p(\omega_{+})p(\omega_{-}’)=p(\omega_{+}’)p(\omega_{-})=q(J)$ .

For a given $\epsilon\in\Lambda_{n-1}$ , choose an extension $\epsilon^{*}\in\Lambda_{n}$ so that $\epsilon^{*}(i)=\epsilon(i),$ $1\leq i\leq n-1$ and
set

(2.4) $p’(\epsilon)=p(\epsilon^{*})/\sqrt{p(\omega_{\epsilon^{*}(n)})p(\omega_{\epsilon^{*}(n)}’)/q(J’)}\in C^{\cross}/\overline{Q}^{\cross}$

By (R3), we see that $p’(\epsilon)$ does not depend on the choice of $\epsilon^{*}$ . For $I’\subseteq J’$ , we set

(2.5) $q’(I’)=q(I’)$ .

Then we can verify that the quantities $p’(\epsilon),$ $\epsilon\in\Lambda_{n-1}$ and $q’(I’)$ satisfy

$(R’1)$ $p’(\epsilon)p’(-\epsilon)=q’(J’)$ ,

$(R’2)$ $q^{l}(I_{1}’\cup I_{2}’)=q’(I_{1}’)q’(I_{2}’)$ if $I_{1}’\cap I_{2}’=\emptyset$ ,
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$(R’3)$
$p’(\epsilon_{1})p’(\epsilon_{2})=p’(\mu_{1})p’(\mu_{2})$ if
for every $1\leq i\leq n-1$ .

$\{\epsilon_{1}(i), \epsilon_{2}(i)\}=\{\mu_{1}(i), \mu_{2}(i)\}$

Relation $(R’2)$ is trivial. To see $(R’1)$ , we may choose an extension $\epsilon^{*}$ of $\epsilon$ so that $\epsilon^{*}(n)=1$

and may apply (2.4). Then we have

$=q(J)q(J’)/\sqrt{p(\omega_{+})p(\omega_{+}’)p(\omega_{-})p(\omega_{-}’)}=q(J’)$

by (2.3) and (Rl). Similarly $(R’3)$ follows from (R3).
By the hypothesis of induction, there exist $2(n-1)$ quantities $c_{i}^{\pm}\in C^{\cross}/\overline{Q}^{\cross},$ $1\leq i\leq n-1$

such that

(2.6) $p’( \epsilon)=\prod_{i=1}^{n-1}c_{i}^{\epsilon(i)}$ , $\epsilon\in\Lambda_{n-1}$ ,

(2.7) $q(I’)=q’(I’)= \prod_{i\in I’}c_{i}^{+}c_{i}^{-}$
, $I’\subseteq J’$ .

Set

(2.8) $c_{n}^{+}=\sqrt{p(\omega_{+})p(\omega_{+}’)/q(J’)}$ , $c_{n}^{-}=\sqrt{p(\omega_{-})p(\omega_{-}’)/q(J’)}$.

To see the. relation (2.1), put $\epsilon=\epsilon^{*}|J$ for $\epsilon^{*}\in\Lambda_{n}$ . By (2.4), (2.6) and (2.8), we have

$p( \epsilon^{*})=p’(\epsilon)\sqrt{p(\omega_{\epsilon^{*}(n)})p(\omega_{\epsilon^{*}(n)}’)/q(J’)}=(\prod_{i=1}^{n-1}c_{i}^{\epsilon(i)})c_{n}^{\epsilon^{*}(n)}=\prod_{i=1}^{n}c_{i}^{\epsilon^{*}(i)}$.

Hence (2.1) is satisfied.
To see (2.2), we may assume $I\ni n$ . Put $I’=I\backslash \{n\}$ . By (2.8), (2.3) and (R2), we get

$c_{n}^{+}c_{n}^{-}=q(J)/q(J’)=q(\{n\})$ .

Then we obtain
$q(I)=q(I’)q( \{n\})=(\prod_{i\in I’}c_{i}^{+}c_{i}^{-})c_{n}^{+}c_{n}^{-}=\prod_{i\in I}c_{i}^{+}c_{i}^{-}$

by (R2).
The uniqueness of $c_{i}^{\pm}$ is clear since we can express $c_{i}^{\pm}$ by a formula similar to (2.8) if

(2.1) and (2.2) hold. This completes the proof.

Identify $J_{F}$ with $\{$ 1,2, $\cdots,$ $n\}$ and $Z/2Z$ with $\{1, -1\}$ . By the above Lemma, we see
that our Main Theorem is reduced to (Rl) $\sim(R3)$ given in the introduction. We note that
(Rl) follows from Theorem $S$ , (II) in view of the definition of $Q(\chi, J_{F})$ .
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In the rest of this section, we shall prove (P4). Let $K$ be a CM-extension of $F$ . For
$\alpha,$ $\beta\in I_{K}$ , let $pK(\alpha, \beta)\in C^{\cross}/\overline{Q}^{\cross}$ denote the CM-period defined in [S2]. Let $\Phi$ be a
CM-type of $K$ and set $\xi=\sum_{\tau\in\Phi}\xi_{\tau}\cdot\tau\in I_{K},$ $\xi_{\tau}\geq 0$ for all $\tau$ . Let $\Xi$ be a primitive Hecke
character of the ideal group of $K$ with conductor $c$ such that

$\Xi((a))=a^{\xi}/|a^{\xi}|$ if $a\in K$, $a\equiv 1$ $mod^{\cross}c$ ,

where $a^{\xi}= \prod_{\tau\in\Phi}(a^{\tau})^{\xi_{\tau}}$ . Assume $\xi_{\tau}>0$ for some $\tau$ . Then there exists a primitive system
of eigenvalues of Hecke operators $\chi$ occuring in $S_{k,0}(M_{2}(F))$ such that

(2.9) $L(s, \chi)=L(s-1/2, \Xi)$ ,

where $k(\tau|F)=\xi_{\tau}+1,$ $\tau\in\Phi$ (cf. [S4], \S 5). If $\xi_{\tau}mod 2$ is independent of $\tau$ and $\xi_{\tau}>0$

for all $\tau$ , then we have

(2.10) $U(\chi, \epsilon)\sim\pi^{(\Sigma_{\tau\in J_{F}}k(\tau)-nk_{0})/2}pK(\xi, \Phi)$ for every $\epsilon\in(Z/2Z)^{J_{F}}$

by [S4], Theorem 5.11, (iii). On the otherhand, we have

(2.11) $Q(\chi, \delta)\sim\pi^{-|\delta|_{pK}}(\xi, 2\eta)$

by [S4], Theorem 5.8, where $\eta$ is the subset of $\Phi$ such that ${\rm Res}_{K/F}(\eta)=\delta$ . Now for such
a $\chi$ , (R2) follows from the bilinearity of $pK$ (cf. [S2], Theorem 1.1) and (R3) is trivially
satisfied. We see that the solution to (1) and (2) in the introduction is given by

(2.12) $c_{\tau}^{+}(\chi)=c_{T}^{-}(\chi)=\pi^{(k(\tau)-k_{0})/2}pK(\xi,\tilde{\tau})$ , $\tau\in J_{F}$

from the bilinearity of $pK$ , where $\tilde{\tau}\in\Phi$ denotes the element such that $\tilde{\tau}|F=\tau$ . By (3) in
the introduction, we have

(2.13) $P(\chi, \delta, \epsilon)\sim\pi^{-|\delta|}pK(\xi, \eta)$ for every $\epsilon\in(Z/2Z)^{\delta}$ ,

which is consistent with (C9) of [S5].

\S 3. Verification of (R2)

We shall use the following result of Harris (cf. [Ha3], \S 2.6).
Theorem HA. Let $\chi$ be a primitive system of eigenvalues of Hecke operators whicI]

occurs in $S_{k,0}(M_{2}(F))$ . Assume $k(\tau)\geq 2$ for all $\tau\in J_{F}$ and $k(\tau)mod 2$ is independent
of $\tau$ . Let $\alpha$ and $\beta$ be $su$ bsets of $J_{F}$ such tbat $\alpha\cap\beta=\emptyset$ . If $n,$ $|\alpha|$ and $|\beta|$ are all even, then

$Q(\chi, \alpha\cup\beta)\sim Q(\chi, \alpha)Q(\chi,\beta)$ .

By a base change argument, we can remove the parity condition in Theorem HA when
$k(\tau)\geq 3$ for all $\tau\in\alpha\cup\beta$ .
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Theorem 2. Let $\alpha$ and $\beta$ be subsets of $J_{F}$ such tbat $\alpha\cap\beta=\emptyset$ . Assume tbat $k(\tau)\geq 2$

for ffi $\tau\in J_{F},$ $k(\tau)\geq 3$ for all $\tau\in\alpha\cup\beta$ and that $k(\tau)mod 2$ is independent of $\tau$ . Then
we have

$Q(\chi, \alpha\cup\beta)\sim Q(\chi, \alpha)Q(\chi,\beta)$ .

Proof. Let $F_{1}$ be a totally real quadratic extension of $F$ . Let $\tilde{\alpha}$ and $\tilde{\beta}$ be the full inverse
images of $\alpha$ and $\beta$ under the restriction map $J_{F_{1}}arrow J_{F}$ respectively. Let $\tilde{\chi}$ be a base
change lift of $\chi$ which occurs in $S_{\overline{k},0}(M_{2}(F_{1}))$ , where $\tilde{k}(\tau)=k(\tau|J_{F}),$ $\tau\in J_{F_{1}}$ . We can
apply Theorem HA to $\tilde{\chi},\tilde{\alpha},\tilde{\beta}$ and obtain

$Q(\tilde{\chi},\tilde{\alpha}\cup\tilde{\beta})\sim Q(\tilde{\chi},\tilde{\alpha})Q(\tilde{\chi},\tilde{\beta})$ .
By (1.7), we have

$Q(\chi, \alpha\cup\beta)^{2}\sim Q(\chi, \alpha)^{2}Q(\chi,\beta)^{2}$ .
Hence the assertion follows.

By Theorem 2, the condition (R2) is verified.

\S 4. Verification of (R3)

To present our arguments in a clear-cut way, let us first recall a few facts on represen-
tation theory of $GL(2,$ $L)$ for an archimedean field $L$ . Let $?t_{L}$ denote the Hecke algebra of
$GL(2, L)$ defined in Jacquet-Langlands [JL], p. 153, p. 220.

First let $L=R$. For a positive integer $p$ , let
$\mu_{1}(t)=|t|^{p/2}$ , $\mu_{2}(t)=|t|^{-p/2}$ sgn $(t)^{\epsilon(p)}$ , $t\in R^{\cross}$

where $\epsilon(p)=0$ or 1 according as $p$ is odd or even. Consider the representation $\sigma_{p}=$

$\sigma(\mu_{1}, \mu_{2})$ described in [JL], Theorem 5.11. Then $\sigma_{p}$ is a unitary discrete series represen-
tation of $H_{R}$ . If an irreducible automorphic representation $\pi=\otimes_{v}\pi_{v}$ of $GL(2, F_{A})$ is
generated by $f\in S_{k_{2}0}(M_{2}(F))$ , then we have

$\pi_{\infty}=\otimes_{\tau\in Jp}\sigma_{k(\tau)-1}$

if $k(\tau)\geq 2$ for all $\tau\in J_{F}$ . Let $\omega_{p}$ be the character of $C^{\cross}$ given by
$\omega_{p}(z)=z^{p}(z\overline{z})^{-p/2}$ , $z\in C^{\cross}$ .

Then we have
(4.1) $\sigma_{p}=\pi(\omega_{p})$

in the notation of [JL], p. 176-181. We also have

(4.2) $L(s, \sigma_{p})=L(s,\omega_{p})=2(2\pi)^{-(s+p/2)}\Gamma(s+\frac{p}{2})$ .

Let $L=C$. For two quasi-characters $\mu_{1},$ $\mu 2$ of $C^{\cross}$ , let $\pi(\mu 1, \mu 2)$ be the representation
of $?t_{C}$ described in [JL], Theorem 6.2.

Now let $W_{C}=C^{\cross},$ $W_{R}=W_{R_{2}C}$ be the Weil groups. We may write (4.1) as $\sigma_{p}=$

$\pi(Ind_{W_{C}}^{W_{R}}\omega_{p})$ in terms of the Langlands parametrization. Hence the base change lift of $\sigma_{p}$

to $?i_{C}$ is given by $\pi((Ind_{W_{C}}^{W_{R}}\omega_{p})|W_{C})=\pi(\omega_{p},\overline{\omega}_{p})$ by Langlands [L], p.16, e).
We quote Hida [Hi], Theorem 8.1 in a crude form sufficient for our present purpose.
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Theorem HI. Let $K$ be an algebraic number field. Let $\pi=\otimes_{w}\pi_{w}$ be an irreducible
unitary cuspidal au tomorphic representation of $GL(2, K_{A})$ . Assume that

$\pi_{\infty}=\otimes_{\tau\in a_{r}}\sigma_{k(\tau)-1}\otimes_{\tau\in\alpha_{c}}\pi(\omega_{k(\tau)-1},\overline{\omega}_{k(\tau)-1})$

with $k(\tau)\geq 2$ for all $\tau\in a$ and $k(\tau)mod 2$ is iridependent of $\tau$ . Put $k_{0}= \max_{\tau\in a}k(\tau)$ .
Tben for every $\epsilon\in(Z/2Z)^{a_{r}}$ , tbere exists a constant $U(\pi, \epsilon)\in C^{x}$ which satisfies the
following properties. If $\varphi$ is a Heclre character of $K_{A}^{\cross}$ of finite order sucb that

$\varphi_{\infty}(x)=\prod_{\tau\in a_{r}}sgn(x_{\tau})^{\epsilon(\tau)+m}$
, $x=(x_{\tau})_{\tau\in \mathfrak{a}}\in K_{\infty}^{\cross}$,

tben
$L_{f}(m- \frac{k_{0}-1}{2}, \pi)\sim\pi^{m[K:Q]}U(\pi, \epsilon)$

for every integer $m$ sucb that

$\frac{k_{0}-k(\tau)}{2}<m<\frac{k_{0}+k(\tau)}{2}$ for every $\tau\in a$ .

We are going to verify (R3) using this theorem. It suffices to show

Theorem 3. Let $f\in S_{k,0}(M_{2}(F))$ be a primitive cusp form. We assume $k(\tau)\geq 3$ for all
$\tau\in J_{F}$ and $k(\tau)mod 2$ is independent of $\tau$ . Then we have

(4.3) $u(\epsilon_{1}, f)u(\epsilon_{2}, f)\sim u(\mu_{1}, f)u(\mu_{1}, f)$

whenever $\epsilon_{1},$ $\epsilon_{2},$ $\mu_{1},$ $\mu_{2}\in(Z/2Z)^{J_{F}}$ satisfy

(4.4) $\{\epsilon_{1}(\tau), \epsilon_{2}(\tau)\}=\{\mu_{1}(\tau), \mu_{2}(\tau)\}$ for all $\tau\in J_{F}$ .

Proof. We choose an integer $m$ which satisfies the condition of Theorem $S,$ $(I)$ . Since we
have assumed $k^{0}\geq 3$ , we can choose such an $m$ so that $m\geq(k_{0}+1)/2$ . We fix and denote
it by $m_{0}$ . Then we have $D(m_{0}, f, \varphi)\neq 0$ for every Hecke character $\varphi$ of $F_{A}^{x}$ of finite order
(cf. [Sl], Prop. 4.16). Let $\varphi_{1},$ $\varphi_{2},$

$\psi_{1},$ $\psi_{2}$ be Hecke characters of $F_{A}^{\cross}$ of finite order such
that

$( \varphi i)_{\infty}(x)=\prod_{\tau\in J_{F}}(sgn(x_{\mathcal{T}}))^{\epsilon(\tau)+m_{0}}:$
, $i=1,2$ ,

(4.5)
$( \psi_{i})_{\infty}(x)=\prod_{\tau\in J_{F}}(sgn(x_{\tau}))^{\mu:(\tau)+m_{0}}$

, $i=1,2$ ,

for $x=(x_{T})\in F_{\infty}^{\cross}$ . By Theorem $S,$ $(I),$ $(4.3)$ reduces to

(4.6) $D(m_{0}, f, \varphi_{1})D(m_{0}, f, \varphi_{2})\sim D(m_{0}, f, \psi_{1})D(m_{0}, f, \psi_{2})$ .
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By (4.4), we have $(\varphi_{1}\varphi_{2})_{\infty}=(\psi_{1}\psi_{2})_{\infty}$ . If $(\varphi_{1}\varphi_{2})_{\infty}$ is trivial, then we have $\epsilon_{1}=\epsilon_{2}=$

$\mu_{1}=\mu_{2}$ by (4.4); hence (4.3) holds. We may assume that $(\varphi_{1}\varphi_{2})_{\infty}$ is non-trivial. Choose
$a\in F$ so that $\tau(a)>0$ $($ resp. $\tau(a)<0)$ if $(\varphi_{1}\varphi_{2})_{\infty_{\tau}}$ is trivial (resp. non-trivial). Set
$K=F(\sqrt{a})$ . Then $K$ is a quadratic extension of $F$ . Let $\eta K$ be the Hecke character of $F_{A}^{x}$

which corresponds to the extension $K/F$ . By the choice of $a$ , we have $(\eta K)_{\infty}=(\varphi_{1}\varphi_{2})_{\infty}$ .
Let $\pi=\otimes_{v}\pi_{v}$ be the irreducible automorphic representation of $GL(2, F_{A})$ generated by

$f$ and $\tilde{\pi}=\otimes_{w}\tilde{\pi}_{w}$ be the base change lift of $\pi$ to $GL(2, K_{A})$ . Then we have

$L(s,\tilde{\pi})=L(s, \pi)L(s, \pi\otimes\eta K)$ , $L_{f}(s,\tilde{\pi})=L_{f}(s, \pi)L_{f}(s, \pi\otimes\eta K)$ ,

(4.7) $\pi_{\infty}=\otimes_{\tau\in J_{F}}\sigma_{k(\tau)-1}$ ,
$\tilde{\pi}_{\infty}=(\otimes_{\tau\in a_{r}}\sigma_{k(\tau|F)-1})\otimes(\otimes_{\tau\in a_{c}}\pi(\omega_{k(\tau|F)-1},\overline{\omega}_{k(\tau|F)-1}))$.

Since the base change lift of $\pi\otimes\varphi_{1}$ to $K$ is $\overline{\pi}\otimes(\varphi_{1}oN_{K/F})$ , we have

$L_{f}(s,\tilde{\pi}\otimes(\varphi_{1}oN_{K1^{F}}))=L_{f}(s,\pi\otimes\varphi_{1})L_{f}(s, \pi\otimes\varphi_{1}\eta K)$.

We have $D(m_{0}, f, \varphi)\sim L_{f}(m_{0}-\frac{k_{0}-1}{2}, \pi\otimes\varphi)$ for every Hecke character $\varphi$ of $F_{A}^{\cross}$ of finite
order. Since $(\varphi_{1}\eta K)_{\infty}=(\varphi_{2})_{\infty}$ , we have $L_{f}(m_{0}- \frac{k_{0}-1}{2}, \pi\otimes\varphi_{1}\eta K)\sim L_{f}(m_{0}-\frac{k_{O}-1}{2}, \pi\otimes\varphi_{2})$

by Theorem $S,$ $(I)$ . Therefore (4.6) reduces to

(4.8) $L_{f}(m_{0}- \frac{k_{0}-1}{2},\tilde{\pi}\otimes(\varphi_{1}oN_{K/F}))\sim L_{f}(m_{0}-\frac{k_{0}-1}{2},\tilde{\pi}\otimes(\psi_{1}oN_{K/F}))$ .

Assume $\tau\in J_{F}$ is unramified in $K$ . Then $(\varphi_{1}\varphi_{2})_{\infty_{\tau}}=(\psi_{1}\psi_{2})_{\infty_{\mathcal{T}}}=1$ and we see that
$\{\epsilon_{1}(\tau), \epsilon_{2}(\tau)\}$ and $\{\mu_{1}(\tau), \mu_{2}(\tau)\}$ are either $\{0,0\}$ or {1, 1}. By (4.4), we get $\epsilon_{1}(\tau)=\mu_{1}(\tau)$ ,
$(\varphi_{1})_{\infty_{\mathcal{T}}}=(\psi_{1})_{\infty_{\tau}}$ . Therefore we obtain

$(\varphi_{1}oN_{K/F})_{\infty}=(\psi_{1}oN_{K/F})_{\infty}$ .

By the consideration given in \S 2, we may assume that $\chi$ is not of CM-type. Then $\tilde{\pi}$ is
cuspidal (cf. [L], Lemma 11.3). Now (4.8) follows from Theorem HI. This completes the
proof.

Now we have completed our proof of Main Theorem. An identification of $c_{\tau}^{\pm}(\chi)$ with
Deligne’s periods of the motive attached to $\chi$ is described in [Y], \S 4. We note that there
is a slight notational difference between [S4] and [S5]. In [S5], p. 293, (C3),

$P(\chi, \epsilon, J_{F})\sim\pi^{-n-\Sigma_{\tau\in J_{F}}k(\tau)/2}V(\chi, \epsilon)\sim\pi^{(k_{0}-2)n/2-\Sigma_{\tau\in J_{F}}k(\tau)/2}U(\chi, (-1)^{k_{0}/2}\epsilon)$

is required when $k(\tau)$ is even for all $\tau$ . We adjusted our nctation to [S4], which is simpler.

Remark. We have

(4.9) $c_{\tau}^{\pm}(\overline{\chi})\sim\overline{c_{\tau}^{\pm}(\chi)}$ for every $\tau\in J_{F}$

where –denotes the complex conjugation. To see this, let $\pi$ be the unitary automorphic
representation of $GL(2, F_{A})$ which corresponds to $\chi$ and call $\psi$ the central character of $\pi$ .
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We have $\overline{\pi}\cong\pi\otimes\psi^{-1}$ . By definition, it is obvious that $Q(\chi, \delta)\sim\overline{Q(\chi,\delta)}$ for every $\delta\subset J_{F}$ .
Since $\overline{\chi}=\chi\otimes\psi^{-1}$ , we have (cf. [Y], Prop. 6.5)

(4.10) $Q(\overline{\chi}, \delta)\sim\overline{Q(\chi,\delta)}$ .

As in Theorem $S$ , choose a critical value $m$ and a Hecke character $\varphi$ of $F_{A}^{x}$ of finite order
for $\epsilon\in(Z/2Z)^{J_{F}}$ so that $L_{f}(m- \frac{k_{O}-1}{2}, \pi\otimes\varphi)\neq 0$. By Theorem $S$ , we have

$\overline{\pi^{mn}U(\chi,\epsilon)}\sim L_{f}(m-\frac{k_{0}-1}{2}, \pi\otimes\varphi)=L_{f}(m-\frac{k_{0}-1}{2},\overline{\pi}\otimes\varphi^{-1})\sim\pi^{mn}U(\overline{\chi}, \epsilon)$ .

Hence we get

(4.11) $U(\overline{\chi}, \epsilon)\sim\overline{U(\chi,\epsilon)}$.

By (4.10), (4.11) and Lemma 2.1, we obtain (4.9) (cf. [S5], p. 293, (C2)).

\S 5. The invariance of $c_{\tau}^{\pm}(\chi)$ under a base change

Theorem 4. Let $F_{1}$ be a totally real cyclic extension of F. Let $\chi$ be a primitive system
of eigenvalues of Hecke operators ivhicln occurs in $S_{k,0}(M_{2}(F))$ . We assume tbat $k(\tau)\geq 3$

for all $\tau\in J_{F}$ an$d$ tbat $k(\tau)mod 2$ is independent of $\tau$ . Let $\tilde{\chi}$ be the base change lift of $\chi$

sucb that $\tilde{\chi}$ occurs in $S_{\tilde{k},0}(M_{2}(F_{1}))$ and that $\tilde{\chi}$ is primitive, wbere $\tilde{k}(\tau)=k(\tau|F),$ $\tau\in J_{F_{1}}$ .
Then we have

(5.1) $c_{\tau}^{\pm}(\tilde{\chi})=c_{\tau|F}^{\pm}(\chi)$ for every $\tau\in J_{F_{1}}$ .

Proof. Let $\tilde{f}\in W(\tilde{\chi}, M_{2}(F_{1}), \overline{Q})$ and $f\in W(\chi, M_{2}(F), \overline{Q})$ be primitive forms. Let $\tilde{\pi}$

(resp. $\pi$ ) be the irreducible automorphic representation of $GL(2, (F_{1})_{A})$ $($ resp. $GL(2,$ $F_{A}))$

generated by $\tilde{f}$ (resp. f). Then we have

(5.2) $L_{f}(s,\tilde{\pi}\otimes\varphi^{\sigma})=L_{f}(s,\tilde{\pi} C8)$ $\varphi)$

for every $\sigma\in$ Gal $(F_{1}/F)$ and every Hecke character $\varphi$ of $(F_{1})_{A}^{\cross}$ . Here $\varphi^{\sigma}(x)=\varphi(x^{\sigma})$ ,
$x\in(F_{1})_{A}^{x}$ . Take $m\in Z$ so that $(k_{0}-k^{0})/2<m<(k_{0}+k^{0})/2$ . By a theorem of Rohrlich
[R], for every $\tilde{\epsilon}\in(Z/2Z)^{J_{F_{1}}}$ , we can find a Hecke character $\varphi$ of $(F_{1})_{A}^{\cross}$ such that

$L_{f}(m- \frac{k_{0}-1}{2},\tilde{\pi} C8)$
$\varphi)\neq 0$ ,

$\varphi_{\infty}(x)=\prod_{\tau\in J_{F_{1}}}$
sgn $(x_{\tau})^{m+\tilde{\epsilon}(\tau)}$ , $x=(x_{\tau})\in(F_{1})_{\infty}^{x}$ .

Applying Theorem $S,$ $(I)$ to (5.2) taking $s=m- \frac{k_{0}-1}{2}$ , we obtain

(5.3) $u(\tilde{\epsilon}^{\sigma},\tilde{f})\sim u(\tilde{\epsilon},\tilde{f})$ for every $\sigma\in$ Gal $(F_{1}/F)$ ,
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where $\tilde{\epsilon}^{\sigma}(y)=\tilde{\epsilon}(\sigma y),$ $y\in J_{F_{1}}$ . In a similar way, using Theorem 6.8 of [Y], we can derive
the relation

(5.4) $Q(\tilde{\chi}, \sigma\tilde{\delta})\sim Q(\tilde{\chi},\tilde{\delta})$ for every $\emptyset\neq\tilde{\delta}\subseteq J_{F_{1}}$ .

By (5.3) and (5.4), we get

(5.5) $c_{\sigma\tau}^{\pm}(\tilde{\chi})\sim c_{\tau}^{\pm}(\overline{\chi})$ for every $\sigma\in$ Gal$(F_{1}/F)$ , $\tau\in J_{F_{1}}$

in view of the uniqueness of the solution to (1) and (2) in the introduction. Taking
$\delta=\{\tau|F\},$ $\tau\in J_{F_{1}}$ in (1.7) and applying (5.5), we get

(5.6) $c_{\tau}^{+}(\tilde{\chi})c_{\overline{\tau}}(\tilde{\chi})\sim c_{\tau|F}^{+}(\chi)c_{\tau|F}^{-}(\chi)$ , $\tau\in J_{F_{1}}$ .

On the other hand, we have

$L_{f}(s, \tilde{\pi}\otimes(\varphi oN_{F_{1}/F}))=\prod_{\eta}L_{f}(s, \pi\otimes\varphi\eta)$

for every Hecke character $\varphi$ of $F_{A}^{\cross}$ . Here $\eta$ extends over $l$ Hecke characters of $F_{A}^{\cross}$ which
are trivial on $F^{x}N_{F_{1}/F}((F_{1})_{A}^{\cross}),$ $l$ being the degree of $F_{1}$ over $F$ . Since $k(\tau)\geq 3$ for all $\tau$ ,
we can apply Theorem $S,$ $(I)$ to this relation in a similar manner to the above and obtain

(5.7) $u(\tilde{\epsilon},\tilde{f})\sim u(\epsilon, f)^{\iota}$ for every $\epsilon\in(Z/2Z)^{J_{F}}$ ,

where $\tilde{\epsilon}(y)=\epsilon(y|F),$ $y\in J_{F_{1}}$ . By (5.7) and (5.5), we get

(5.8)
$\prod_{\tau\in J_{F}}c_{\tilde{\tau}}^{\epsilon(\tau)}(\tilde{\chi})\sim\prod_{\tau\in J_{F}}c_{\tau}^{\epsilon(\tau)}(\chi)$

, for every $\epsilon\in(Z/2Z)^{J_{F}}$ ,

where $\tilde{\tau}$ denotes an arbitrary extension of $\tau$ to $J_{F_{1}}$ .
Take any $\tau_{0}\in J_{F}$ and its extension $\tilde{\tau}_{0}$ to $J_{F_{1}}$ . Take any $\epsilon\in(Z/2Z)^{J_{F}}$ and define

$\epsilon’\in(Z/2Z)^{J_{F}}$ by
$\epsilon’(\tau)=-\epsilon(\tau)$ if $\tau\neq\tau_{0}$ , $\epsilon’(\tau_{0})=\epsilon(\tau_{0})$ .

We have
$\prod_{\tau\in J_{F}}c_{\tilde{\tau}}^{\epsilon(\tau)}(\tilde{\chi})c_{\tilde{\tau}}^{\epsilon’(\tau)}(\tilde{\chi})\sim(\prod_{\tau\in J_{F}\backslash \{\tau_{0}\}}c_{\tau}^{+}(\chi)c_{\tau}^{-}(\chi))c_{\tilde{\tau}_{0}}^{\epsilon(\tau_{O})}(\tilde{\chi})^{2}$

by (5.6) and

$\prod_{\mathcal{T}\in J_{F}}\frac{\epsilon}{2}\tau\in J_{F\backslash \{\}}$

by (5.8). Hence we get
$c_{\tilde{\tau}_{0}}^{\epsilon(\tau_{O})}(\tilde{\chi})^{2}\sim c_{\tau_{0}}^{\epsilon(\tau_{0})}(\chi)^{2}$ .

This completes the proof.
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Remark. In this remark, we use left action of the automorphism group. For $\sigma\in$ Aut(C),
let $\sigma(B)$ be the quaternion algebra over $\sigma(F)$ obtained from $B$ by transporting the algebra
structure by the isomorphism $\sigma$ : $Farrow\sigma(F)$ . If $B= \sum_{i=1}^{4}Fe_{i}$ with $e_{i}e_{j}= \sum_{k=1}^{4}c_{ijk}e_{k}$ ,
then $\sigma(B)=\sum_{i=1}^{4}\sigma(F)e_{i}’$ with $e_{i}’e_{j}’= \sum_{k=1}^{4}\sigma(c_{ijk})e_{k}’$. We have the isomorphism of Q-
algebras $\sigma$ : $B \ni\sum a_{i}e_{i}arrow\sum\sigma(a_{i})e_{i}’\in\sigma(B)$ . If $B$ is of signature $(\delta, \delta’)$ , then $\sigma(B)$

is of signature $(\delta\sigma^{-1}, \delta’\sigma^{-1})$ . This isomorphism extends to the isomorphism (we use the
same letter) from $G={\rm Res}_{F/Q}(B^{x})$ to $\sigma(G)={\rm Res}_{\sigma(F)/Q}(\sigma(B)^{x})$ and also from $G_{A}$ to
$\sigma(G)_{A}$ . For $f\in S_{k,\kappa}(B)$ , put $\sigma(f)(\sigma x)=f(x),$ $x\in G_{A}$ . Then $\sigma(f)\in S_{k’,\kappa’}(\sigma(B))$ , where
$k’(\tau)=k(\tau\sigma),$ $\kappa’(\tau)=\kappa(\tau\sigma),$ $\tau\in J_{\sigma(F)}$ .

If $f\in W(\chi, B)$ , then we see that $\sigma(f)\in W(\sigma(\chi), \sigma(B))$ , where $\sigma(\chi)(\sigma(\mathfrak{m}))=\chi(\mathfrak{m})$ for
an integral ideal $\mathfrak{m}$ of $F$ . We can check easily that $\langle f,$ $f\}=\langle\sigma(f),$ $\sigma(f)\rangle$ . We can verify that
if $f$ is Q-rational, then $\sigma(f)$ is Q-rational. Therefore, both (5.3) and (5.4) hold under the
condition $k_{0}\geq 2$ .

\S 6. Comments on the case where $k(\tau)=2$ for some $\tau$

We expect that our Main Theorem remains true under the weaker condition that
$k(\tau)\geq 2$ for all $\tau\in J_{F}$ and that $k(\tau)mod 2$ is independent of $\tau$ . Let us first state
necessary ingredients to prove Main Theorem in this generality by our method in this
paper. Let $\pi$ be the irreducible unitary cuspidal automorphic representation of $GL(2, F_{A})$

which corresponds to $\chi$ .
To prove Theorem 2 in this case by base change argument, it suffices to generalize (1.7)

for any totally real quadratic extension $F_{1}$ of $F$ . For this purpose, the following Hypothesis
is sufficient, as remarked in \S 6.4 of [Y].

Hypothesis 1. There exis $t$ a CM-extension $K$ of $F$ and a unitary Hecke charac$ter\psi$ of
$K_{A}^{x}$ which satisfy the following conditions.

(1) $\psi_{v}(x)=(x/|x|)^{l_{v}-1}$ , $x\in K_{v}^{x}\cong C^{\cross}$ for $v\in a^{K}$ ,

where $l_{v}$ is a positive integer such that $l_{\tau}<k_{\tau}$ if $\tau\in\delta,$ $l_{\tau}>k_{\tau}$ if $\tau\in J_{F}\backslash \delta$ and $t\Lambda at$

$k_{\tau}-l_{\tau}mod 2$ is independ$ent$ of $\tau$ . Here we put $l_{\tau}=l_{v}$ taking $v\in a^{K}$ such that $v|F=\tau$ .
(2) Let $\pi’$ be the irreducible unitary automorphic representation of $GL(2, F_{A})$ which cor-
responds to $\psi$ . Then

$L( \frac{1}{2}, \pi\cross\pi’)L(\frac{1}{2}, \pi\cross\pi’\otimes\eta F_{1})\neq 0$ .

Here $L(s, \pi\cross\pi’)$ denotes the L-function obtained by the convolution of $\pi$ and $\pi’;\eta F_{1}$ is
the Hecke character of $F_{A}^{\cross}$ which corresponds to the extension $F_{1}/F$ .

Similarly Theorem 3 can be proved in this generality if the following Hypothesis is valid.
Assume $k(\tau)=2$ for some $\tau\in J_{F}$ .

Hypothesis 2. We use th$e$ same notation as in the proof of Theorem 3. There exist a
quadratic extension $K$ of $F$ and a Hecke characters $\varphi_{1},$

$\psi_{1}$ of $F_{A}^{x}W^{rhich}$ satisfy the following
conditions.

(1) $(\varphi_{1})_{\infty}$ and $(\psi_{1})_{\infty}$ are given by (4.5) with $m_{0}=k_{0}/2$ .
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(2) $K$ is ramified at $\tau\in J_{F}$ if and only if $\{\epsilon_{1}(\tau), \epsilon_{2}(\tau)\}=\{0,1\}$ .

(3) $L( \frac{1}{2}, \pi\otimes\varphi_{1})L(\frac{1}{2}, \pi\otimes\varphi_{1}\eta K)\neq 0$ , $L( \frac{1}{2}, \pi\otimes\psi_{1})L(\frac{1}{2}, \pi\otimes\psi_{1\eta K})\neq 0$ ,

$ivI;Jere\eta K$ is th $e$ Hecke cbaracter of $F_{A}^{\cross}$ whicb corresponds to the extension $K/F$ .

If these two Hypotheses are valid, Main Theorem holds under the weaker condition
stated above. These hypotheses, in which we require simultaneous non-vanishing, are
somewhat beyond our present knowledge. We only mention Harris [Ha4], Rohrlich [R] and
Waldspurger [W] as papers treating related subjects.

When $k(\tau)=2$ for all $\tau$ , Shimura proposed a construction of an abelian variety from
critical values of $D(s, \chi, \varphi)$ in [S5], \S 11. If it were shown that that these abelian varieties
have models over $\overline{Q}$, as is well known when $F=Q$ , this construction would imply a
still deeper assertion on the nature of critical values. If we could prove Main Theorem
also in this case, Shimura’s periods in [S5], \S 11 essentially coincide with $c_{\tau}^{\pm}(\chi)$ , since
$P(\chi, \{\tau\}, \epsilon)\sim\pi^{-1}c_{\tau}^{\epsilon(\tau)}(\chi)$.
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