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Abstract
The differential-geometric formulation of ideal magnetohydrodynamics is devel-

oped recently. In this article we discuss its applications in three directions: (i) phys-
ical interpretation of Jacobi fields; (ii) some typical sectional curvaturtes; and $(\ddot{\dot{m}})$

derivation of su$(N)$-truncation.

1 Introduction

It is Arnold who revealed the differential-geometric structure of ideal hydrodynamics by his
deep insight [2, 3]; that is, the total motion of fluid particles in ideal (ideal implies inviscid
and incompressible throughout this article) fluid is a geodesic on the group of volume-
preserving diffeomorphisms on a flow region; this group, sometimes denoted by $SDiff(M)$ ,

is denoted by $\mathcal{D}_{v}(M)$ where $M$ is the flow region.
Strictly speaking, the theory by Amold does not refer to the problem on analyticity.

The above group of diffeomorphisms becomes a proper object in mathematics only when
we decide a class of diffeomorphysms to be included in the group. However, when we
consider a group of $C^{\infty}$-diffeomorphisms on $M$ , denoted by $\mathcal{D}^{\infty}(M)$ , it cannot be even a
complete space; if we consider its completion by $H^{s}$ -norm, denoted by $\mathcal{D}^{s}(M)$ , it becomes a
topological group, but still not a Lie group. This problem has been solved in two directions.
One is to extend the notion of Lie group; $\mathcal{D}^{\infty}(M)$ is an ILH-Lie group (Omori [16]). The
other solution by Ebin and Marsden [4] is that sufficient smoothness of exponential mapping
on $\mathcal{D}^{s}(M)$ can be proved. Therefore, we have mathematical foundation for the differential-
geometric formulation of ideal hydrodynamics.
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Recently we have shown that ideal magnetohydrodynamics $(MHD)$ also generally admits
a differential-geometric formulation [6]; that is, the equations of motion for ideal MHD flow
correspond to the equations of geodesics on a semidirect product group. This has been
proved for a limited case, i.e., two-dimensional case with periodic boundary, by Zeitlin and
Kambe [19].

Although we have such beautiful property of ideal dynamics, there are a few attempts
to utilize it in the analysis of fluid motion; $ac$tually, differential-geometric structures have
been studied by calculating sectional curvatures of the group [2, 10, 11, 15]. We have tried
to give a reasonable basis for exponential stretching of line elements using the differential-
geometric formulation [8]. Nakamura discussed the application of Jacobi fields [14].

In this article, we are primarily concemed with physical applications of this mathematical
formulation of ideal MHD. We proceed in three ways: (i) physical interpretation of Jacobi
fields; (ii) calculation of sectional curvatures; and (iii) derivation of su$(N)$-truncations. We
also discuss the relation between our formulation and non-canonical Hamiltonian formalism;
ideal MHD is a non-canonical Hamiltonian system on a semidirect product space[12]. After
our formulation, differential-geometric formulation using the same semidirect product with
the product in Marsden et al. was given by Ono [17].

The paper is organized as follows; after summarizing the differential-geometric formula-
tion in section 2, we discuss its relation to non-canonical Hamiltonian formalism in section
3; three directions of physical application given above are presented in section 4-6, respec-
tively.

2 Differential-geometric formulation of ideal MHD

In this section, we briefly summarize the differential-geometric formulation [6] with some
different notations.

Let $G$ be a semidirect product of $\mathcal{D}_{v}(M)$ and $\mathcal{X}_{0}(M)$ ; in the preceding letter [6], they
are denoted by $SDiff(M)$ and $Vect_{0}(M)$ , respectively. The domain $M\in R^{3}$ of MHD flow
is assumed to be a flat torus with periodic boundary or a simply-connected finite region.
The multiplication in $G$ is defined as

$(g, \gamma)o(h, \eta)=(goh, Ad_{h-1}\gamma+\eta)$ , (1)

where Ad$h^{-1}=\tilde{L}_{h^{-1}}\tilde{R}_{h}$ is the usual adjoint action.
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The Lie algebra of $G$ is defined as a linear space $\mathcal{X}^{R}(G)$ of all right-invariant vector fields
on $G$ . Its bracket reads

$[(u, \alpha)^{R}, (v, \beta)^{R}]|_{(h,\gamma)}=$ $\tilde{R}_{(h,\gamma)}((u\cdot\nabla)v-(v\cdot\nabla)u$ ,

$(u\cdot\nabla)\beta-(\beta\cdot\nabla)u+(\alpha\cdot\nabla)v-(v\cdot\nabla)\alpha)$ , (2)

where $(u, \alpha)^{R}|_{(h,\gamma)}=\tilde{R}_{(h,\gamma)}(u, \alpha)$ with $(u, \alpha)\in T_{(e,0)}G$ is an element of $\mathcal{X}^{R}(G)$ .
We construct a right-invariant metric on $G$ by: (i) defining it at the identity; and (ii)

extending it to every point with right action. That is,

$<(u, \alpha),$ $(v, \beta)>|_{(e,0)}=\int_{M}u\cdot vd^{3}x+\int_{M}\alpha(-\triangle^{-1})\beta d^{3}x$ (3)

for $(u, \alpha),$ $(v, \beta)\in T_{(e_{r}0)}G$ and

$<(u’,$ $\alpha’),$ $(v’,$ $\beta’)>|(h,\gamma)=<\tilde{R}_{(h^{-1},-}$Ad$h\gamma)(u’,$ $\alpha’),\tilde{R}_{(h-}-1$, Ad$h\gamma)(v^{/},$ $\beta’)>|(\epsilon,0)$ (4 )

for $(u’, \alpha’),$ $(v’, \beta’)\in T_{(h,\gamma)}G$ . For a given metric there is a Levi-Civita connection $\tilde{\nabla}$ derived
by the following formula [9]

$2<\tilde{\nabla}_{X}Y,$ $Z>=$ $X<Y,$ $Z>+Y<Z,$ $X>-Z<X,$ $Y>$

$+<Z,$ $[X, Y]>+<Y,$ $[Z, X]>-<X,$ $[Y, Z]>$ . (5)

By this formula, we obtain the Levi-Civita connection on $G$ for right-invariant vector fields

$\tilde{\nabla}_{(u_{r}\alpha)^{R}}$ $(v, \beta)^{R}|_{(h_{2}\gamma)}=\tilde{R}_{(h_{2}\gamma)}(P[(u\cdot\nabla)v-\frac{1}{2}(\alpha\cross B_{\beta}+\beta\cross B_{\alpha})]$,

$[ \frac{1}{2}\nabla\cross(-u\cross\beta+v\cross\alpha)-\frac{1}{2}\nabla\cross(\nabla\cross(u\cross B_{\beta}+v\cross B_{\alpha}))])$ (6)

where $B_{\alpha}$ is a vector field on $M$ satisfying

$\nabla\cross B_{\alpha}=\alpha$ , $\nabla\cdot B_{\alpha}=0$ . (7)

With this connection we have che equation of geodesics

$\tilde{\nabla}_{X}X=0$ , $X= \frac{d}{dt}\sigma(t)$ . (8)

In order to express this equation at the identity of $G$ , or to obtain the equation in Eulerian
picture, we apply $\tilde{R}_{\sigma(t)^{-1}}$ to eq.(8)

$\tilde{R}_{\sigma(t)^{-1}}\tilde{\nabla}_{X}X=0$ . (9)
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The left-hand side of the above equation is calculated to be

$\tilde{R}_{\sigma(t)^{-1}}\tilde{\nabla}_{X}X=\frac{\partial\tilde{R}_{\sigma(t)^{-1}}X}{\partial t}+\tilde{R}_{\sigma(t)^{-1}}\tilde{\nabla}_{X_{l}’}X_{t}’$. (10)

Here we have introduced the right-invariant vector field $X_{t}’$ defined by

. $X_{t_{0}}’(\sigma(t_{0}))=X(t_{0})$ , $\lambda_{t_{0}}’|_{(g,\gamma)}=\tilde{R}_{(g\cdot\sigma(t_{0})^{-1},\gamma)}X(t_{0})$ (11)

for fixed $t_{0}$ .
From eq.(6) and (10) the equation of geodesics becomes

$\frac{\partial u}{\partial t}+P[(u\cdot\nabla)u-\alpha\cross B_{\alpha}]=0$, (12)

$\frac{\partial\alpha}{\partial t}-P[\nabla\cross(\nabla\cross(u\cross B_{\alpha}))]=0$ (13)

for $(u, \alpha)=\tilde{R}_{\sigma(t)^{-1}}X(t)\in T_{(e_{2}0)}G$. If we write the projection explicitly as $P[u)]=w-\nabla p$

with a function $p$ on $M$ and integrate the equation (12) into that for $B_{\alpha}$ , the above equations
turn out to be the 3d-iMHD equations

$\frac{\partial u}{\partial t}+(u\cdot\nabla)u=-\nabla p+j\cross B$, (14)

$\frac{\partial B}{\partial t}=\nabla\cross(u\cross B)$ . (15)

3 Relation to non-canonical Hamiltonian formalism

The non-canonical Hamiltonian structure of MHD equations without diffusivity was first
recognized by Morrison and Greene [13]. It turns out to be a Hamiltonian system on a Lie
algebra of semidirect product group [12]. The algebra is

$\mathcal{X}_{0}(M)\cross \mathcal{F}(M)\cross\Lambda^{1}(M)$ (16)

where $\mathcal{F}(M)$ is a space of functions on $M$ and $\Lambda^{1}(M)$ is a space of l-form fields on $M$ ; the
former corresponds to the density fields and the latter to the magnetic fields. If we impose
incompressibility, the algebra is reduced to

$\mathcal{X}_{0}(M)\cross\Lambda^{1}(M)$ . (17)
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The bracket of this algebra is

$[(u, B_{u}), (v, B_{v})]=((u\cdot\nabla)v-(v\cdot\nabla)u, adu*B_{v}- adv*B_{u})$ . (18)

The above algebra is seen to have close connection with our algebra $\mathcal{X}_{0}(\Lambda f)\cross \mathcal{X}_{0}(M)$ as
follows. For appropriate domains and boundary conditions, the following correspondence

between current fields and magnetic fields is one-to-one

$\nabla\cross:B\#\mapsto j$ , $(P[(\nabla\cross)^{-1}])^{b}:j\mapsto B$ .

Here we denoted by $B\#\in \mathcal{X}_{0}(M)$ the dual of $B\in\Lambda^{1}(M)$ and the dual of $w\in \mathcal{X}_{0}(M)$

is denoted by $w^{b}\in\Lambda^{1}(M)$ . With this correspondence, we can extend the bracket (2) of
$\mathcal{X}^{R}(G)$ to that of $\mathcal{X}^{R}(\mathcal{D}_{v}(M)\triangleright<\Lambda^{1}(M))$ The result is

$[(u, 0)^{R}, (0, B)^{R}]=(0, (P[u\cross(\nabla\cross B^{\#})])^{b})^{R}$ (19)

for $u\in \mathcal{X}_{0}(M),$ $B\in\Lambda^{1}(M)$ . The general expression of bracket is recovered with (19) and
$[(0, B_{1})^{R}, (0, B_{2})^{R}]=0$ by its bilinearity.

Now the relation between two brackets is clear from the following identity

$P[(\mathcal{L}_{v}B)^{\#}]=-P[v\cross(\nabla\cross B^{\#})]$

(note that it holds $\mathcal{L}_{v}B=ad_{v}^{*}B$). That is, the bracket (19) is the restriction of the bracket
(18) to $\mathcal{X}^{R}(\mathcal{D}_{v}(M)\triangleright<(\mathcal{X}_{0}(M))^{b})$ . It is easy to check that the restricted bracket is actually
a bracket.

4 Physical interpretation of Jacobi fields

One of the applications of the above formulation can be performed by studying Jacobi
fields. A variation of geodesics on $G$ is defined as

$\tau_{t}^{s}:[-\epsilon, \epsilon]\cross[-\epsilon, \epsilon]arrow G$

where each $\tau_{t}^{s_{0}}$ ( $s_{0}$ : fixed) is a geodesic. With this definition, a Jacobi field is defined as

$W_{t}=(\tilde{\nabla}_{s}\tau_{t}^{s})_{s=0}$ .
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The equation for Jacobi fields is derived from the above definition and the equation of
geodesics to be

$\tilde{\nabla}_{t}^{2}W_{t}+R(W_{t}, Y_{t})Y_{t}=0$ (20)

where $Y_{t}=\tilde{\nabla}_{t}\tau_{t}^{0}$ .
Nakamura [14] found that a special choice of variation leads to a simplified equation of

(20); a right translation of a geodesic also becomes a geodesic. Thus we can take $\tau_{t}^{s}=\tilde{R}_{a^{\theta}}\sigma$

as a variation, where $a^{s}$ is a curve on $G$ with $a^{0}=e$ and $\sigma$ is a geodesic. Then the following
equation determines the evolution of Jacobi field $W_{t}$

$\tilde{\nabla}_{t}W_{t}=(\tilde{\nabla}_{s}\tilde{\nabla}_{t}\tau_{t}^{s})_{s=0}$ . (21)

For the case of $\mathcal{D}_{v}(M)$ this reduces to be

$\frac{\partial w}{\partial t}+(u\cdot\nabla)w=(w\cdot\nabla)u$ (22)

where $w=\tilde{R}_{\sigma_{t}^{-1}}W_{t},$ $u=\tilde{R}_{\sigma_{t}^{-1}}\tilde{\nabla}_{t}\sigma_{t}$ . This is an equation for infinitesimal line elements
kinematically convected and stretched by the flow field $u$ .

We can proceed in the similar way for ideal MHD. If we express the equation 21 at the
identity, we obtain

$\frac{\partial w}{\partial t}+(u\cdot\nabla)w=(w\cdot\nabla)u$ (23)

$\frac{\partial\zeta}{\partial t}+\nabla\cross(-u\cross\zeta+w\cross\alpha)=0$ (24)

where $(w, \zeta)=\tilde{R}_{\sigma_{t}^{-1}}W_{t},$ $(u,j)=\tilde{R}_{\sigma_{l}^{-1}}\tilde{\nabla}_{t}\sigma_{t}$ and $\sigma_{t}=(g, \alpha)$ . The former (23) is again the
equation for line elements. The latter equation is interpreted as the equation for deviation
of translated charge; the second term in (24) represents the effect of initial translated charge
and the third term represents the effect of different labeling of fluid particles.

5 Sectional curvatures

The sectional curvature of the section spanned by tangent vectors $X,$ $Y$ is defined as

$K(X, Y)= \frac{R}{<X,X><Y,Y>-<X,Y>2}$ (25)
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where $R=<R(X, Y)Y,$ $X>$ . It is not enlightening to present the explicit expression of
sectional curvature of $G$ generally. Its tensor form $R$ is decomposed as

$R$ $=$ $<R(u, v)v,$ $u>+2<R(u, v)\beta,$ $\alpha>$

$+2<R(u, \beta)v,$ $\alpha>+<R(u, \beta)\beta,$ $u>$

$+<R(\alpha, v)v,$ $\alpha>+<R(\alpha, \beta)\beta,$ $\alpha>$ (26)

for $X=(u, \alpha),$ $Y=(v, \beta)$ . Here we write simply as $<R((u, 0), (v, 0))(0, \beta),$ $(0, \alpha)>=<$

$R(u, v)\beta,$ $\alpha>$ and so on.
We focus on three typical types of sectional curvature here: (i) pure hydrodynamic

section; (ii) pure magnetic section; and (iii) section spanned by pure hydrodynamic vector
and pure magnetic vector.

5.1 Pure hydrodynamic section

Using the connection (6), we obtain the sectional curvature of the pure hydrodynainic
section spanned by $(u, 0),$ $(v, 0)$ as

$R_{H}$ $=$ $<R(u, v)v,$ $u>$

$=$ $<Q[(v\cdot\nabla)v],$ $Q[(u\cdot\nabla)u]>-|Q[(u\cdot\nabla)v]|^{2}$ (27)

in tensor form. Here we denote by $Q$ the projection operator from $\mathcal{X}(M)$ to the space of
all vector fields in gradient form; i.e. $Q=I-P$. Of course, this is identical with the case
of $\mathcal{D}_{v}(M)[11]$ . From the above expression it holds

Prop. 1 ([11]) if $u$ satisfies $Q[(u\cdot\nabla)u]=0(e.g. u=(u_{1}(z), u_{2}(z), 0))$, then $R_{H}\leq 0$ .

5.2 Pure magnetic section

The sectional curvature of the pure magnetic section spanned by $(0, \alpha),$ $(0, \beta)$ is calculated
to be

$R_{M}$ $=$ $<R(\alpha, \beta)\beta,$ $\alpha>$

$=$ $-<P[(B_{\beta}\cdot\nabla)B_{\beta}],$ $P[(B_{\alpha}\cdot\nabla)B_{\alpha}]>$

$+ \frac{1}{4}|P[(B_{\alpha}\cdot\nabla)B_{\beta}+(B_{\beta}\cdot\nabla)B_{\alpha}]|^{2}$ (28)

in tensor form. From this expression we obtain
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Prop. 2 if $B_{\alpha}$ satnsfies $P[(B_{\alpha}\cdot\nabla)B_{\alpha}]=0$ , then $R_{M}\geq 0$ .

The condition $P[(B_{\alpha}\cdot\nabla)B_{\alpha}]=0$ implies that $B_{\alpha}$ is a “steady velocity field” in ideal HD,

or equivalently, $u=B_{\alpha}$ is a steady solution of the Euler equation

$\frac{\partial u}{\partial t}+(u\cdot\nabla)u=-\nabla p$ .

This condition is satisfied for the field which has Beltrami property, i.e. $\nabla\cross B_{\alpha}\Vert B_{\alpha}$

everywhere; it is called a force-free field in MHD since the Lorentz force vanishes; $\alpha\cross B_{\alpha}=$

$0$ .

5.3 Section spanned by pure hydrodynric vector and pure
magnetic vector

For the section spanned by $(u, 0)$ and $(0, \beta)$ , the sectional curvature is calculated to be

$R_{HM}$ $=$ $<R(u, \beta)\beta,$ $u>$

$=$ $<P[(B_{\beta}\cdot\nabla)B_{\beta}],$ $P[(u\cdot\nabla)u]>$

$+ \frac{1}{4}|\nabla\cross(u\cross B_{\beta})+P[u\cross\beta]|^{2}-|P[u\cross\beta]|^{2}$ (29)

in tensor form. It holds

Prop. 3 if $u$ or $B_{\beta}$ is a “steady velocity field” and $u\Vert\beta$ everywhere, then $R_{HM}\geq 0$ .

If $u$ or $B_{\beta}$ is a “steady velocity field $f$ and $u\Vert B_{\beta}$ everywhere, then $R_{HM}\leq 0$ .

6 Derivation of su$(N)$-truncations

Another application of the differential-geometric formulation is a derivation of su$(N)-$

truncation proposed by Zeitlin [18].
When we perform numerical calculations of hydrodynamic or magnetohydrodynamic

phenomena, the equation should be truncated to a finite number of degrees of freedom.
Let us consider the case of the two-dimensional Euler equation with periodic boundary
condition; the spectral method with Fourier expansion is often used in this case. Then the
equations for Fourier modes become

$\frac{d}{dt}y^{k}+\sum_{1\in C,m=k-1}\{\frac{|m|^{2}}{|k|^{2}}(1\cross m)\}y^{1}y^{m}=0$ (30)
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where $y^{k}$ is a Fourier amplitude of vorticity for wavenumber vector $k$ and $C$ is a region of
wavenumber vectors whose Fourier amplitude is not truncated. Equations (30) are often
called an Inviscid Truncated System (ITS).

Since the Liouville property holds for ITS, we can discuss the spectrum of ITS statisti-
cally; that is, taking account of two invariants, energy and enstrophy,

$E= \sum_{k}\frac{|y^{k}|^{2}}{|k|^{2}}$ , $\Omega=\sum_{k}|y^{k}|^{2}$ ,

we have the following canonical ensemble average

$<|y k|^{2}>=\frac{|k|^{2}}{\alpha+\beta|k|^{2}}$

from the corresponding partition function.
However, ITS does not inherit the Hamiltonian structure of the original equation. As

its result, ITS does not have invariants other than two invariants above, though the two-
dimensional Euler equation conserves the integral of any function of vorticity $\int f(\omega)d^{2}x$ .

The su$(N)$-truncation is another truncation of the Euler equation which solves the above
problem; it is derived by the differential-geometric formulation with a Lie group SU$(N)$

instead of $\mathcal{D}_{v}(M)$ . Choosing a basis of $T_{e}G=$ su$(N)$ as

$\{e_{(j_{1},j_{2})}=\frac{i}{2}\zeta^{\frac{1}{2}j_{1}j_{2}}A^{j_{1}}B^{j_{2}}\}$ $j=(j_{1},j_{2})\in C$

where $\zeta=e^{4\pi i/N},$ $C=[-n, n]\cross[-n, n]\subset Z^{2}$ and

$A=(001$ $0\zeta 0^{\cdot}.\cdot$

.

$\zeta^{N-1}00$

$B=(\begin{array}{llll}0 1 \cdots 0\vdots \vdots \ddots \vdots 0 0 \cdots 11 0 \cdots 0\end{array})$

we have the following structure constants

$c_{k1}^{m}= \{\sin\frac{2\pi}{N}(k\cross 1)\}\delta_{k+1|_{mod N},m}$ .
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If we define the metric tensor as
$ak[=|k|^{2}\delta_{k+1,0}$ ,

the equation of geodesics at $T_{e}^{*}G$ tums out to be

$\frac{d}{dt}y^{k}+\sum_{1\in C,m=k-1|_{mod N}}\{\frac{|m|^{2}}{|k|^{2}}\sin\frac{2\pi}{N}(1\cross m)\}y^{1}y^{m}=0$ . (31)

These equations are quite similar to equaions (30); the differences are: (i) the presence of
operation mod in (31) and (ii) the coefficients of nonlinear terms; note that $\frac{N}{2\pi}\sin\frac{2_{71}}{N}(1\cross$

$m)arrow 1\cross m$ , as $Narrow\infty$ .
The remarkable feature of su$(N)$-truncation (31) is that it has phase-dependent and

higher-order invariants

$I_{m}= \sum_{k_{1}+\cdots+k_{m}|_{mod N}=0}C_{k_{1}\cdots k_{m}}\omega k_{1}\ldots\omega k_{m}$
, (32)

$C_{k_{1}\cdots k_{m}}= \exp\{\frac{2\pi i}{N}[k_{1}\cross k_{2}+(k_{1}+k_{2})\cross k_{3}+\cdots+(k_{1}+\cdots+k_{m-2})\cross k_{m-1}]\}$ . (33)

These invariants correspond to $\int\omega^{m}d^{2}x$ . Therefore, the su$(N)$ -truncation has an advantage
in discussing the effect of these phase-dependent invariants [5].

We can derive an su$(N)$-truncation of ideal MHD in the similar way using the semidirect
product group $G=$ SU $(N)\triangleright<$ su$(N)$ ; its multiplication law is

$(g, \alpha)o(h, \beta)=(gh, Ad_{h^{-1}}\alpha+\beta)$ .

For the following basis of $T_{e}G$

$\{(e_{j}, 0), (0, e_{k’})\}$ ,

we have the structure constants

$c_{k1}^{m}= \{\sin\frac{2\pi}{N}(k\cross 1)\}\delta_{k+1|_{mod N},m}$ ,

$c_{k’ 1}^{m’}=-c_{1k}^{m’,}= \{\sin\frac{2\pi}{N}(k’\cross 1)\}\delta_{k^{i}+1|_{mod N},m’}$ ,

$c_{k’ 1}^{m}=c_{k1’}^{m}=c_{k1}^{m’}=c_{k’ 1’}^{m}=c_{k’ 1^{1}}^{m’}=0$ .
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Choosing a metric tensor as

$a_{k1}$ $=$ $|k|^{2}\delta_{k+1,0}$ , $a_{k^{r}1}=0$ , (34)

$a_{k^{l}1’}$ $=$ $\frac{1}{|k|^{2}}\delta_{k’+1^{l},0}$ , (35)

we have the following equation of geodesics

$\frac{d}{dt}y^{k}$ $+$ $\sum_{1\in C,m=k-1|_{mod N}}\frac{|m|^{2}}{|k|^{2}}\{\sin\frac{2\pi}{N}(1\cross m)\}y^{1}y^{m}$

$- \sum_{1’\in C,m’=k-1’|_{mod N}}\frac{\{\sin\frac{2\pi}{|1’N}(1’\cross m’)\}}{|^{2}|k|^{2}}z^{1’}z^{m’}=0$ (36)

$\frac{d}{dt}z^{k’}+\sum_{1\in C,m^{l}=k^{l}-1|_{mod N}}\frac{|k’|^{2}}{|m’|^{2}}\{\sin\frac{2\pi}{N}(1\cross m’)\}y^{1}z^{m’}=0$ . (37)

The equations (36) and (37) are easily seen to correspond to (14) and (15) respectively.
This su$(N)$-truncation of ideal MHD again has phase-dependent invariants correspond to
invariants of two-dimensional ideal MHD fluid $\int a^{m}d^{2}x$ and $\int\omega a^{m}d^{2}x$ . Its properties will
be reported in the forthcoming paper [7].

7 Summary

We have so far discussed the differential-geometric formulation of ideal MHD and its ap-
plications. The formulation itself gives a new insight to the dynamics of magnetic fluids.
However, whether it can be a poweful tool in the analysis of MHD flow is not evident at
present; it depends on the future study.
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