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Abstract: A quick review is given of some methods available for turbulence mod-

eling. The review is pessimistic about the present, optimistic about the future, and

biased in favor of the author’s work. The niethods discussed include direct numer-

ical simulation, moment expansions, several kinds of modeling, probability density

functions, large-eddy simulation, renormalization, expansion in dominant modes, and

real space renormalization based on thermal equilibrium assumptions.
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Introduction. An engineer who has to model turbulence (in particular turbulent com-

bustion) can find thousands of papers that offer modeling strategies. These strategies are

often incompatible. often very complicated and even incomprehensible, and none can be

sanely viewed as both reliable and practical.

The uninitiated observer may fincl this situation surprising. In the last decades tur-

bulence has attracted attention not only from engineers, but also from mathematicians,

physicists, and the popular press. Every $i\iota d\nwarrow$-ance in $ch_{c}\backslash os,$ $fi\cdot actals$ , dynamical systems,

renormalization, as $n^{r}cl1$ as in the size, $s\iota$)$ccd$ md parallelization of computers, is heralded

as having solved the “turbulence proljlem“. Thcsc claims contain some important truths.

Turbulent flow is indeed chaotic, md this observation $sel\cdot ves$ to justify the use of proba-
$v$

bilistic methods. Fractals are indeed endemic to turbulence. Dyiiamical system theory has

clarified the transition to turbulcnce. Renormalization is a most promising methodology.

Most importantly, progress in numerical methods and the growth in computer power make
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possible some $remar1_{\backslash }’able$ calculatioiis. Nevertheless, despite these advances, the goal of

making reliable predictions in practical problems has not yet been reached.

In the next pages I shall suininarize some of the methods that have been proposed for

solving the prediction problem, emphasizing their conceptual bases, interconnections, and

failings. Speculations about future will emerge.

First, a quick reminder of the main features of $tul\cdot bulence$ in fluids: Turbulent flow

involves many scales of motion. These scales are strongly coupled, i.e., to calculate what

happens on large scales, one has to take into account what happens on a broad range of

small scales. However, it is generally believed tha.$t$ what happens on small scales is statis-

tically independent of the large scales (how a strong coupling can coexist with statistical

independence is an interesting story in itself [9] $)$ . The behavior of the small scales can con-

ceivably be analyzed once and for all, and the problem of inaking predictions simplified by

coupling a computed solution for large scales with a “universal” solution for. small scales,

a strategy related to “large-eddy simulation” (see below). Examples of “universal” results

on small scales are: (i) the Kolmogorov law, which asserts that far from walls, and under

appropriate conditions, the energy spectrum $E(k)$ for small but still inviscid (“inertial”)

scales has the form $E(k)\sim k^{-5/3}$ , where $k$ is a wave number, and (ii) the Von Karman

law, wliich asserts that near walls, in a similar range of scales, the velocity profile has a

logarithmic form.

Direct numerical simulation and large eddy simulation. Direct numerical simula-

tion usually means a numerical solution of a problem without the added baggage of theory

(I am not sure what “direct” means, and “simulation” is often used when the words “solu-

tion” or “approximation” seem presumptuous). At first glance, direct numerical simulation

seems to be the $wa\}’$ to go. The equations of motion of a fluid are known, numerical algo-

rithms are improving rapidly, and with the growth in computer power, why be encumbered

by theory?

The obvious first reason is that the range of scales that participate in most turbulent

flows and that cannot be omitted is too large for handling by any computer available or

planned. In order to $Ci\iota rry$ out a calculation one has to reduce that range, knowingly or
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through bad numerics. Such a reduction is particularly troublesome in applications to

combustion, where small-scale fluctuations have an unusually large impact through the

exponential dependencc of Arrhenius kinetics on $temperat\iota lre$ . An intclligent reduction in

the number of degr$(1cs^{t}$ of $f1^{\backslash }GC^{\backslash dom}$
” requires a good understanding of the behavior of the

solutions of the $Navier- Sto1_{\mathfrak{i}}et^{}$ equatioiis as a viscosity (numerical or physical) tends to zero

–and thus a good dose of theory.

There is a subtler but equally importaiit problem with direct simulation: The goal of a

calculation is not only to produce $n\iota\iota lnbcrs$ , bnt inore significmtly, to produce understand-

ing that can pav\‘e the wave to engineering intcrvention. A numerical solution without

theory is useless from this point of view –after all, every $ex^{r}periment$ is an analogue

computation, and pcople have stared at experimental data for a long time without com-

ing up with useful conclusions. In particular, theory proposes intelligent questions that a

calculation can answer.

Numerical simulation should on the whole be accompanied by a theoretical framework

and by conscious choices about the handling of tho small scales –a mix known as $1a1^{\neg}ge-$

eddy simulation”, about $\backslash vhicli$ more will be said below. Without such “modeling” of

the small scales, numerical calcula.tions axe at present confined to the analysis of simple

paradigms, i.e., relatively simple $pi\cdot oblems$ where the doininaiit mechanisms can be elu-

cidated and the resulting understanding can possibly be incorporated into a simplified

description. Some calculations of this kind are indeed extremely illuminating; well known

examples include: the analysis of the effect of vortical structures in boundary layers on

the Reynolds stress [4][5]; the $01$) $ser\backslash +atir)n$ of the coherent spaghetti-like vortex structures

in homogeneous turbulence [22], as predicted in [6]; $t\}_{1}e$ observation of hairpin formation

and folding mechaiiisms [9] that led to the theory of vortex equilibria discussed below; the

recognition of the importance of pulsed jets in turbulent combustion [13].

Many numerical methods $hai^{\gamma}e$ been proposed in fluid mechanics, $\cdot$ and this may be the

place for some brief commeiits about them. Staiidard spectral methods (expansions of the

form $\sum_{k}a_{k}e^{ik\cdot x}$ ) have $pla\}^{r}ed$ a major role in direct numerical simulations and, indeed, rvere

for a time synonymous with them. This $h_{c1}sres\iota 1lted$ from very natural historical reasons,

and was prolonged by the availability of excellcnt spectral software; spectral methods of this

3



type are however $intrinsical1_{3^{r}}$ ill-suiled to the description of turbulence, where localized

events may be very important (more elaborate expansion methods will be commented

on further below). Finite diffei$\cdot$ence and finite element method seem to me to be the

natural choices in most turbulence calculations; finite difference methods are flexible in the

choice of differencing for different terms, in their requirement for computer algebra, and

in allowing pre-existing knowled$ge$ to be built into algorithms. Finite elements are flexible

in their treatment of complex geometries and in pioviding high-order accuracy. There

exist now a variety of elegant algorithms that borrow ideas from both finite-element and

finite-difference methodologies. Vortex mcthods, due to their intrinsically low numerical

viscosity, are often very useful in revealing the essential mechanics of complicated problems.

Hybrid vortex/difference or vortex$/finite$ element methods have emerged and may be the

wave of the future.

Moment expansions, the Hopf equation, pdf’s, modeling. I will now stait dis-

cussing methods that claim to obviate the need for resolving many scales of motion and

thus to be more practical than numerical simulation. For ease of presentation, I shall start

with a method that is well known to be ineffective –moment expansion with closure.

The general idea is to average the Navier-Stokes equations, in the hope that the solution

of the averaged equations approximates the average solution of the true equations. The

equations being nonlincax, an equation for $\langle u\rangle$ ( $u=$ velocity, $\langle$ $\rangle$ denotes an average)

involve averages of expansions quadratic in $u$ , thc equations for expressions quadratic in

$u$ involve averages of expressions $cul$) $ic$ in $u$ ; the result is an infinite sequence of coupled

equations. To obtain something $so1_{1^{\Gamma_{\zeta}’}}\iota$ble, one may trnncate this sequence after a finite

number of equations; the solutions of the truncat$ed$ system are “non-realizable” after a

finite time. An exaiiiple of $non- re_{\epsilon}\backslash 1izability$ is the following: suppose one is given two

numbers, $a,$
$b$ , and suppose the claim $i_{i\supset}$ made that for some random variable $\eta$ , $\langle\eta\rangle=$

$a,$ $\langle\eta^{2}\rangle=b$ . Note that $0\leq\langle(\eta-\langle\uparrow l\rangle)^{2}\}=\langle\eta^{2}\rangle-\langle\eta\}^{2}$ . Unlcss $b-c\iota^{2}\geq 0$ , there exists no

random variable $\eta$ for $\backslash vhic$}$1$ thc claim is true. Similarly, if one is given function $f_{1},$ $\ldots f_{N}$

with the claim that $\{n\}=f_{1},$ $\{u^{2}\rangle=f_{2}$ , etc., it may happen (and usually does) that the

claim is non-realizable, i.e., there exisbs no $e\iota$ for which the $c1_{c}\backslash im$ is true. The reason for the
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non-realizability of the results of moment closures can be dug out of the discussion of vortex

equilibria below, but we shall not take the time to present the appropriate technicalities.

An interesting example that illustrates the problem of realizability has been given by

Kraichnan [17]: Consider the random differential equation

(1) $\frac{dq(t)}{dt}=-ib(4(t),$ $q(0)=1$ .

where $b$ is a random variable with probability clensity function (pdf) $f(x)$ , i.e., the proba-

bility that $b$ is between $x$ and $x+dx$ satisfies

$P(x<b\leq x+dx)=f(x)dx$ ,

with $f\geq 0,$ $\int f(x)dx=1$ . Equation (1) loosely resembles the equation of motion for a

single Fourier mocle in a spectral representation of a flow. For a given $b,$ $q(t)=e^{ibt}$ , thus

$Q(t)= \langle q(t)\rangle=\int e^{ixt}f(x)dx$ ,

and clearly $|Q(t)|\leq Q(O)=1$ is a realizability condition. If an averaged approximation

fails to satisfy this inequalitv, it is not an averaged solution of (1) for any $f$ .
Expaiid the solution of (1) in Taylor series, kceping the first $n+1$ terms:

(2) $q_{n}(t)=1+ \sum_{j=1}^{n}(-i)^{j}b^{j}t^{j}/j!$ ;

average, writing $a_{j}=\{b^{j})$ :

$Q_{n}(t)= \langle q_{n}(t)\rangle=1+\sum_{j=1}^{n}(-i)^{j}a_{j}t^{j}/j$!.

Clearly, $Q_{n}(t)arrow Q(t)$ , but for any finite $n$ , even if the $aj$ are known exactly, the realizability

constraint is violated for $t$ large enough!

One can object to the $rele\backslash$-ance of this exaiiiple by noting that the series (2) may be
$slo\backslash vly$ convergent for $1_{c}\backslash rget,$ $8Jid$ that $vai\cdot ious$ resummations of this series can converge

faster and be less susceptible to non-realizability. (For an account of resummation, or

“renormalized $pert\iota\iota rbation$ theory“, $\sec$ e.g. McCoinb [19]; an example is $S=1+x+x^{2}+$
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.. . $=1+xS$ , hence $S=1/(1-x).)$ In the context of fluid mechanics, such resummation

still omits all infinite number of terms, the expaiision parameter is the Reynolds number

$R$ which is near infinity, alld there is no $reasonal$)$le$ ground state $aro\iota md$ which to expand,

so resummation is not likely to be of help.

People have developed moincnt equations that, through the addition of extra terms,

guarantee the realizability of the solutions, i.e., by adding arbitrary extra terms, guarantee

that the results solve some problem. $N\subset$) commcnt is needed.

Since chopping off a moment $ex\iota Jansion$ is not a good idea, why not keep all moments?

Suppose one could find a pdf for the solutions of the Navicr-Stokes equations, i.e., a function

that assigns probabilities to the occurrence of flows that belong to some appropriate sets;

all the moments of $u$ could then be determined. The pdf would be a functional, i.e.,

afunction of an infinite number of variables (all the values that $u$ can take at all the

points $x$ of a flow domain). Hopf [15] has indeed derived an equation that this pdf must

satisfy; albeit infinite dimensional, that equa.tion is linear. It is one of the harmful myths

of turbulence theory that one should strive to solve the Hopf equation, that this job can

conceivably be done and that the results would be meaningful. Suppose one had a pdf

for, say, Euler incompressible flow in two or three space dimensions. Euler flows have

constaiits of motion (circulation, impulse, helicity, etc.). They satisfy boundary conditions

and, being solutions of partial differential cquations, satisfy smoothness conditions. A

relevant pdf must assign a $zc^{\Delta}ro$ probability to any flow that violates these constraints.

This requirement is the exact analogue of the fact that, in a study of a particle system, the

constants of motion niust be $t_{c}\urcorner 1_{\dot{c}}en$ into account in the formulation of a statistical theory,

or else the results are wrong. The key importance of the constraints in fluid mechanics

has been thoroughly demonstrated (see e.g. Chorin [9] for a review). Indeed, the exact

solution that Hopf has found for his equation does not satisfy the constraints and produces

an infinite mean energy at every point and velocity fields that are nowhere differentiable.

The imposition of constraints on the Hopf equation makes the task of solving it at least as

difficult as the task of solving the Navier-Stokes equations exactly and repeatedly so that

averages can be taken.

Other pdf methods havc been proposcd recently for turbulence modeling, and have found
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particular favor in the combustioii area. The general idea is to find ordinary stochastic

differential equations that model the evolution of the pdf $\prime s$ for the velocity field and for

other variables, effectively attempting to produce a sampling $p1^{\backslash }ocedure$ for solving Hopf’s

equation. The numerical troubles that arise in these procedures pale in comparison with

their fundamental lack of soundne.$ss$ .

Note however tha.$t$ there is all inverse pdf niethod that is perfcctly sound, but produces

only specific numeiical soliitions for thc $N_{i}\iota\backslash \cdot i$ er-Stokcs equ$\mathfrak{c}\urcorner.tions$ , not sampled descriptions

of their statistics: Vortcx mcthods produce stochastic or noii-stochastic ordinary differen-

tial equations, $de\dagger;igncd$ so $r_{I}hat$ the $corl\cdot espon\subset ling$ pdf $\backslash atisfy$ the Navier-Stokes equation.

There exist “modeling” nletllc)ds, based $011$ avcraging, that do make sense. In some

problems one can concentrate on the diffusive aspects of turbulence, assume that turbu-

lent diffusion depends on local kinetic cnergy and scale, work out equations that embody

these ideas, and sprinkle them with adjustable const $\urcorner$cllts to ensure quantitative adequacy

in well defined settings. For other problems, one can argue that vorticity creation and

dispersal dominate the flow, and producc adjustable eqnations to match. When flows are

well understood qualitatively and when there are good experimental data to lean on, the

resulting equations can be very effective in interpolating betiveen experiments. This is a

lot, and more cannot be expected. One cannot expect to obtain a general description of

turbulence that is $:_{reduced’}$ from the Navier-Stokes equations, in the sense that Euler’s

equations for a gas provide a description that is reduced from a description by Boltzmann’s

equation. As stated before, calcnlation on large scales and modeling on small scales is likely

to be better than modeling alone, becausc then uncontrolled assumptions are applied to a

smaller part of the problem.

Renormalization; expansioiis in dominaiit lllodes. Renormalization methods have

various forms md uses in quantum and statistical physics; in the context of turbulence

theory they are methods for replacing a system with many degrees of freedom by a system

with fewer degrees of freedom without altcring the statistics unduly.

To explain the idea. consider the problem of determining thc $a\backslash \dot{\prime}erage$ IQ of $N$ people,

where $N$ is large. Suppose one $C\subset\backslash n$ determine the IQ of a person $1\supset y$ perusing his$/her$ an-
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swers to a list of matheniatical qucstions. In principle, one can distribute $N$ questionnaires

to the $N$ people, grade them, and avcrage the result. If $N$ is large, this may be too labor

consuming.

To make life easier, divide the $N$ people into subgroups of $m$ , say $nz=5$ , and let

each subgroup work on a single questioniiaire; suppose you know the ratio of the effective,

apparent IQ of a group to its avcrage IQ; call this ratio $\phi$ (IQ). Then grading $N/5$ ques-

tionnaires will yield the $effecti\backslash Feitver\langle’\iota ge$ IQ of the $NP^{(ople}z^{1}$
’ and multiplication by $\phi^{-1}$

will get the true average.

Here is a possible shape of $\phi$ :

Fig. 1. Scaling function $\phi$ .

This shape can be rationalizcd as follows: smart people recognize the right $ans\backslash vers$ even

when they are produccd by others, and a $gro\iota lp$ of them is at $1e_{c}^{r}\iota st$ as smart as the smartest

member of the group. $Non- smai\cdot tp_{CC)}p1e$ clo not accept ea $\mathfrak{c}\cdot h$ other’s $tr\iota lths$ , and are as a

group less smart than their averagc.

Why stop at one step of this pro$e:css$ ? Let cach group of five send a representative to

a committee of five such rcpresent $\dot{\iota}ti\backslash Jarrow es$, and let them dccide what the answers are. One

proceeds via a new levcl of committees rathcr thm to groups of 25 members to ensure

that the process is $repctiti)^{+}c_{-}^{x}$ , ixnd tliat the same $\phi$ can be used ovcr and over –useful

features in most applications. Assiiming that the saine $\phi detei\cdot\min es$ tlie ratio of effective

to average IQ for groups, one can obtain the avcrage IQ of $N$ people by grading $\Lambda^{\gamma}/25$

questioimaires. This process can then be repeated, until the number of questionnaires
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becomes manageable. This is a renormalization process.

Note that if IQ is less thm IQ $c$ ’ the values of IQ for which $\phi=1$ , the effective IQ goes

down in each iteration, until $0$ is reached. If IQ $>IQ_{c}$ , the effective IQ goes up. IQ$=0$ md

$IQ=\infty$ are stable fixed points of the renormalization. IQ$=IQ_{c}$ is an unstable fixed point.

At IQ$=$IQ $c$ ’ the avcrage and affective IQ $s$ are the same; such an equality should then hold

for a group of people of aiiy size, and the unstable fixed point IQ$c$ is then “scale invariant”;

IQ $c$ is a “critical point”. In physical systems, scale invariance occurs when the correlation

length is infinite, becanse grouping objects into groups decreases the correlation length

by shrinking the number of new $\iota\supset bjects$ that are correlated, except when the correlation

length is infinite. When the correlation length is infinite, one expects large fluctuations

and other odd phenomena.

One very effective way to carry out renormalization in physical processes is to use Fourier

variables. The removal of high frequency Fourier components is a coarsening quite similar

to the grouping of the IQ problem. One cm take a system with wave numbers $k$ in the

range $0<k<k_{1}$ , do something with the ones between $k_{1}$ and $k_{1}-\triangle$ , $\triangle$ small, feed

the information into the remaining m\’Odes $md$ , if the new system looks like the old system

with possibly new effectivc paranieters, one can repeat the process until the number of

modes is manageable. ($Fo1m$ expository treatmmt, see e.g. McComb [19].) However,

what does one mean by “do soinething” with the unwanted modes? Some assumptions,

similar to assumptions above about the shape of $\phi$ , must be made. One should be wary

of hidden assumptions, for example $as^{\backslash }s\iota 1mptions$ to the effect that a renormalized system

can still be described by a system of differential equations rather than by, for example,

integro-differential $equati\subset$)$ns$ . Much of the mathematics of this type of renormalization

has been cleared up by the work of $Ai^{\tau}allene(1a$ and Majda [2] on turbulent diffusion, where

the complexity of the results, the dcpcndence of the results $011$ various parameters, and

the dangers of hiddeii assuniptions $ar\cdot e$ cxplicitly $appal\cdot ent$ . One should be very wary of

the application of this nietIiodolog$J^{}$ to the full Navier-Stokes equations.

It turns out that renormalization methods cm yield equations for the large scales that

resemble some of the heuristic models discussed in the preceding section. This does not

prove that the models axe right, only that one can $mal\backslash \prime e$ assumptions both explicitly and
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implicitly.

An interesting paradox $apl$) $ears11ei\cdot e$ : onc could think of getting rid of high frequency

scales by renormalization, md then $soli^{r}e$ for the remaining scales by standard numerics,

as in large eddy simulation. The trouble is that renormalization generally modifies the

equations for the remaining scales (as in the creation of an “effective” IQ above) while

large eddy simulation uses the Etiler or Navier-Stokes equation for the large scales in their

original state. Renormalization and large-eddy simulation reduce to each other, at least

in principle, if a $turb\iota 1lcnt$ state is invariaiit uncler reiiormalization, i.e., lies at a critical

point. In the next section we sliaJl $a\iota\cdot g\tau\iota e$ tliat is indeed so.

One may well woncler wliy, if rcnorinaJization is possible, is it necessary to carry it

out. Why go to the $troul\supset lc$ of $ci\cdot eating$ small-scaJe, low eiiergy modes md then remove

them? Why not simply identify the important (e.g., energy containing) modes and forsake

all others by expanding the velocity field in the few dominant modes? Such ideas have

been proposed many times over the years (for an $e_{c}\backslash rly$ review, see e.g. [8], for more recent

attacks, see e.g. [1] $)$ . The problem is that the neglected small scales can serve as interaction

catalysts and energy sinks, and cannot be neglected even if their energy is low. One can

renormalize a sieve into a bowl by a proper treatment of the holes, but one cannot forget

the holes and $identif\tau/$ the sieve with a bowl. The cnergy sinks do not act uniformly on

all modes, and a proper accounting for the energy loss and other features requires a good

description of the dynamics of $1_{\epsilon}\urcorner xge$ scales, i.e., many dominant modes. (For an early

analysis, see [7],[8]; for recent results, see e.g. [11]. $)$ When an expansion in dominant

modes contains many terins, it becomes a special case of $1_{\epsilon\urcorner}x$ge-eddy simulation.

Vortex equilibria. It is iiicrcasingly rccogiiized that $turb\iota 1lence$ , at least at low Mach

numbers, is dominated $|)y\backslash \cdot\subset)rtic_{\dot{C}}\backslash 1s\dagger rnct\iota lres$ . In other areas of physics where vortices

are important, a set of $renorm_{\dot{f}}\backslash 1i^{r}z$ a.fioii inethods known $c\urcorner S$ “real-space renormalization”,

which do not use a spectral reprcsentati $()n$ , have turncd out to be very useful [16],[23].

This methodology can bc a.pplied to flnid $d_{J}:namics[9],[10]$ .

The first step is to construct therinal $eq\iota iilibria$ for vortex systems. In two space di-

mensions such $eq\iota lilibriaha\backslash re$ been studied by Onsager and Joyce and Montgomery, and
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rigorized in recent years ($fo1^{\backslash }$ a ieview, see [9]). In $\{$ hree space diinensions such a construc-

tion has also been carried out, on a more $heu1^{\backslash }istic$ level.

Consider a sparse collection of vortex fil$(\urcorner ments$ , as is appropriate for intermittent flow,

and assume their $1engthL\backslash t^{\backslash }$ are fixed so that $tll\backslash$ cm be reached. It is enough

to consider a single filament. Endow this filamcnt with the appropriate hydrodynamical

energy $E=(8 \pi)^{-1}\int dx\int dx’\xi(x)\cdot\xi(x’)/|x-x’|$ , where $\xi(x)$ is the vorticity at $x$ , and

assign to each configuratioii $C$ of the filament a Gibbs $1$)$robabilityP(C)\propto\exp(-E/T)$

where $T$ is a vortex temperature that cm be positive or negative. A negative temperature

is “hotter” than a positive teinperature, md $|T|=\infty$ is the boundary between positive

and negative temperatures.

When $T<0$ the $vol\cdot tex$ lincs $a1^{\cdot}C$ smooth. Wlien $T>0$ vortex filaments collapse

into tightly folded structures, md if $1^{\backslash }C(onnc_{d^{\backslash }}ction$ is allowed, they break down into small

loops. At the boundary $|T|=\infty$ the vort $t_{i}^{\urcorner}X$ lines are fractal objects whose axes has fractal

dimension $\sim 5/3$ ; the corresponding $sl$ ) $ectrum$ has the Kolmogorov form. The average

energy of a vortex system is $minci\cdot easiiig$ function of $T$ (remembering that $T<0$ is hotter

than $T>0$ ) and of the length $L$ of the filament. In the neighborhood of the $|T|=\infty$

trmsition a vortex system rcsenibles a $\backslash$-ortex system iiear the $superfluid/normal$ fluid

quantum transition, where a renoriiialization $proced\iota lre$ is kiiown.

Now suppose vortex stretcliing is allowcd. Start with smooth vortex lines $(T<0)$ .

Conservation of energy md the increase in $L$ will forcc tlie temperature down, towards

$|T|=\infty$ . The $|T|=\infty$ threshold is uncrossable for a continuum Euler system, and

that is where such a system will remain. A viscous flnid or an miderresolved numerical

calculation cm cross that threshold. This crossing is accompaiiied by a loss of energy, by

reconnection, and by a growth in the fractal dimension of the filaments, md thus by excess

vortex stretching md folding. (One consequence is that large energy loss and reconnection

appear simultaneously.)

It goes without saying that in time-dependent problems, where the initial data are

smooth and the large-scale $feat\iota lrcs$ of the flow are time-depondent, equilibrium and quasi-

equilibrium considerations apply only to the small scales of motion.

The $|T|=\infty turb\iota 11c^{s}nt$ st $\zeta\urcorner tc$ is a $Critic_{\dot{f}\backslash 1st_{\dot{C}}\iota.t}\zeta^{Y}$ , in the sense of the theory of critical phe-
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nomena, and it shares many properties with a quantum vortex system at the temperature

$T_{c}$ of the superfluid trmsition. Indeed, in a model $2 \frac{1}{2}$ dimensional” system one can draw

a curve in an appropriate parameter space that links these transitions and along which the

properties of the system are $inv_{c}\urcorner xiant$ . It is reasonable to expect that the renormalization

analysis near the superfluid trmsitioii caii $|\dot{3}1_{1C^{\wedge\backslash }}d$ light $011$ the turbulent state and suggest

ways of “renormalizing”, i.e., simplifying vortex calculations.

In a renormalization, one repeatedly removes small scales from a calculation in such a

way that equilibria or dynamics are unchanged on larger scales. Assume that the small

scales are in approximate thermal $e\mathfrak{c}luilibrium$ , and suppose to begin with that the tem-

perature $T$ is finite and positive. Wheii $T>0$ , a large vortex loop “polarizes” smaller

ones, i.e., the greater likdihood of $10\backslash ver$ encrgies in a Gibbs distribution with $T>0$ makes

it likely that smaller loops are arraiiged so as to reduce tlie energy. The removal of small

scale structures requires a decrease in vortex strength to make up for it. For $T<0$ ,

the opposite is true: at or near equilibrium a large loop “anti-polarizes” smaller ones,

and renormalization requires the strengthening of remaining vortex lines. On the $|T|=\infty$

boundary between positive and negative temperatures one should be able to removes small

loops with impunity and leave the $i^{\gamma}ortex$ strengths invariant. The turbulent state is thus

invariant under the right renormalization.

To apply this renorm$\epsilon\gamma\lrcorner ization$ to fluid mechanics the $c\prime 1$ bandonment of long cherished

ideas. The universal behavior of small scales lias loiig been explained as an essentially non-

equilibrium process that moves $enei\cdot gy$ from large to small scales. To apply an equilibrium

theory, and the resulting recipe for handling small scales, one has to assumc that though

the formation of $m$ extended $spectr\iota\iota m$ is irreversible, once $m$ inertial range is formed it

lives in a neighborhood of a thermal equilibrium. In particular, energy goes up and down

the ladder of scales, with a $re1_{c}’\iota tivcly$ small excess of $enei\cdot gy$ going down over energy going

up. There exists experimental eviclence that supports this assumption [20]. The resulting

renormalization has bcen tested, with positi $\backslash e$ rcsults, only in a few simple cases [10],[21].

If this theory is valid. it opens fhc door $t_{t}$) $effecti_{Y^{*}}e1\cdot eilormalization$ . It also reconciles

renormalization $\backslash vitll$ large ed $(1\backslash \vee\cdot$ simulation, and explains the $pec\iota 1liarities$ of truncated

moment expmsions.
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Conclusions. If you have to model turbulence, you have at present the following plausible

options:

(i) If you have some reasoiible understanding of the phenomena specific to your problem

md access to some experimental data, $\iota\iota se$ a simple model and keep your expectations low.

(ii) If your problem is relatively simple, if you have access to a good computer and up-

to-date numerics, and if you do not need $\ln n$ch accuracy, large-eddy simulation is surely

the best option.

Major $breakthro\iota\iota ghs$ iequire new ideas, md there is hope that renormalization based

on vortex equilibrium theory will provide soine of them.
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List of Figure Captions

Fig. 1. Scaling function $\phi$ .
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