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Abstract–In this paper, the relations between theories of the
quantum mechanics and the stochastic control are briefly surveyed
based on the recent works of the author (Ohsumi, $1989a,$ $1989b$ ,
1992). Concretely, two types of (nonlinear) Schr\"odinger eqations
from the stochsatic control theory by introducing wavefunctions
which connect two solutions of nonlinear filtering equation and
stochastic optimal control problem. Furthermore, an inverse prob-
lem is investigated to derive the optimal control problem from a
given Schr\"odinger equation.

1. Introduction

Consider the nonlinear filtering problem for which the signal and the observation
processes are described by (scalar) stochastic differential equations:

$dx(t)=f(x(t))dt+G(x(t))dw(t)$ , $x(0)=x_{0}$ (1)

$dy(t)=h(x(t))dt+dv(t)$ , $y(0)=0$ , (2)

where $f(\cdot),$ $G(\cdot),$ $h(\cdot)$ are nonlinear functions; and $w(t),$ $v(t)$ are mutually independent
standard Wiener processes. The filtering problem is to obtain the conditional proba-
bility density of $x(t)$ based on the observation $\sigma$-algebra $Y_{t};=\sigma\{y(s), 0\leq s\leq t\}$ .
The conditional probability density function is the normalization of $q(t, x)$ satisfying the
Duncan-Mortensen-Zakai equation (Davis and Marcus, 1981)

$dq(t, x)=(L_{0}+c(x))q(t, x)dt+h(x)q(t, x)dy(t)$ , $q(0, x)=p_{0}(x)$ (3)

where $(L_{0}+c(x))$ $:=a(x)\partial^{2}/\partial x^{2}+b(x)\partial/\partial x+c(x)$ is the formal adjoint of the differential
generator of the signal process $x(t)$ , and $p_{0}(x)$ is the initial condition..

Let

$p(t, x)=\exp\{-h(x)y(t)\}q(t, x)$ . (4)

Then $p(t, x)$ satisfies the following partial differential equation called the pathwise-robust
equation of the nonlinear filtering problem (Davis and Marcus, 1981),

$\frac{\partial p(t,x)}{\partial t}=\tilde{L}_{0}p(t, x)+\tilde{c}(t, x)p(t, x)$ , $p(0, x)=p_{0}(x)$ (5)
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where $\tilde{L}_{0}$ $:=a(x)\partial^{2}/\partial x^{2}+\tilde{b}(t, x)\partial/\partial x$, and $\tilde{b}(t, x)$ and $\tilde{c}(t, x)$ are the functions of $y(t)$ .
On the other hand, consider the optimal control problem minimizing the cost func-

tional

$J(t, x_{0};u)=E_{x0} \{S_{0}[\xi(t)]+\int_{0}^{t}L[\tau, \xi(\tau), u(\tau)]d\tau\}$ (6)

(where $E_{x_{0}}\{\cdot\}$ is the conditional expectation conditioned on $\xi(0)=x_{0}$ ) for either the
process

$d\xi(\tau)=\tilde{b}(\tau, \xi(\tau))d\tau+u(\tau)d\tau+G(\xi(\tau))dw(\tau)$, $0\leq\tau\leq t$ (7)

with the feedback control $u(\tau)=u(\tau, \xi(\tau))$ and the cost rate function $L(\tau, x, u)=$

$(1/4\iota/N(x))u^{2}-\nu_{0}\tilde{c}(\tau, x)$ , or the process

$d\xi(\tau)=u(\tau, \xi(\tau))d\tau+G(\xi(\tau))dw(\tau)$ (8)

with $L(\tau, x, u)=(1/4\nu N(x))[u-\tilde{b}(\tau, x)]^{2}-\nu_{0}\tilde{c}(\tau, x)$ . For both processes the Bellman-
lIaiiiilton-Jacobi $ec1^{t_{C}\urcorner}tion$ which the imnimum cost functional to (6) satisfies is given
by

$\frac{\partial S(t,x)}{\partial t}=\tilde{L}_{0}S(t, x)-\nu_{0}\tilde{c}(t, x)-\nu N(x)(\frac{\partial S(t,x)}{\partial x})^{2}$ (9)

If we set $\iota/0=1,$ $u=1/2$ and $N(x)=2a(x)$ in the control problems, then the
two solutions of (5) and (9) are related by the Cole-Hopf logarithmic transformation as
(Fleming and Mitter, 1982)

$S(t, x)=-\ln p(t, x)$ . (10)

For the nonlinear filtering problems, see Bucy and Joseph (1968), Jazwinski (1970),
Lipter and Shiryaev (1977), Kallianpur (1980) $\cdot$ while for the stochastic optimal control,
refer Wonham (1970), Fleming and Rishell (1975).

2. Derivation of Schrodinger Equations

By combining the solutions of (5) and (9), introduce the function by

$\psi(t, x)=p^{1/2}(t, x)\exp\{iS(t, x)\}$ $(i=\sqrt{-1})$ . (11)

Then we have the following theorem.

Theorem 1. Let $p(t, x)$ be the solution to the pathwise-robust nonlinear filtering equa-
tion (5) and $S(t, x)$ be the solution to the Bellman equation (9). Then the complex
function $\psi(t, x)$ defined by (11) satisfies
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$\frac{\partial\psi(t,x)}{\partial t}=[L_{0}+V(t, x;\psi)]\psi(t, x)$ (12)

with the initial condition $\psi(0, x)=p_{0^{1/2}}(x)\exp\{iS_{0}(x)\}$ , and

$V(t\rangle x;\psi)$ $:= \frac{1}{2}(1-2i\nu_{0})\tilde{c}(t, x)$

$+a(x) \{(\frac{\partial}{\partial x}\ln\psi^{*}(t, x))^{2}+2h_{x}(x)y(t)(\frac{\partial}{\partial x}\ln\psi(t, x))\}$

$- \frac{1}{2}\{a(x)-\frac{1}{2}i\nu N(x)\}(\frac{\partial}{\partial x}\ln\frac{\psi^{*}(t,x)}{\psi(t,x)})^{2}$ , (13)

where $\psi^{*}(t, x)$ is the complex conjugate of $\psi(t, x)$ .

If the time $t$ is formally replaced by the imaginary time $t/i\hslash$ (where $\hslash$ is the Planck
constant) in (12), then it is nothing but a Schr\"odinger equation with complex random
nonlinear potential. In quantum physics, such a type of nonlinear Schr\"odinger equation is
called the Schrodinger-Langevin equation and familiar in describing the collective motion
of Cooper pairs causing the superconducting current (Razavy, 1978; Yasue, 1979).

Instead of $p(t, x)$ , by using the unnormalized conditional density $q(t, x)$ in (11), we get
another version of nonlinear Schr\"odinger equation.

Theorem 2. Let

$\psi_{0}(t, x)=q^{1/2}(t, x)\exp\{iS(t, x)\}$ . (14)

Then $\psi_{0}(t, x)$ satisfies the stochastic partial differential equation,

$d \psi_{0}(t, x)=[L_{0}+V_{0}(t, x;\psi_{0})]\psi_{0}(t, x)dt+\frac{1}{2}h(x)\psi_{0}(t, x)dy(t)$ (15)

with the same initial condition as in (12), where $V_{0}(t, x;\psi_{0})$ is the random potential sim-
ilar to (13).

Such a version similar to (15) with nonrandom potential independent of its state is
known as the It\^o-Schrodinger equation which describes wave propagation in random media
(Dawson and Papanikolaou, 1984). For the proofs of Theorems 1 and 2 and the relation
between the two wavefunctions, see Ohsumi $(1989a, 1989b)$ .
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3. Probabilistic Interpretation of Wavefunctions

From the definition of wavefunction $\psi(t, x)$ , we can readily see that the square am-
plitude of the wavefunction yields the conditional probability density for the nonlinear
filtering problem described by (1) and (2), i.e.,

$|\psi|^{2}=\psi(t, x)\psi^{*}(t, x)=p(t, x)$ , (16)

and furthermore that its argument gives the minimum cost functional of the optimal
control problem (6), i.e.,

$\arg[\psi(t, x)]=S(t, x)$ , (17)

where $\arg[z]$ is an argument of $z\in C$ . Furthermore, recalling the relations $|\psi_{0}|^{2}=$

$q(t, x)$ and $q(t, x)=\Lambda(t)\rho(t, x)$ , where $\rho(t, x)$ is the solution to Kushner equation for the
conditional probability density of $x(t)$ given observation data $Y_{t}$ (Kushner, 1967) and $\Lambda(t)$

is the likelihood-ratio function (Radon-Nikodym derivative) given by

$\Lambda(t)$ $:= \exp\{\int_{0}^{t}\hat{h}(s, x_{s})dy(s)-\frac{1}{2}\int_{0}^{t}\hat{h}^{2}(s, x_{s})ds\}$ , (18)

where $\hat{h}(s, x_{s}):=\int_{-\infty}^{\infty}h(x)\rho(s, x)dx$ , we have the relation,

$\int_{-\infty}^{\infty}|\psi_{0}(t, x)|^{2}dx=\Lambda(t)$ . (19)

4. Control-Theoretic View of Schr\"odinger $Eq\iota iations$ : An Inverse
Problem

Our interesting problem will be as follows: Given a Schr\"odinger equation, what control
problems correspond to it? In this section we seek to find a clue to this problem.

To fix the idea, give the Schr\"odinger equation

$ih \frac{\partial\psi(t,x)}{\partial t}=[L+V(t, x)]\psi(t, x)$ , (20)

where $L$ $:=(-h^{2}/2m)\partial^{2}/\partial x^{2},$ $m$ the effective mass of the Cooper pairs in superconducting
media, and $V(t, x)$ the potential function (Yasue, 1979).

Let

$\psi(t, x)=\exp\{-\frac{i}{h}S(t, x)\}$ . (21)

This is just the complex Cole-Hopf transformation, and conversely we have

$S(t, x)=ih\ln\psi(t, x)$ (22a)

$=-ih\ln\psi^{*}(t, x)$ . (22b)

Differentiating (22a) with respect to $t$ , we obtain

4



$\frac{\partial S(t,x)}{\partial t}=\frac{1}{\psi(t,x)}L\psi(t, x)+V(t, x)$. (23)

Now

$L \psi(t, x)=-\frac{\hslash^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}e^{-\frac{i}{\hslash}S(t,x)}$

$= \frac{i\hslash}{2m}\psi(t, x)[\frac{\partial^{2}S(t,x)}{\partial x^{2}}-\frac{i}{\hslash}(\frac{\partial S(t,x)}{\partial x})^{2}]$ , (24)

so that, by substituting (24) into (23), we get

$- \frac{\partial S(t,x)}{\partial t}=-\frac{i\hslash}{2m}\frac{\partial^{2}S(t,x)}{\partial x^{2}}-V(t, x)-\frac{1}{2m}(\frac{\partial S(t,x)}{\partial x}I^{2}$ (25)

Noting the relation

$- \frac{1}{2m}(\frac{\partial S}{\partial x}I^{2}=\min_{u}\{\frac{\partial S}{\partial x}u+\frac{1}{2}mu^{2}\}$ , (26)

we can rewrite (25) as

$- \frac{\partial S(t,x)}{\partial t}=\min_{u}\{L(t, x, u)+\frac{\partial S(t,x)}{\partial x}u-\frac{i\hslash}{2m}\frac{\partial^{2}S(t,x)}{\partial x^{2}}\}$ , (27)

where $L(t, x, u):=(m/2)u^{2}-V(t, x)$ is the Lagrangian.
For (27) we try to give a control-theoretic interpretation. To do this, consider a

controlled stochastic process $\xi(t)$ generated by

$d\xi(t)=u(t)dt+Gdw(t)$ , (28)

and the cost functional to be minimized,

$J(u)=E_{x_{0}} \{\tilde{S}_{0}[\xi(T)]+\int_{0}^{T}L[t, \xi(t), u]dt\}$ , (29)

where $\tilde{S}_{0}(\cdot)$ is a some properly given function (which depends on the boundary conditions
to the Schr\"odinger equation (20) $)$ . Let $\tilde{S}(t, x)$ be the minimum cost functional for (29);
then this satisfies the Bellman equation,

$- \frac{\partial\tilde{S}(t,x)}{\partial t}=\min_{u}\{L(t, x, u)+\frac{\partial\tilde{S}(t,x)}{\partial x}u+\frac{1}{2}G^{2}\frac{\partial^{2}\tilde{S}(t,x)}{\partial x^{2}}\}$ . (30)

Comparing (30) with (27), we know that these two equations coincide each other under
the correspondence

$G^{2}- \frac{ih}{m}$ . (31)
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Such a correspondence similar to (31) was first suggested by Schr\"odinger (1931) and
M\’etadier (1931) in the analogy between Schr\"odinger equation for a free particle and the
diffusion equation appearing in the Einstein’s theory of Brownian motions, and later
pointed out in the analogy between stochastic optimal control and quantum mechanics
by Papiez (1982).

Under the correspondence (31) we may set as $\tilde{S}(t, x)\equiv S(t, x)$ with proper terminal
function $\tilde{S}_{0}$ ; so that the optimal control is given by

$u=u(t, x)=- \frac{1\partial S(t,x)}{m\partial x}$ , (32)

or, in terms of the wavefunction $\psi(t, x)$ ,

.

$u=- \frac{ih}{m}\frac{1\partial\psi(t,x)}{\psi(t,x)\partial x}$ . (33)

In other words, for the stochastic optimal control problem described by (28) and (29), the
control $u(t)$ can be obtained by solving the linear” Schr\"odinger equation (20) instead of
solving the backward “nonlinear” Bellman equation (30).

5. Conclusions

In this paper, it has been shown that the (nonlinear) Schr\"odinger equation can be
derived from the stochastic control theory, and an inverse problem has also been inves-
tigated. The form of wavefunction (11) was first introduced by Nelson (1966) to derive
the (linear) Schr\"odinger equation in which $S(t, x)$ was taken as a Newtonian potential.
Since the wavefunction keeps all information about the optimal control and$/or$ filtering
as discussed in Sec.3, we may say that the present paper will give us a new aspect of
stochastic control theory.
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