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It is not easy to determine the structure of the graded ring of (Siegel)
modular forms. In a series of papers beginning in 1964 [1], J. Igusa suceeded
to determim structures of these rings for various levels in the case of genus
1 and 2. After that many mathmaticians attacked to this problem and suc-
ceeded. In this note, we shall determine the structure of graded ring of genus
2 Siegel modular forms of certain level, by using the structure theorem of
the principally polarized abelian varieties with that level structure, which is
given in the previous paper [8].
1. Thrughout this note we fix a positive integer $g(\geq 2)$ . Let $\Gamma_{g}(2)$ denote
the principal congruence subgroup, of level 2, of the modular group $\Gamma_{g}(1)=$

Sp$2g(Z)$ , and let

$\Gamma_{g}(2,4)=\{(\begin{array}{ll}a bc d\end{array})\in\Gamma_{g}(2)|diag(c^{t}d)\equiv 0diag(a^{t}b)\equiv 0$ mod4

Let $S_{g}$ denote the Siegel upper half-space of degree $g$ on which $\Gamma_{g}(1)$ acts

by the map: $\tauarrow(a\tau+b)(c\tau+d)^{-1},$ $(\begin{array}{ll}a bc d\end{array})\in\Gamma_{g}(1)$ . We denote by $A_{g}(2,4)$

the quotient $S_{g}/\Gamma_{g}(2,4)$ , which is the.moduli space of principally polarized
abelian varieties with level (2,4) structure. A point $x\in A_{g}(2,4)$ is called an
irreducible point if the corresponding principally polarized abelian variety is
irreducible, i.e., it is not isomorphic to the product of principally polarized
abelian varieties of smaller dimension. For the moduli theoretic meaning of
this space, we refer to [6].

Now we recall the definition of Riemann’s thta constants. Let $m=$

$(\begin{array}{l}m’m’\end{array})$ denote a vector in-$Z^{2g}(m’, m"\in\frac{1}{2}Z^{g})$ . We define the theta constant

$\theta[m](\tau)$ of characteristic $[m]$ by

$\theta[m](\tau)=\sum_{p\in Z^{9}}e(\frac{1}{2}(p+m’)\tau(p+m’)+t_{(p+m’)m’’)}t$
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where $\tau$ is a variable in $S_{g}$ and $e(*)=\exp(2\pi i*)$ . We say that a theta
characteristic $[m]$ is even or odd according as $e(m)def=e(2^{\ell}m’m’’)=\pm 1$ . It
is well known that $\theta[m](\tau)\equiv 0$ if and only if $[m]$ is odd.

Using the transformation formula of theta constants, we get a holomor-
phic map of $S_{g}$ to the projective space $IP^{N},$ $N=2^{g}-1$ , defined by

$\tau(\cdots,$ $\theta\{\begin{array}{l}a0\end{array}\}(2\tau),$ $\cdots)$ ,

where $a$ runs over a complete set of representatives of $2^{-1}Z^{g}$ modulo $Z^{g}$ . It
induces a holomorphic map

$\Phi_{2}:A_{g}(2,4)arrow IP^{N}$ .

In a previous paper [8], we showed that the following:

Theorem 1. $\Phi_{2}$ is $loc$ally embedding at irreducible points in $A_{g}(2,4)$ and
if $x\in A_{g}(2,4)$ corresponds to the period matrix of a $hyp$erelliptic $c$ ur $ve$ of
genus $g$, then $\Phi_{2}^{-1}(\Phi_{2}(x))=\{x\}$ .

As a corollary, we have the following structure theorem of the Satake
compactification $A_{2}(2,4)^{*}$ of $A_{2}(2,4)$ (cf. ibid. 3.Remark).

Theorem 2. The map $\Phi_{2}$ can be $ext$ended $natur$ally to $A_{2}(2,4)^{*}$ ;

$\Phi_{2}:A_{2}(2,4)^{*}arrow 1P^{3}$ ,

and $tAis$ is an isomorphism.

2. Let $\Gamma$ be a congruence subgroup of $Sp_{2g}(Z)$ . A holomorphic function $f(\tau)$

on $S_{g}$ satisfying
$f(\sigma\cdot\tau)=(c\tau+d)^{k}f(\tau)$

for all $\sigma=(\begin{array}{ll}a bc d\end{array})\in\Gamma$ and the finiteness at the cusp if $g=1$ , is called a

Siegel modular forms of weight $k$ relative to $\Gamma$ . We denote by

$A( \Gamma)=\bigoplus_{k=0}^{\infty}A_{k}(\Gamma)$ ,

the graded ring of modular forms relative $\Gamma$ , where $A_{k}(\Gamma)$ is the vector space
of modular forms of weight $k$ .
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For several congruence subgroups $\Gamma$ , the structure theorem for $A(\Gamma)$ is
known. We can find them in [1,2,3,4] when $g=1,2$ and in [9] for $\Gamma_{3}(1)$ . For
example, the structure theorem for $A_{2}(2,4)$ is given by Igusa in the following
form:

Theorem 3. (Igusa)

$A(\Gamma_{2}(2,4))=C[\theta^{2}[m](\tau)\theta^{2}[n](\tau)][\chi(\tau)]$ ,

$iv\Lambda ere[m],$ $[n]$ run over $t\Lambda e$ set of 10 even $c\Lambda aiacteristics$ an$d$

$\chi(x)=\prod_{[m]:even}\theta[m](\tau)$
.

We shall now give a proof for this theorem using Theorem 2.
By the transformation formula of theta constants, we see the C-algebra

in the right hand side is a subring of $A(\Gamma_{2}(2,4))$ .
First we note that, by the addition formula of theta functions ([5]), we

have
$\theta[m](\tau)^{2}=\sum_{p}e(2m^{\prime\prime t}p)\theta\{\begin{array}{l}m’+p0\end{array}\}(2\tau)\theta\{\begin{array}{l}p0\end{array}\}(2\tau)$ ,

where $p$ runs over the complete set of representatives of $2^{-1}Z^{2}$ modulo $Z^{2}$ .
We consider

$(\theta\{\begin{array}{l}0000\end{array}\}(2\tau),$ $\theta[0\frac{1}{02}0](2\tau),$ $\theta\{\begin{array}{l}\frac{1}{2}000\end{array}\}(2\tau),$ $\theta[\frac{1}{00\frac\int_{2}}](2\tau))$

as the homogeneous coordinates $(X_{0}, X_{1}, X_{2}, X_{3})$ of

$A_{2}(2,4)^{*}$ $\simeq 1P^{3}$ .

If $f(\tau)$ is a modular form of even weight $2k$ , then

$f(\tau)/\theta[0](\tau)^{4k}$

is a meromorphic function on $1P^{3}$ , and its pole is $l\cdot Q,$ $l\leq k$ , where $Q$ is the
quadric defined by

$P(X)=X_{0}^{2}+X_{1}^{2}+X_{2}^{2}+X_{3}^{2}$ .
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Comparing the divisors, we have

$f(\tau)/\theta[0](\tau)^{4k}=cF(\cdots, \theta\{\begin{array}{l}m’0\end{array}\}(2\tau), \cdots)/P(\cdots, \theta\{\begin{array}{l}m’0\end{array}\}(2\tau), \cdots)^{l}$,

where $c$ is a non-zero constant and $F(X)$ is a homogeneous polynomial of
degree $2l$ . Thus we have

$f(\tau)=cF(\cdots, \theta\{\begin{array}{l}m’0\end{array}\}(2\tau), \cdots)\theta[0](\tau)^{4k-2l}$ .

Let $f(\tau)$ be a modular form of odd weight $2k+1$ . If $2k+1\leq 3$ , i.e,
$k\leq 2$ , then

$\phi_{k}(\tau)=f(\tau)\theta[0](\tau)^{8-2k}/\chi(\tau)$ , $k=0,1$

is a meromorphic function on $1P^{3}$ . The divisor of the square of this function
is of the form

$\sum_{i}A_{i}-\sum_{j}B_{j}$
,

where $\{B_{j}\}$ are distinct irreducible quadrics. Therefore $\phi_{k}$ can not be a
non-constant meromorphic function. Since $\phi_{k}$ is obviously not a non-zero
constant, it follows $f=0$ .

If $2k+1\geq 5$ , then

$\psi_{k}(\tau)=f(\tau)/\chi(\tau)\theta[0](\tau)^{4k-8}$,

is a meromorphic function on $1P^{3}$ . Then the divisor of $\psi_{k}^{2}$ has the form:

$div( \psi_{k}^{2})=\sum_{i}A_{i}-\sum_{j}B_{j}-l\cdot Q=2div(\psi_{k})$
,

where $\{B_{j}\},$ $Q$ are distict irreducible quadrics. Therefore $\Sigma B_{j}$ can not occur
and $l$ is even; $l=2l’\leq 2k-4$ . Comparing the divisors, we have

$f(\tau)/\chi(\tau)\theta[0](\tau)^{4k-8}=cG(\cdots, \theta\{\begin{array}{l}m’0\end{array}\}(2\tau), \cdots)/P(\cdots, \theta\{\begin{array}{l}m’0\end{array}\}(2\tau), \cdots)^{l’}$,

where $c$ is a non-zero constant and $G(X)$ is a homogeneous polynomial of
degree $l=2l’$ . Hence we have

$f(\tau)=cG(\cdot\cdot\theta-\cdot,\{\begin{array}{l}m’0\end{array}\}(2\tau), \cdots)\theta[0](\tau)^{4k-8-2l’}\chi(\tau)$ .
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Thus we completed the proof.
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