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1. Introduction

The main feature of quantum mechanics is the existence of the probability amplitude

which underlies all the atomic processes.[1] In particular, the phase of the probability

amplitude (or wave function) is crucial, since it govems the “interference “phenomena,

while the square of the absolute value of the amplitude gives the probability itself. The

exisitence of the phase represents the fundamental departure from the usual classical prob-

ability theory.

Recently, the role of the phase in quantum mechanics has renewed interest from various

motivations. Especially, if one is concemed with the cyclic change in quantum state, then

one gets the so-called geometric phase or topological phases.[2] The monumental work of

the geometric phase has been done by Dirac, in which the non-integrable (path dependent)

phase factor has been firstly recongnized. [3] The historical development of geometric phases

has been made in two distinct aspects. The first aspect has been known in early sixties

in molecular physics in connection with the consideration of adiabatic processes[4] which

finally leads to the so called Berry’s phas$e^{}$ The other aspect, which seems to be

less noticed than the formar, has a long history. It stems from the path integral in the

representation of “generalized coherent states”, in which integration paths are defined on

the phase space in a generalized sence.[5,6] This approach has many physical applications,

for example, of collective motions of fermion systems[7]

In this note, we shall study the latter aspect mentioned above; namely, we scrutinize

the feature of the geometric phase that is inspired from the generalized coherent state.
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We bear the name;”canonical phase” to this specific phase. Why do we need to under-

stand the canonical phase in the framework of path integrals? This comes from the fact

that the geometric phase reflects the global structure of the quantum system. On the

other hand, the global aspect of quantum mechanics is naturally described by path inte-

gral formulation. [8] Now, the coherent state path integrals invoke the generalized coherent

states(CS) $|Z\rangle$ , which are parametrized by a point $Z$ on some manifolds (in many cases

complex manifolds) whose coordinates are related to some extemal or macroscopic pa-

rameters of the systems. The manifolds just turn out to be the generalized phase spaces

mentioned above, over which the integral is carried out. By considering the propagator

for a roundtrip of a point on the generalized phase space, the canonical phase is obtained

naturally as the contour integral of the “ connection” between two coherent states which lie

infinitesimally each other.[9] The procedure looks like that used in the dynamical theory

of the adiabatic phase,[10] where the the adiabaticity controls the manner of change of

phase factor appearing in the quantum system which suffers from the external field that is

changing adiabatically. In contrast to this, in the case of canonical phase, we have no con-

cept of adiabaticity; instead of this, we have a substitute; that is, the dynamical principle

controlling the motion of $Z$ ; namely, a cyclic path on the manifold of CS is determined by

quantum action principle, which yields a dymamical equation on the parameter space.

In this paper we shall give some concrete examples of canonical phases; these are

constructed from several CS whose generalized phase spaces are non-compact as well as

compact. We take up the examples from the spin CS, boson CS, and Lorentz or SU(1,1)CS.

The physical sytems under cosideration are weU-known ones in magnetic resonance and

quantum optics. The contents of sections 2 to 7 are as follows. In section 2 we review

the general theory of the canonical phase. The canonical phase with use of spin(SU(2))CS

is dicussed in section 3, which follows the recent work by us[11] These two sections are

the preparation to the subsequent sections 4 and 5, where we investigate the geometric

character of the canonical phases for non-compact CS; the case of the boson CS (section 4)

and the case of Lorentz CS (section 5). We also study the relation between the canonical

phase and the semiclassical quantization scheme in section 6. Section 7 gives a summary.

The details of the present study will be given elsewhere.[12]
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2. General theory

First we give a concise review of the general theory of the canonical phase.[7] Using

CS, the propagator starting from and ending at the state $|Z_{0}\}$ (in time T) can be written

as

$\{Z_{0}|Pe^{-\frac{i}{\hslash}\int\hat{H}(t)dt}|Z_{0}\rangle=\oint e^{\frac{i}{\hslash}S(C)}D\mu(Z)$ (2.1)

where $P$ means time ordered products and the integral are performed over all cyclic paths.

Here $D \mu(Z)\equiv\prod_{t=0}^{T}d\mu(Z(t))$ , where $d\mu(Z)$ denotes the invariant measure on the gener-
alized phase space specified by the complex vector $Z=(zz, \cdots, z_{n})$ and $S$ is the action

for each path:

$S(C)= \int_{0}^{T}\{Z|i\hslash\frac{\partial}{\partial t}-\hat{H}(t)|Z\}dt$

(2.2)
$= \int_{0}^{T}((Z|i\hslash\frac{\partial}{\partial t}|Z\}-H(Z, Z^{*}))dt\equiv\int_{0}^{T}Ldt$ ,

where $H(Z, Z^{*})\equiv\{Z|\hat{H}|Z\rangle\equiv H(t)$ is the expectation value of the Hamiltonian.

By using the overlap of the unnormalized CS $|\tilde{Z}\}:F(Z, Z^{*})=\{\tilde{Z}|\tilde{Z}\}$ , the Lagrangian

can be cast into the form

$L= \sum_{k=1}^{n}\frac{i\hslash}{2}(\frac{\partial\log F}{\partial zk}\dot{z}k-\frac{\partial\log F}{\partial zk^{*}}zk^{*})-H(Z, Z^{*})$ . (2.3)

$\ulcorner\Gamma 0$ get (2.1), we used the property of “the resolution of unity “ : $\int|Z)d\mu(Z)\{Z|=1$ . Now

we select one cyclic path $C(Z(t))$ in the geneialized phase space and caluclate

$\Gamma(C)=\oint_{c}(Z|i\hslash\frac{\partial}{\partial t}|Z\}dt$ (2.4)

which we shall call “canonical phase “. It is a topological phase obtained in the light of

the CS path integral formulation. Here we choose this path $C$ by taking the semiclassical
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limit of (2.1), which amounts to

$\delta\int\{Z|i\hslash\frac{\partial}{\partial t}-\hat{H}(t)|Z\}dt=0$

which yields the equations of $Z$

$i \hslash\sum_{j=1}^{n}g_{i\overline{j}^{\dot{Z}}j}=\frac{\partial H}{\partial z_{i}^{*}},$ $-i \hslash\sum_{j=1}^{n}g_{i\overline{j}}\dot{z}_{j}^{*}=\frac{\partial H}{\partial z:}$ (2.5)

with
$\partial^{2}\log F$

$g_{i_{J}^{\neg=}}$

$\partial zi\partial z_{j}^{*}$

’

which is the metric of the generalized phase space.

Some explanation is in order regarding the meaning of the choice of circuit. Taking

the semiclassical limit is the condition of choosing the specific path among all the possible

paths. Here the parameter controlling the limit is the Planck constant. This feature

corresponds to the situation of taking the adiabatic limit for the quantum transition for

which the transition takes place between the states labelled by the discrete eigenstates

each of which has the same quantum number. [10] Consider a special case of the vanishing

Hamiltonian; for which the solution of the equation of motion (2.5)becomes trivial. In this

case, the transition amplitude is simply given as

$\prod_{k=1}^{\infty}\{Z_{k+1}|Z_{k}\}=\exp[i\Gamma(C)]$

and the topological feature becomes manifest yielding the topological invariants defined

over the compact phase space that are represented by the first Chern class. In the case

of the non-vanishing Hainiltonian, one should evaluate the phase $\Gamma$ as a function of the

loop (the solution of (2.5) independent of the Hamiltonian. The problem here is that: in

general it is not easy to obtain a cyclic motion that makes difficult to calculate $\Gamma(C)$ . In

the following sections we shall take up simple models to allow simple specific solutions for

the equation of motion.
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Next we will give the principle of an experimental detection method of the canonical

phase. After a cyclic motion the state vector totally aquires a phase $\Phi=\frac{1}{\hslash}S(C)$ ( eq(2.2))

which, by eq. (2.2), consists of two parts: $\Phi=\frac{1}{\hslash}(\Gamma-\Delta)$ . Here $\Gamma$ is the canonical phase

and

$\triangle(C)=\oint_{C}H(Z, Z^{*})dt$ (2.6)

is the time integral of the expectation value of the Hamiltonian which may be called the

“dynamical phase “. How can we extract the effect of $\Gamma$? The answer can be given as

follows. Consider two particle beams, each of which has the same $\triangle$ and in one of which
$\Gamma$ vanishes. Interferencing these two beams reveals the canonical phase itself.

3. The topological phase associated with the SU(2) CS

In this chapter general we shall apply the general theory to the case of the SU(2)CS.

Consider a particle with spin $J$ possessing the magnetic moment $\mu$ in a magnetic field B.

Here we take $B(t)=(B_{0}\cos\omega t, B_{0}\sin\omega t, B)$ that is a static field along the z-axis plus

an additive field rotating perpendicular to it with the frequency $\omega$ , which is familiar in

magnetic resonance. The system may be described by the spin (angular momentum) or

SU(2) CS $|z)-a$ typical CS for a compact group –defined as:

$|z\}=(1+|z|^{2})^{-J_{e^{z}}j_{+}}|0\rangle$ , (3.1)

where $|0\}=|J,$ $-J\}$ satisfying $\hat{J}_{z}|0)=-J|0)$ and $\hat{J}\pm$are usual spin operators and $z$ takes

any complex values. The Hamiltonian of the system is

$\hat{H}(t)=-\mu B(t)\cdot J$ , (3.2)

where $J\equiv(\hat{J}_{1},\hat{J}_{2},\hat{J}_{3})$ is a matrix vector satisfying $J\cross J=iJ$ . By using the polar

coordinate $z= \tan\frac{\theta}{2}e^{-i\phi}(0\leq\theta\leq\pi, 0\leq\phi\leq 2\pi)$ (which shows that in the case of the spin

CS the generalized phase space is isomorphic to $S^{2}$),$(3.1),(3.2)$ and ref[5], $H(t)\equiv H(z, z^{*})$

50



is expressed as

$H(z, z^{*})=H(\theta, \phi)=-\mu J[B_{0}\sin\theta\cos(\phi-\omega t)-B\cos\theta]$ . (3.3)

The variation equation is

$\dot{\theta}=-\frac{\mu B_{0}}{\hslash}\sin(\phi-\omega t),\dot{\phi}=-\frac{\mu}{\hslash}[B_{0}\cot\theta\cos(\phi-\omega t)+B]$ , (3.4)

which allows a special solution

$\phi=\omega t,$ $\theta=\theta_{0}$ ( $=$ const), (3.5)

where the following relation should be hold among the parameters $\theta_{0},$ $B,$ $B_{0}$ :

$\cot\theta_{0}=-(\frac{B}{B_{0}}+\frac{\hslash\omega}{\mu B_{0}})$ . (3.6)

The solution of the form (3.5) shall be called the “resonance “ solution. In fact, that corre-

sponds to the resonance solution for the case of the forced oscillation. The set of parameters
$(B, B_{0},\omega)$ satisfying (3.6) that gives the same $\theta_{0}$ yields the same “resonance solution “.

The set forms a surface in the paramter space $(B, B_{0},\omega)$ , which we call “invariant surface

“hereafter. Note that the quantities in the right hand side of (3.6)are all given in terms of

natural constants that allow to be compared with the experimental situation. From (3.6)

we can imagine that this solution forms the surface in the 3-dimensional parameter space
$(B, B_{0}, \theta_{0})$ which determines the resonance condition.

Next we turn to the evaluation of the canonical phase fitting to this special solution.

That leads us to

$\Gamma(C)=2\pi J\hslash(1-\cos\theta_{0})=-J\hslash\Omega(C)$ (3.7)

where $\Omega(C)$ is the solid angle that the curve $C$ subtends at the origin of the phase space.

On the other hand, the dynamical phase (2.6)is given by

$\triangle(C)=\frac{2\pi\mu J}{\omega}(B_{0}\sin\theta_{0}-B\cos\theta_{0})$ . (3.8)

The important point is that the canonial phase depends only on $\theta_{0}$ . Therefore any point

on the $\zeta invariant$ surface “gives the same canonical phase. But the dynamical phase is not

determined only by $\theta$ .
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We can make use of the above charactor of the canonical phase to detect its effects in

experiments. Consider a beam splitted into two paxts, each of which suffers the magnetic

field whose parameters $(B, B0,\omega)$ are on the invariant suiface. Recombining these two

gives the effect of the dynamical phase. Or we can set two parts, each of which has

the parameters giving the same $\triangle(C)$ . One of the simplest case comes true when $\triangle(C)$

vanishes. For brevety, we put the frequency fixed. Then (3.5) means $\cot\theta_{0}=\# B$ , which

together with (3.6) results in $\omega=-\frac{\mu(B_{0}^{2}+B^{2})}{\hslash B}$ . In this case the beam is prepared in such a

way that one of which suffers the field satisfying the above condition and does another no

fields. Recombinig these two reviels only the effect of the canonical phase. The interference

pattern goes as $I \propto\cos^{2}(\frac{\Gamma(C)}{2\hslash})$ .

One can easily find that the resonance solution meat linear stability conditin locally,

which is necessary to experimental detections. Similarly we can find that the solutions

obtained in the next chapter also meet the condition. So we will not repeat to discuss it

there.

4. Non-compact Coherent State I: Boson CS

Consider a harmonic oscillator driven by an external force. The hamiltonian is:

$\hat{H}=\frac{1}{2}(\hat{p}^{2}+\omega_{0^{2}}\hat{q}^{2})+F(t)\hat{q}$ , (4.1)

which can be written by boson creation and anhialation operators as

$\hat{H}=\hslash\omega_{0}\hat{a}^{\uparrow}\hat{a}+\beta(t)\hat{a}^{\uparrow}+\beta^{*}(t)\hat{a}$ . (4.2)

This type of Hamiltonians appears in the problems of detecting gravitational radiation[14]

and of quantum optics.[15] [16] In this section we shall take up the second one for example

and discuss the possibility of finding the effect of the holonomic phase.

Consider a single mode electric field inside a cavity driven externally by a coherent

driving field. If we neglect the cavity damping, we have the Hamiltonian:

$\hat{H}=\hslash\omega_{0}\hat{a}^{\uparrow}\hat{a}+i\hslash(\hat{a}^{\uparrow}E(t)e^{-i\omega t}-\hat{a}E^{*}(t)e^{i\omega t})$ , (4.3)

which belongs to the type of (4.2). The first term denotes the cavity mode Hamiltonian

where $\omega_{0}$ means the fundamental cavity resonance and does the second one Hamiltonian
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for the coherent driving field respectivly. Here $E(t)$ is the driving field amplitude, while $\omega$

the driving frequency. If the cavity contains the medium with unharmonicity Hamiltonian

contains the term having $\hat{a}^{\uparrow 2}\hat{a}^{2.[16]}$ Here we will consider the case when the unharmonicity

of the medium can be neglected. We also assume, for brevety, $E(t)=-\tilde{E}i$ (pure imaginary
$cnst.)$ .

The description of the system may fall in the field ofthe boson CS: $|z\}=e^{-\frac{1}{2}|z|^{2}}e^{z\hat{a}^{\dagger}}|0)$

Here $z$ satisfies $\hat{a}|z)=z|z)$ and propotional to complex amplitude of the classical elec-

tromagnetic field obtained as the solution of Maxewell eqation.[15] In terms of the polar

coodinate, $z=re^{i\theta}$ , a series of evaluation of the quantities goes as follows.
$\dot{r}=-\tilde{E}\sin(\theta+\omega t)$ ,

The variation equation:
$r(\theta-\omega_{0})=-\tilde{E}\cos(\theta+\omega t)$ .

The resonance solution: $r=r_{0},$ $\theta=-\omega t$ .

For the solution, the relation that specifies

the “invariant surface “ : $r0=| \frac{E}{\omega+\omega 0}|$

The canonical phase: $\Gamma(C)=2\pi\hslash r_{0}^{2}$

The dynamical phase: $\triangle(C)=\frac{2\pi}{\omega}[\hslash(\omega_{0}^{2}r_{0}^{2}-2\tilde{E}r_{0})]$ .
Now one of the sufficient conditions for $\triangle(C)$ to vanish is that the integrand its-self van-

ishes, which results in $\omega=-\frac{1}{2}\omega_{0}$ .

Then the canonical phase is $\Gamma(C)=\frac{8\pi\hslash}{\omega_{0}^{2}}|E|^{2}$ . The experimental detection method is as

the same as that in \S 3, due to one mentioned at the end of \S 2.: The physical quantity that

we observe in the experiment is the phase of the electromagnic or photon field.

5. The non-compact CS II: The Lorentz coherent state

In this section we shall deal with the holonomic phase that is connected with another

class of non-compact coherent state; the SU(1,1) coherent state (See Appendix A.); alter-

natively we call the Lorentz coherent state, since SU(1,1) is locally isomorphic to Lorentz

group of 2 $+$ 1 dimension.

Now for our purpose it needs to take account of the linear operator that is just the

generators of the Lorentz CS. One of the realization of this algebra is given by a set of
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bilnear forms of boson creation and anihilation operators for a single mode electromagnetic

field :

$\hat{K}_{+}=\frac{1}{2}(\hat{a}^{\uparrow})^{2},\hat{K}_{-}=\frac{1}{2}\hat{a}^{2},\hat{K}_{0}=\frac{1}{4}(\hat{a}\hat{a}^{\uparrow}+\hat{a}^{\uparrow}\hat{a})$. (5.1)

In this case $k= \frac{1}{4}$ or $k= \frac{3}{4}$ . Appendix A and (5.1)show that, for $k= \frac{1}{4},$ $|0\rangle$ coincides

the photon vacuum and does the state of photon number being one for $k= \frac{3}{4}$ . In this

realization, the operator $S(\zeta)=e^{\zeta\hat{K}_{+}-(\hat{K}_{-}}*=e^{\frac{1}{2}(\zeta(\hat{a}^{\dagger})^{2}-\zeta^{*}\hat{a}^{2})}$ is nothing but a “squeeze

operator “with a squeeze parameter $\tanh|\zeta|$ and a rotating angle $\phi/2^{[17]}$

The physical system we take up here is the composed system of cavity mode and the

squeezed state generating interaction.[16] The hamiltonian for the system is

$\hat{H}=\hslash\omega_{0}(\hat{a}^{\uparrow}\hat{a}+\frac{1}{2})+\hslash[V^{*}(\hat{a}^{\uparrow})^{2}+V\hat{a}^{2}]$ , (5.2)

where V is the interaction parameter including the effect of pumping light. Here we take
$V=\kappa e^{i\omega t}$ : an oscillating pumping light. Using the parametrization $z= \tanh(\frac{\tau}{2})e^{-i\omega t}$ ,
$H(t)\equiv\{z|\hat{H}|z\rangle$ can be expressed as

$H(t)=H(\tau, \theta)=2\hslash k[\omega_{0}\cosh\tau+2\kappa\sinh\tau\cos(\phi-\omega t)]$ . (5.3)

A series of results for this case are the following.
$\dot{\phi}=2[\omega 0+\kappa\coth\tau\cos(\phi-\omega t)]$ ,

The variation equation:
$\dot{\tau}=4\kappa\sin(\phi-\omega t)$ .

The “resonance solution “ : $\phi=\omega t,$ $\tau=\tau_{0}(=const)$ .
The invariant surface, that is the sheet in the parameter space $(\omega,\omega 0,$ $\kappa)$ on which $\tau 0$ is

constant, is determined by: $\coth\tau_{0}=\frac{\omega-2\omega_{0}}{4\kappa}$ .
For the path $C$ described by this solution,

the canonical phase: $\Gamma(C)=2\pi\hslash k(\cosh\tau 0-1)$ .

The dynamical phase : $\triangle(C)=\frac{4\pi\hslash k}{\omega}(\omega 0\cosh\tau_{0}+\kappa\sinh\tau_{0})$ .
We see a close analogy to the case of spin CS and boson CS that the canonical phase

depends only on the “invariant surface “and the dynamical phase does not. The situation
enables us to follow the previous method for experiments. Here we state the last one in

section 3. Let us set a light beam splitting into two parts, each of which has the same
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$\triangle(C)$ but non-vanishig $\Gamma(C)$ only for one. That occurs when $\omega=\frac{2}{\omega_{0}}[(\omega_{0}^{2}-2\kappa^{2})+\frac{2\kappa\alpha}{\sinh\tau_{0}}]$ ,

where $\sinh\tau_{0}=\frac{1}{\kappa^{2}-\omega_{0}^{2}}[\alpha\kappa\pm\omega_{0}(\kappa^{2}+\alpha^{2}-\omega_{0}^{2})^{1/2}]$ . Here $\alpha$ is a positive constant. We set two

parts of the beam, for one of which $\omega$ satisfies the above condition and for another one
$\omega=0$ . Then recombining them leads to the interference pattem shows solely the effect of

$\Gamma(C)$ .

Next let us give to some comments on related points. First the meaning of the “reso-

nance solution “ can be understood in a manner analogous to the the SU(2) case by means

of Bloch like vector.[12] [18] Second in order to obtain the result for the adiabatic limit, we

only have to let $\omegaarrow 0$ in the above argument.[12]

6. The Relation to Semiclassical Quantization Scheme

The models used in the preceding sections allow us to calculate the canonical phases in

a non-trivial way. The basic point is that the Hamiltonians are time- dependent through

the time-dependence of the external field. The cyclic change of the external field results in

the phase holonomy. This fact implies that the non-trivial canonical phase arises only for

the case that the time-dependent Hamiltonian. Note that in the case of time-dependent

Hamiltonian the concept of energy spectrum has no meaning. Now, what is expected for

the case of time-independent Hamiltonian?

In what follows, the relation between the time independent hamiltonian and the semi-

classical quantization scheme is considered. Imagine an isolated system: a system that

has no interaction with extemal ones. Then the Hamltonian involves no time dependence

and the motion of the parameter $Z$ that determines the canonical phase lies on the surface

of the constant energy: $H(Z, Z^{*})=E$ . After a cyclic change the wave function acquire

the phase $\Phi=\frac{1}{\hslash}(\Gamma(C)-ET)$ . Note that $\Gamma(C)$ depends only on $Z$ , whereas does ET on
$t$ . For an isolated system the wave function must be single valued with respect to $Z$ ; the

phase change associated with the cyclic change is given as before and the single valuedness

requires it to be unity; namely,

$\exp[i\Gamma(C)]=1$
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and hence we have

$\Gamma(C)=\oint_{c}\{Z|i\hslash\frac{\partial}{\partial t}|Z\rangle dt=2\pi\hslash m$( $m$ : integer). (6.1)

That means that the canonical phase factor becomes trivial for the case of an isolated

system that is described by a time-independent Hamiltonian. The condition $(6.1)is$ crucial

in the sense that it can be used as the device for determining the energy spectra of the

system; so-called the semiclassical quantization conditon.[19] $\Phi$ is the phase change for the

classical wave function The integral contour is determined by the action principle.

In this way, we have inevitably “non-holonomy” for the case of an isolated system.

The single valuedness, which manifests the non-holonomical nature, determines the energy
eigenvalues, while for the system set in the time varying external field the energy eigenvalue

becomes nonsense. As a result of this, the non-trivial holonomic phase appears!

7. Surnary

We have shown the following results for the canonical phase, which is considered to be

a kind of the holonomic phases defined in terms of the coherent state path integral:

(1) :In the case of a simple non-compact CS as well as a compact one, there exists a

simple path on the generalized phase space of CS (“resonance solution “) when the

external parameters satisfy a specific condition(invariant surface “).

(2) :The holonomic phase depends only on the “invariant surface “.

(3) :The charactor of (2) enables us to constmct experiments in which the effect of the

holonomic phase or dynamical phase are extracted from each other.

(4) : We have “non-holonomy” when we are concemed with an isolated system; non-

holonomic condition is equivalent to the single valuedness which results in the semi-

classical quantization rule leading to the energy spectra.
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Finally, a few prospective points are in order concerning the relation between the

canonical phase and quantum optics. The one is the problem of generating the light

corresponding to CS, which provides wide possibilities to make the light which has no

classical counterpart such as so-called squeezed states. The other is, by making use of the

frequent appearence of CS in various branches of physics, we may simulate the problems

of other branches (i.e. field theory and condensed matter physics) by using optical devices.

Thirdly, a different kind of understanding to topological phases that is more general than

given here can be found in ref. $[$20$]^{}$
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APPENDIX A

Let us review the SU(1,1)CS concisel$y^{}$ The discrete series generators $K_{i}(i=1,2,3)$

of SU(1,1) algebra satisfy the followig commutation relations :

$[\hat{K}_{0},\hat{K}\pm]=\pm\hat{K}\pm,$ $[\hat{K}_{-},\hat{K}_{+}]=2\hat{K}_{0}$ , (Al)

where $\hat{K}\pm=\pm i(\hat{K}_{1}\pm i\hat{K}_{2})$ are rasing and lowering operators of a SU(1,1) state. The eigen

vectors of $K_{0}$ are specified by (k,m): $\hat{K}_{0}|k,$ $k+m\}=(k+m)|k,$ $m\rangle$ ,

where $k$ is a real number determined by the representation of SU(1,1) algebra and $m$ is a

non-negative integer. Specifically call $|0\}\equiv|k,$ $m=0\}$ and we get Lorentz CS:

$|z\}=e^{\zeta\dot{K}_{+}-\zeta^{*}\hat{K}-}|0\}=(1-|z|^{2})^{k}e^{z\hat{K}+}|0\rangle$ , (A2)

where $z=\tanh|\zeta|e^{i\phi}$ .
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