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Abstract

The present paper deals with modern results for the known Kontorovich-Lebedev
transfoim by index of the Macdonald function and related convolution in Lebesgue
$L_{\nu_{2}p}$-spaces of functions. We study the mapping and factorization properties of these
operators and demonstrate applications to coiresponding class of integial equations
of first and second kind.
AMS (1991) Subject Classiflcation: $44A15,44A35$

1. Introduction

In this paper we consider the known Kontorovich-Lebedev (K-L) transform first in-
troduced in [6] by the formula

(1.1) (flC$f$) $( \tau)=\int_{0}^{\infty}K_{i\tau}(y)f(y)dy$,

where $K_{i\tau}(y)$ is the Macdonald function [1] of the argument $y>0$ and the pure imaginary
index $i\tau(\tau\in R)$ . The Macdonald function in (1.1) is defined by the integral [16]

(1.2) $K_{i\tau}(x)= \frac{1}{2}\int_{i\delta-\infty}^{i\delta+\infty}e^{-x\cosh\beta}e^{i\tau\beta}d\beta$ $(x>0)$ ,

where the parameter $\delta$ is taken from the interval $[0, \pi/2)$ , coordinating with the known
one from [1] according to analytic properties of the integrand (1.2). Recently many results
and wide list of references for K-L transform (1.1) have been collected by the first author
in the monograph [16].

Here we attract our attention to the Lebesgue weighted space $L_{p}(\rho)\equiv^{-}L_{p}(R_{+};\rho)(p\geqq 1)$

with the weight function $\rho(x)>0$ and the finite norm

(1.3) $||f||_{L_{p}(\rho)}=( \int_{0}^{\infty}\rho(t)|f(t)|^{p}dt)^{1/p}$

*Department of Mathematics and Mechanics, Byelorussian State University, P.O.Box 385, Minsk-50,
220050, Belarus
\dagger Department of Applied Mathematics, Fukuoka University, Fukuoka 814-80, Japan

数理解析研究所講究録
第 890巻 1994年 84-119 84



In particular, when $\rho(x)=x^{\nu p-1}(x>0, \nu\in R)$ we will denote such a space as $L_{\nu.p}(R_{+})$ .
Let us mention here useful inequalities for our considerations in the paper which are the
weighted H\"older inequality

(1.4) $\int_{0}^{\infty}|f(t)g(t)|di\leqq||f||_{L_{p}(\rho)}||g||_{L_{2}(\rho^{1-q})}$, $q= \frac{p}{p-1}$

and the generalized Minkowski inequalily.

(1.5) $( \int_{0}^{\infty}dx|\int_{0}^{\infty}f(x,y)dy|^{P})^{11}p\leqq\int_{0}^{\infty}(\int_{0}^{\infty}|f(x, y)|^{p}dx)^{1/p}dy$ .

Another purpose of our investigation is to study a so-called convolution operator re-
lated to K-L transform (1.1) defined by the double integral

(1.6) $(f*g)(x)= \frac{1}{2x}\int_{0}^{\infty}\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xu}{y}+\frac{xy}{u}+\frac{yu}{x}])f(u)g(y)dudy$ $(x>0)$ .

This operator was first introduced in [5] formally as an example cf the integral nonstandard
convolution. Later this operator was considered in detail by the first author in $[12]-[15]$
in a slightly different form. Moreover this convolution was generalized for other index
transforms and applications to various types of integral equations were obtained. In [2] -

[4] the convolution like (1.6) and its analogue for the Mehler-Fock transform in the space
of generalized functions have been considered. In [16] great attention to the convolution
operator (1.6) and its applications is attracted and this class of convolutions essentially
is completed the double integral type convolutions studied in [9].

This paper is intended to draw a parallel between known results for K-L transform
(1.1) and its convolution (1.6) in the spaces $L_{1}$ and $L_{2}$ (see [16]) and new ones in the
weighted space $L_{\nu_{l}p}$ . As conclusion we extend our understanding of these objects and
their applications to integral equations. Some separate examples of integral equations
with convolution (1.6) were considered previously in [7], [16], which involve the operator
(1.6) as follows:

(1.7) (Si$f$) $(x)= \int_{0}^{\infty}K(x, u)f(u)du$ ,

where we fixed some function $g(y)$ and calculated the kernel $K(x, u)$ by integral

(1.8) $K(x, u)= \frac{1}{2x}\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xu}{y}+\frac{xy}{u}+\frac{yu}{x}])g(y)dy$ $(x>0)$ .

We will touch these questions below and will demonstrate interesting examples of integral
equations and their solutions.

2. Inversion of the Kontorovich-Lebedev Transform in $L_{\nu_{1}p}$

Throughout of this section we take $f(x)$ from the weighted space $L_{\nu_{2}p}(R_{+})$ with $\nu\in R$

and $p\geqq 1$ . First we observe from the integral representation (1.1) and the definition of
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the Macdonald function (1.2) that K-L transform is an even function of the real variable
$\tau$ and without loss of generality we can consider it only for the nonnegative variable $\tau$ .
From the asymptotic behavior of the Macdonald function [1] and the H\"older inequality
(1.4) we immediately obtain that the integral (1.1) is absolutely convergent for any func-
tion $f(x)\in L_{\nu,p}(R_{+})$ with $\nu<1$ . Namely we have:

Lemma 2.1. Let $f(x)\in L_{\nu,p}(R_{+})(\nu<1)$ . Then for $K- L$ transform (1.1) $tl_{J}ere\Lambda olds$

$t\Lambda e$ uniform estimate by $\tau\geqq 0$

(2.1) $|(flCf)(\tau)|\leqq C||f||_{L_{\nu,p}(b)}$,

where

(2.2) $C=( \int_{0}^{\infty}K_{0}^{q}(y)y^{(1-\nu)q-1}dy)^{1l}q$ $(q= \frac{p}{p-1}I$

and $K_{0}(x)$ is $t\Lambda e$ Macdonald function of order zero.
Proof. To establish this estimate we can appeal to the simple inequality $|K_{ir}(x)|\leqq$

$K_{0}(x)(x>0)$ that naturally arises from the formula (1.2) if we put there $\delta=0$ . Hence
invoking to. the H\"older inequality (1.4) we have

(2.3) $|(i \mathfrak{B}f)(\tau)|\leqq\int_{0}^{\infty}K_{0}(y)|f(y)|dy$

$\leqq(\int_{0}^{\infty}K_{0}^{q}(y)y^{(1-\nu)q-1}dy)^{1/q}(\int_{0}^{\infty}|f(y)|^{p}y^{\nu p-1}dy)^{1/p}=C||f||_{L_{\nu_{i}p}(}p_{+})$ .

Indeed, according to the known asymptotic of the function

(2.4) $\{\begin{array}{ll}K_{0}(x)=O(\log x) (xarrow+0), K_{\mu}(x)=O(x^{-|\Re\mu|}) (xarrow+0, \mu\neq 0);K_{\mu}(x)=O(\frac{e^{-x}}{\sqrt{x}}) (xarrow\infty), \end{array}$

the integral in (2.2) is obviously convergent when $\nu<1$ . $\blacksquare$

Lemma 2.1 shows that K-L transform of $L_{\nu,p}$-functions is at least continuous function
of $\tau\in R_{+}$ in view of the uniform convergence of the integral (1.1). Moreover we can
deduce its differential properties. Performing the differentiation by $\tau$ of arbitrary order
$k=0,1,$ $\cdots$ under the integral sign in the formula (1.2) with $\delta=0$ we arrive at the
formula

(2.5) $\frac{\partial^{k}}{\partial\tau^{k}}K_{i\tau}(x)=\frac{1}{2}\int_{-\infty}^{\infty}e^{-x\cosh u}e^{i\tau u}(iu)^{k}du$

by the Lebesgue theorem and evidently

(2.6) $\frac{\partial^{k}}{\partial\tau^{k}}K_{i\tau}(x)\leqq\int_{0}^{\infty}e^{-x\cosh u}u^{k}du$ .
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Lemma 2.2. Under $ass$umptions of Lemma 2.1 K-L transform is infinitely diffeien-
tiable function on $R_{+}$ and we Aave $t\Lambda e$ uniform estimate

(2.7) $\frac{d^{k}}{d\tau^{k}}(J\mathfrak{B}f)(\tau)\leqq B_{k}||f||_{L_{\nu,p}(R_{+})}$ $(k=0,1, \cdots)$ ,

where

(2.8) $B_{k}=q^{\nu-1} \Gamma^{1/q}(q(1-\nu))\int_{0}^{\infty}\frac{u^{k}}{\cosh^{1-\nu}u}du<+\infty$ .

Proof. As in the previous Lemma 2.1 by making use of the H\"older inequality (1.4),
we obtain

(2.9) $| \frac{d^{k}}{d\tau^{k}}(RCf)(\tau)|\leqq(\int_{0}^{\infty}|\frac{\partial^{k}}{\partial\tau^{k}}K_{i\tau}(y)|^{q}y^{(1-\nu)q-1}dy)^{1/q}||f||_{L_{\nu,p}(R_{+})}$ .

Invoking to the generalized Minkowski inequality (1.5) and using the estimate (2.6), we
continue

(2. 10) $( \int_{0}^{\infty}|\frac{\partial^{k}}{\partial\tau^{k}}K_{ir}(y)|^{q}y^{(1-\nu)q-1}dy)^{1/q}\leqq\int_{0}^{\infty}u^{k}(\int_{0}^{\infty}e^{-qy\cosh u}y^{(1-\nu)q-1}dy)^{11}qdu$

$=q^{\nu-1} \Gamma^{1/q}(q(1-\nu))\int_{0}^{\infty}\frac{u^{k}}{\cosh^{1-\nu}u}du=B_{k}<+\infty$ .

$\blacksquare$

From these properties for K-L transform it follows that we can discuss its belonging
to the space $L_{r}(R_{+})$ for some $1\leqq r\leqq\infty$ investigating only its behavior at infinity. The
answer can be obtained by applying more careful estimate of the Macdonald function
(1.2), that is

(2. 11) $|K_{i\tau}(x)| \leqq\frac{1}{2}e^{-\delta\tau}\int_{-\infty}^{\infty}e^{-x\cos\delta\cosh u}du=e^{-\delta r}K_{0}(x\cos\delta)$ $(\delta\in[0,$ $\frac{\pi}{2}))$ .

Lemma 2.3. K-L transform (1.1) is a bounded mapping from $L_{\nu_{t}p}(R_{+})(\nu<1,p\geqq 1)$

into $L_{r}(R_{+})\equiv L_{1/r_{r^{f}}}(R_{+})$ , where $r\geqq 1$ and parameters $p$ and $r\Lambda ave$ no dependence.
Proof. Using the estimate (2.11) and treating like Lemma 2.1, we have the inequality

(2.12) $|(i \mathfrak{B}f)(\tau)|\leqq e^{-\delta r}\int_{0}^{\infty}K_{0}(y\cos\delta)|f(y)|dy$

$\leqq e^{-\delta r}(\int_{0}^{\infty}K_{0}^{q}(y\cos\delta)y^{(1-\nu)q-1}dy)^{1/q}(\int_{0}^{\infty}|f(y)|^{p}y^{\nu p-1}dy)^{1/p}$

$=C_{\delta}e^{-\delta r}||f||_{L_{\nu,p}(R_{+})}$ ,

where the constant $C_{\delta}>0$ depends on $\delta\in[0, \pi/2)$ . It is obvious to see that the norm for
K-L transform (1.1) in the space $L_{r}(R_{+})(r\geqq 1)$ is finite for fixed $\delta\in(0, \pi/2)$ . Moreover
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we established the fact that K-L transform belongs to the weigted space $L_{r}(R_{+};\rho)$ , if the
weigt function $\rho(\tau)$ satisfies the condition

(2.13) $\int_{0}^{\infty}\rho(\tau)e^{-\delta rr}d\tau<\infty$.

So we received the desired result. $\blacksquare$

These lemmas show that K-L transform (1.1) of $L_{\nu,p}$-functions $f(x)$ possesses both the
smoothness and $L_{r}$-properties and besides, the range of K-L transform

(2.14) $KL(L_{\nu_{i}p})=\{g : g(\tau)=( [\}f)(\tau), f\in L_{\nu_{2}p}(R_{+})\}$ $(\nu<1,p\geq 1)$

does not coincide with the space $L_{r}(R_{+})$ . In fact, we know that K-L transform also
belongs to the weighted space $L_{r}(R_{+};\rho)$ with condition (2.13). But choosing a different
weight we can easily verify that there exists some function belonging to $L_{r}(R_{+})$ which
does not belong to the space $L_{r}(R_{+};\rho)$ , and vice versa. Thus it is necessary to describe
the range of K-L transform (1.1) more definitely.

For this purpose we will use the inverse operator that was introduced in a slightly
different form in [16]. Let us consider the operator

(2.15) $(I_{e}g)(x)= \frac{2}{\pi^{2}}x^{\epsilon-1}\int_{0}^{\infty}\tau\sinh([\pi-\epsilon]\tau)K_{ir}(x)g(\tau)d\tau$ $(\epsilon\in(0, \pi))$ .

Theorem 2.1. Let $g(\tau)=(1\mathfrak{B}f)(\tau)$ for the density $f(y)\in L_{\nu_{2}p}(R_{+})(\nu<1$ ,
$1\leqq p\leqq\infty)$ , then $t\Lambda e$ operator (2.15) $h$ as $t\Lambda e$ form

(2.16) $(I_{e}g)(x)= \frac{\sin\epsilon}{\pi}x^{e}\int_{0}^{\infty}\frac{K_{1}([x^{2}+y^{2}-2xy\cos\epsilon]^{1/2})}{(x^{2}+y^{2}-2xy\cos\epsilon)^{1/2}}yf(y)dy(x>0)$ ,

where $K_{1}(z)$ is the $Macd_{on\partial}ld$ function (1.2) of order 1.
Proof. Substituting the value of $g(\tau)$ as K-L transform (1.1) into the formula (2.15)

and appealing to the inequality (2.11) we have the estimate

(2.17) $|(I_{e}g)(x)| \leqq\frac{2}{\pi^{2}}x^{\epsilon-1}K_{0}(x\cos\delta_{1})\int_{0}^{\infty}\tau\sinh([\pi-\epsilon]\tau)e^{-(\delta_{1}+\delta_{2})r}d\tau$

$x\int_{0}^{\infty}K_{0}(y\cos\delta_{2})|f(y)|dy$ ,

as far as we choose $\delta_{1}+\delta_{2}+\epsilon>\pi$ . Obviously two integrals in (2.17) are convergent (the
second one is provided by Lemma 2.3). Hence we can apply the Fubini theorem. As a
result we use the formula [10, Vol.2, (2.16.51.8)] and we have

(2,18) $\int_{0}^{\infty}\tau\sinh((\pi-\epsilon)\tau)K_{ir}(x)K_{ir}(y)dt$

$= \frac{\pi xy\sin\epsilon K_{1}([x^{2}+y^{2}-2xy\cos\epsilon]^{1/2})}{2(x^{2}+y^{2}-2xy\cos\epsilon)^{1/2}}$ ,
$\cdot$
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which gives the representation (2.16). $\blacksquare$

The inversion formula of K-L transform (1.1) on the space $L_{\nu_{1}p}(R_{+})$ is established by:

Theorem 2.2. Let $g(\tau)=(RCf)(\tau)$ and $f(y)\in L_{\nu 1p}(R_{+})(0<\nu<1,1\leq p\leqq\infty)$ .
$T\Lambda en$

(2.19) $f(x)=(Ig)(x)$ ,

where $(Ig)(x)$ is understood as

(2.20) $(Ig)(x)=1.i.m\epsilonarrow+\dot{0}(I_{e}g)(x)$ $(x>0)$ ,

$w\Lambda eret\Lambda e$ limit in (2.20) is meant in terms of the norm in $L_{\nu_{2}p}(R_{+}).$ Moreover, the limi $t$

in (2.20) exists $aImost$ everywhere on $R+\cdot$

Proof. Replacing the variable $y=x(coe\epsilon+t\sin\epsilon)$ in the integral (2.16), we arrive
at the equality

(2.21) $(I_{e}g)(x)= \frac{1}{\pi}\int_{-\infty}^{\infty}\frac{R(x,t,\epsilon)(\cos\epsilon+t\sin\epsilon)}{t^{2}+1}f(x[\cos\epsilon+t\sin\epsilon])dt$,

where

(2.22) $R(x)t,$ $\epsilon)=\{\begin{array}{ll}x^{e+1}\sqrt{t^{2}+1}\sin\epsilon K_{1}(x\sqrt{t^{2}+1}\sin\epsilon), t\geqq-\cot\epsilon,0, t<-\cot\epsilon.\end{array}$

From the asymptotic behavior of the Macdonald function $K_{1}(z)[16]$ we obtain $R(x,t, \epsilon)<$

$C$ uniformly as a function of three variables $t\in R,$ $x\in R_{+}$ and $\epsilon\in(0, \pi)$ , and we observe
the limit

$\lim_{\epsilonarrow+0}R(x,t, \epsilon)=1$ .

Further, if we use the approximation property of the Poisson kernel

$P(t)= \frac{1}{\pi}\frac{1}{t^{2}+1}$

in order to estimate the $L_{\nu_{2}p}$-norm of the difference $I_{e}g-f$ by applying the generalized
Minkowski inequality (1.5), then

(2.23) $||I_{e}g-f||_{L_{\nu,p}(R_{+})}$

$\leqq\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{1}{t^{2}+1}||f(x[\cos\epsilon+t\sin\epsilon])(\cos\epsilon+t\sin\epsilon)R(x,t, \epsilon)-f(x)||_{L_{\nu.p}(R_{+})}dtarrow 0$

$(\epsilonarrow+0)$ .

Indeed, from (2.21) we have the estimate

(2.24) $||(I_{e}g)||_{L_{\nu,p}(R_{+})} \leqq\frac{C}{\pi}\int_{-\cot\epsilon}^{\infty}\frac{1}{t^{2}+1}||f(x[\cos\epsilon+t\sin\epsilon])(\cos\epsilon+t\sin\epsilon)||_{L_{\nu,p}(R_{+})}dt$

$\leqq C||f||_{L_{\nu,p}(R_{+})}\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{(1+|t|)^{1-\nu}}{t^{2}+1}dt$

$=C_{1}||f||_{L_{\nu,p}(R_{+})}$ $(0<\nu<1)$ ,
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where $C_{1}$ is a positive absolute constant because the integral by $t$ is convergent under
condition on the parameter $\nu$ . Thus from the Lebesgue theorem and the continuity of the
$L_{\nu_{1}p}$-norm [16] we proved the equality (2.20). The existence of the limit almost everywhere
on $R_{+}$ follows from the radial property of the Poisson kemel $P(t)=P(|t|)\in L_{1}(R_{+})$ . $\blacksquare$

Theorem 2.2 yields also the inequality

(2.25) $||I_{e}g||_{L_{\nu.p}(B_{+})}\leqq C||Ig||_{L_{\nu,p}(b)}$ ,

where $g\in KL(L_{\nu}{}_{t}P)(0<\nu<1,1\leqq p\leqq\infty)$ . It follows from Theorem 2.2 that (Jae$f$ ) $(\tau)\equiv$

$0$ for $f(y)\in L_{\nu_{2}p}(R_{+})(0<\nu<1,1\leqq p\leqq\infty)$ , iff $f(y)\equiv 0$ . So, in tbe space $KL(L_{\nu,p})$ we
can introduce a norm by the equality

(2.26) $||g||_{KL\langle L_{\nu.p})}=||f||_{L_{\nu.p}}$ for $g=(fiCf)(\tau)$ .
As it is evident, the space $KL(L_{\nu,p})$ is a Banach one with the norm (2.26) and as an
isometric to $L_{\nu_{2}p}$ .

The next theorem gives a characterization of the space $KL(L_{\nu_{2}p})$ in terms of the oper-
ator (2.15).

Theorem 2.3. The necessary and $su$fficient condi tion for $g(\tau)$ belongs to $KL(L_{\nu_{1}p})(0<$

$\nu<1,1\leq p\leqq\infty)$ is $g(\tau)\in L_{r}(R_{+})(1\leqq r\leqq\infty)$ an$d$

(2.27) $1.i.mearrow+\dot{0}(I_{\epsilon}g)\in L_{\nu,p}(R_{+})$ .

Proof. The necessity is a simple fact as a corollary of Lemma 2.3, of Theorem 2.2
and of the inequality (2.25). The sufficiency part is more complicated.

Let $g(\tau)\in L_{r}(R_{+})$ and assume that the condition (2.27) is valid. We have to show
that there exists a function $f\in L_{\nu,p}$ such that

(2.28) $g=(flCf)(\tau)$ .

From the condition (2.27) we conclude that $(I_{e}g)\in L_{\nu_{i}p}R+$ for sufficiently small $\epsilon>0$

and we can calculate the composition

(2.29) $(R C(I_{e}g))(\tau)=\int_{0}^{\infty}K_{i\tau}(y)(I_{e}g)(y)dy$.

Let a function $g(\tau)$ be taken from $C_{0^{\infty}}(R_{+})$ being dense in $L_{r}$ , then we have by substituting
(2.15) into (2.29) the possibility to change the order of integration by the Fubini theorem.
Using the value of the integrd [10, Vol.2, (2.16.33.2)]

(2.30) $\int_{0}^{\infty}y^{\epsilon-1}K_{ir}(y)K_{i\beta}(y)dy=\frac{2^{\epsilon-3}}{\Gamma(\epsilon)}\Gamma(\frac{\epsilon+i[\tau+\beta]}{2})\Gamma(\frac{\epsilon+i[\tau-\beta]}{2})2$ ,

we obtain

(2.31) $g_{e}( \tau)\equiv(RC(I_{\epsilon}g))(\tau)=\frac{2^{e-2}}{\pi^{2}\Gamma(\epsilon)}\int_{0}^{\infty}\beta\sinh((\pi-\epsilon)\beta)$

$x\Gamma(\frac{\epsilon+i[\tau+\beta]}{2}I^{\Gamma}(\frac{\epsilon+i[\tau-\beta]}{2})^{2}g(\beta)d\beta$ .
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In order to prove the validity of the equality (2.31) for all $g\in L_{r}(R_{+})$ , we have to prove
the boundedness of the operator in the right-hand side of (2.31). From the asymptotic
formula for the gamma-function [1] the kernel of the integrand in (2.31) is equal to

(2.32) $O(e^{(\pi/2-\epsilon)\beta-\pi|r-\beta|l2-\pi\tau/2})$ $(\betaarrow\infty, \tauarrow\infty, \epsilon\in(0, \pi))$ .

Hence we have the following estimate

(2.33) $|g_{e}( \tau)|\leqq Ce^{-\pi r12}\int_{0}^{\infty}e^{(\pi/2-e)\beta-\pi|\beta-r|/2}|g(\beta)|d\beta$

$\leqq Ce^{(\delta-\pi/2)\tau}\int_{0}^{\infty}e^{(\pi/2-e-\delta)\beta}|g(\beta)|d\beta$ ,

where the parameter $\delta$ is taken from the interval $(\pi/2-\epsilon, \pi/2)$ . So from the estimate
(2.33) with the aid of the H\"older inequality, we get the boundedness of the operator in
the right-hand side of (2.31) in the space $L_{r}(R_{+})(1\leq r\leqq\infty)$ .

Now let us calculate the limit of the right-hand side of (2.31), as $\epsilonarrow+0$ in norm
of the space $L_{r}(R_{+})$ . We begin by representing the function $g_{e}(\tau)$ by the substitution
$\beta=\tau+\epsilon t$

(2.34) $g_{e}( \tau)=\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{g(\tau+\epsilon t)}{t^{2}+1}h(\tau, t, \epsilon)dt$,

where

(2.35) $h( \tau,t, \epsilon)=H(\tau+\epsilon t)\frac{2^{\epsilon-2}\epsilon(\tau+\epsilon t)(t^{2}+1)\sinh([\pi-\epsilon][\tau+\epsilon t])}{\pi\Gamma(\epsilon)}$

$x|\Gamma(i\tau+\frac{\epsilon}{2}[1+it])\Gamma(\frac{\epsilon}{2}[1-it])|^{2}$

and $H(x)$ is the Heaviside function. From the previous discussion, we conclude that
the function $h(\tau,t, \epsilon)$ is uniformly bounded for all parameters $\tau>0,t\in R,$ $\epsilon\in(0, \pi)$ .
Moreover, from the supplement formula for the gamma-function $\Gamma(z+1)=z\Gamma(z)$ there
holds the relation

(2.36) $\lim_{earrow+0}h(\tau,t, \epsilon)=1$ .

Hence we obtain the following estimate for the norm of the function $g_{e}(\tau)$ in the space
$L_{r}(R_{+})$

(2.37) $||g_{e}(\tau)-g(\tau)||_{L,(R_{+})}$

$\leqq\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{1}{t^{2}+1}||g(\tau+\epsilon t)h(\tau,t, \epsilon)-g(\tau)||_{L_{r}(R_{+})}dtarrow 0$ $(\epsilonarrow+0)$ .

But, on the other side, appealing to estimate (2.12), we see that K-L transform (1.1) is
a bounded mapping in $L_{\nu_{t}p}$ with $0<\nu<1,1\leqq p\leqq\infty$ , because due to the inequality
(2.13) the weight $\rho(\tau)=\tau^{\nu p-1}$ satisfies this condition. Thus there exists a limit in the
sense of the $L_{\nu_{1}p}$-norm

(2.38) $1.i.m\epsilonarrow+0^{\cdot}(RC(I_{e}g))(\tau)=(RC[1\epsilon.iarrow+m_{\dot{0}}I_{e}g])(\tau)=(fflf)(\tau)$,
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where $f=Ig\in L_{\nu_{i}p}$ . Since the operator $(RC(I_{\epsilon}g))(\tau)$ converges in the norm $L_{r}$ , too,
then the limit functions must coincide almost everywhere on $R_{+}$ . Thus, from the equality
$(2\cdot 38)$ we obtain (2.28). $\blacksquare$

3. The Convolution for the Kontorovich-Lebedev Transform

We already defined the convolution operator (1.6) and called it the convolution for
K-L transform (1.1). We will see below the direct connection of these objects. Now we
start to study mapping properties of the convolution (1.6). First we observe from the
definition that the convolution (1.6) is symmetrical (commutative)

(3.1) $f*g=g*f$.

Second, if $f(x)>0,$ $g(x)>0$ $(or f(x)<0, g(x)<0)$ for $x\in R_{+}$ then $(f*g)(x)>0$ ,
and for $f(x)>0,$ $g(x)<0$ , $(or f(x)<0,g(x)>0)$ the inequality $(f*g)(x)<0$ is
justified. Now we obtain some estimates for the convolution (1.6) in the Lebesgue space
$L_{p}$ applying in all cases the Fubini theorem.

Theorem 3.1. Let $f(x),$ $g(x)\in L_{11^{2,1}}(R_{+})$ . $T\Lambda ent\Lambda e$ convolu tion (1.6) exists and
satisfies the estimate

(3.2) $|(f*g)(x)| \leqq\frac{e^{-x}}{2\sqrt{2x}}||f||_{112,1}||g||_{1/2,1}$.

Proof. Using the elementary inequalities

(3.3) $e^{-x} \leqq\frac{1}{1+x}$ $(x>0)$ ,

(3.4) $a^{2}+b^{2}\geqq 2ab$ ,

we have

(3.5) $|(f*g)(x)| \leqq\frac{1}{2x}\int_{0}^{\infty}\int_{0}^{\infty}\frac{\exp(-x[u^{2}+t^{2}]/2ut)}{1+ut/2x}|f(t)g(u)|dtdu$

$\leqq\frac{e^{-x}}{2\sqrt{2x}}\int_{0}^{\infty}\int_{0}^{\infty}\frac{|f(t)|}{\sqrt{t}}\frac{|g(u)|}{\sqrt{u}}dtdu$

$= \frac{e^{-x}}{2\sqrt{2x}}||f||_{1/2_{2}1}||g||_{1/2,1}$ .

$\blacksquare$

Theorem $.2. Let $f(x),$ $g(x)\in L_{0,1}(R_{+})$ . Then $t\Lambda e$ convolution (1.6) exists for
each $x>0$ , and satisfies the estimate

(3.6) $|(f*g)(x)|\leqq e^{-x}||f||_{0,1}||g||_{0,1}$ .
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Proof. Similar application of (3.2) with the proof of Theorem 3.1 yields

$|(f*g)(x)| \leqq\int_{0}^{\infty}\int_{0}^{\infty}\exp(-x\frac{u^{2}+t^{2}}{2ut})\frac{1}{2x+ut}|f(t)g(u)|dtdu$

$\leqq e^{-x}\int_{0}^{\infty}\frac{|f(t)|}{t}dt\int_{0}^{\infty}\frac{|g(u)|}{u}du$ .

$\blacksquare$

Theorem 3.3. Let $p\geqq 1,$ $q\geqq 1$ and $1/p+1/q=1$ . Let $f(x),$ $g(x)\in L(R_{+};\rho_{1}(x))$ ,
where $\rho_{1}(x)=x^{-1/2}\exp(-x/[2\min(p, q)])$ . Then the convolution $(f*g)(x)$ exists for each
$x>0$ , and satisfies the estimate

(3.7) $|(f*g)(x)| \leqq\sqrt{\frac{\max(p,q)}{8x}}\exp(-\frac{x}{2}[1+\frac{1}{\max(p,q)}])$

$x||f||_{L(p_{+;\rho 1(x))}}||g||_{L(R+;\rho 1(x)}$

Proof. According to the definition of the convolution, we have

(3.8) $(f*g)(x)= \frac{1}{2x}\int_{0}^{\infty}\int_{0}^{\infty}\exp(-\frac{1}{2p}[\frac{xt}{u}+\frac{xu}{t}+\frac{ut}{x}])$

xexp $(- \frac{1}{2q}[\frac{xt}{u}+\frac{xu}{t}+\frac{ut}{x}])$ f(t)g(u)dtdu

$= \frac{1}{2x}\int_{0}^{\infty}\int_{0}^{\infty}\exp(-x\frac{u^{2}+t^{2}}{2ut\max(p,q)}-\frac{ut}{2x\max(p,q)})$

xexp $(- \frac{1}{2\min(p,q)}[\frac{xt}{u}+\frac{xu}{t}+\frac{ut}{x}])f$(t)g(u)dtdu.

Using inequalities $(3.3)-(3.4)$ and the inequality

(3.9) $\frac{xu}{t}+\frac{xt}{u}+\frac{ut}{x}\geqq x+u+t$ ,

we obtain the estimate

$|(f*g)(x)| \leqq\sqrt{\frac{\max(p,q)}{8x}}\exp(-\frac{x}{\max(p,q)}-\frac{x}{2\min(p,q)})$

$x\int_{0}^{\infty}\frac{|f(x)|}{\sqrt{t}}\exp(-\frac{t}{2\min(p,q)})dt\int_{0}^{\infty}\frac{|g(u)|}{\sqrt{u}}\exp(-\frac{u}{2\min(p,q)})du$,

and hence the inequality (3.7). $\blacksquare$

Theorem 3.4. Let $f(x),$ $g(x)\in L(R_{+};e^{-x/2})$ . $T\Lambda ent\Lambda e$ convolution (1.6) exists for
each $x>0$ , and satisfies $t\Lambda e$ estimate

(3.10) $|(f*g)(x)| \leqq\frac{e^{-x}}{2x}||f||_{L(B_{+};e^{-\sim/2})}||g||_{L(R+;e^{-x/2}})$ .
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Proof. The desired result follows from the inequality (3.9). As is evidently to seek
from above estimates the convolution (1.6) is continuous for each $x\in R_{+}$ and exponen-
tially decreasing function near infinity. $\blacksquare$

Theorem 3.5. Let the function $x^{a}g(x)$ be bounded for $\Re\alpha<1$ on $R_{+}$ , and $f(x)\in$

$L_{a,1}(R_{+})$ . Then the convolution $(f*g)(x)$ exists for $eac\Lambda x>0$ , and satisfies the estimate

(3.11) $|(f*g)(x)|\leqq\underline{M}_{\Gamma(1-\alpha)x^{-\alpha}e^{-x}||f||_{L_{\alpha,1}(I)}}$ ,
$2^{\alpha}$

$i\gamma\Lambda ereM>0$ is a constan $t$ .
Proof. Indeed,

$|(f*g)(x)| \leqq\frac{1}{2x}I_{0}^{\infty}\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xu}{t}+\frac{ut}{x}+\frac{tx}{u}])|f(t)u^{\alpha}g(u)|u^{-a}dtdu$

$\leqq\frac{M}{2x}\int_{0}^{\infty}|f(t)|dt\int_{0}^{\infty}\exp(-x\frac{u^{2}+t^{2}}{2ut})\exp(-\frac{ut}{2x})u^{-a}du$

$\leqq\frac{M\Gamma(1-\alpha)}{2x}e^{-x}\int_{0}^{\infty}|f(t)|(\frac{t}{2x})^{\alpha-1}dt$ ,

which leads to the estimate (3.11). $\blacksquare$

Theorem 3.6. Let the function $x^{\alpha}g(x)$ be $bo$unded for $\Re\alpha<1$ on $R_{+}$ and $f(x)\in$

$L_{2}(R_{+})$ . Then the convolutfon $(f*g)(x)$ exists and satisfies $t\Lambda e$ estimate

(3.12) $|(f*g)(x)| \leqq M_{1}x^{\alpha-2}\exp(-\frac{x}{p}I||f||_{L_{2}(R_{+})}$ ,

where $p>1$ is an arbitrary number and $M_{1}>0$ is a constaiit.
Proof. Applying the H\"older inequality (1.4) to the convolution (1.6), we obtain the

representation

(3.13) $|(f*g)(x)| \leqq\frac{1}{2x}(\int_{0}^{\infty}|\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xu}{t}+\frac{ut}{x}+\frac{xt}{u}])g(u)du|^{2}dt)^{1/2}$

$x(\int_{0}^{\infty}|f(t)|^{2}dt)^{1/2}$

We first estimate the inner integral in (3.13) by denoting it by $I_{1}$ . Taking the parameters
$p>1$ and $q>1$ with $1/p+1/q=1$ and we represent this integral in the form

$I_{1}= \int_{0}^{\infty}\exp(-\frac{1}{2p}[\frac{xu}{t}+\frac{ut}{x}+\frac{xt}{u}]I^{\exp}(-\frac{1}{2q}[\frac{xu}{t}+\frac{ut}{x}+\frac{xt}{u}])g(u)du$ .

Further, using the inequality (3.4), we obtain the estimate

(3. 14) $|I_{1}| \leqq\exp(-\frac{x}{p})\exp(-\frac{t}{q})\int_{0}^{\infty}\exp(-\frac{u}{2}[\frac{t}{px}+\frac{x}{qt}])|g(u)|du$ .
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According to the assumption, we get

(3.15) $\int_{0}^{\infty}\exp(-\frac{u}{2}[\frac{t}{px}+\frac{x}{qt}])|g(u)|du\leqq C\int_{0}^{\infty}\exp(-\frac{u}{2}[\frac{t}{px}+\frac{x}{qt}])u^{-\alpha}du$

$=C \Gamma(1-\alpha)2^{1-\alpha}(\frac{t}{px}+\frac{x}{qt}I^{\alpha-1}$

$=C_{1} \Gamma(1-\alpha)x^{1-a}(\frac{t}{qt^{2}+px^{2}}I^{1-\alpha}$

$\leqq C_{2}\Gamma(1-\alpha)x^{a-1}t^{1-a}$ ,

where $C,$ $C_{1}$ and $C_{2}$ are constants. Returning to the inequality (3.13) and using relations
(3.14), (3.15), we get the form (3.12). $\blacksquare$

Most important result is contained in the following theorem, which gives an estimate
of $L_{\nu_{2}p}$-norm of the convolution (1.6).

Theorem 3.7. Let $f(x),$ $g(x)\in L_{p}(R_{+})(1\leqq p\leqq\infty)$ . Then $t\Lambda e$ convolution (1.6)
exists, and belongs to $L_{\nu,q}(R_{+}),$ $(q=p/(p-1), \nu>1/p)and$ there holds $t\Lambda e$ estimate

(3.16) $||(f*g)(x)||_{\nu,q}\leqq C||g||_{p}||f||_{p}$ ,
$w\Lambda ereC>0$ is a constant.

Proof. Mahng use of the generalized Minkowski inequality (1.5), we have

(3.17) $||(f*g)(x)||_{\nu_{2}q}$

$= \frac{1}{2}(\int_{0}^{\infty}x^{q(\nu-1)-1}|\int_{0}^{\infty}\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xu}{t}+\frac{xt}{u}+\frac{ut}{x}])f(u)g(t)dudt|^{q}dx)^{1/q}$

$\leqq\int_{0}^{\infty}\int_{0}^{\infty}|f(u)g(t)|\frac{1}{2}(\int_{0}^{\infty}x$Of$\nu-1)-1\exp(-\frac{q}{2}[\frac{xu}{t}+\frac{xt}{u}+\frac{ut}{x}])dx)^{1/q}dudt$ .

The integral by $x$ can be calculated by using formula [10, Vol.l (2.3.16.1)] and we obtain

(3.18) $\frac{1}{2}(\int_{0}^{\infty}x^{q(\nu-1)-1}\exp(-\frac{q}{2}[\frac{xu}{t}+\frac{xt}{u}+\frac{ut}{x}])dx)^{1/q}$

Hence we have

(3.19)

By invoking to the analogue of H\"older inequality (1.4) for double integrals with the weight
$\rho(u,t)\equiv 1$ , the inequality (3.19) can be written as

(3.20) $||(f*g)(x)||_{\nu,q} \leqq\{\int_{0}^{\infty}\int_{0}^{\infty}(\frac{ut}{\sqrt{u^{2}+t^{2}}})^{4\nu-1)}K_{q(\nu-1)}(q\sqrt{u^{2}+t^{2}})dudt\}^{1/q}$

$x(\int_{0}^{\infty}|f(u)|^{p}du)^{1/p}(\int_{0}^{\infty}|g(t)|^{p}dt)^{1/p}$
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Let us consider the double integral in (3.20) with the Macdonald function. To show its
convergence we apply polar coordinates $u=r\cos\varphi,$ $t=r\sin\varphi(r>0, \varphi\in(0, \pi/2))$ and
we find

(3.21)

$=2^{41-\nu)} \int_{0}^{\pi/2}\sin^{4\nu-1)}2\varphi d\varphi\int_{0}^{\infty}r^{q(\nu-1)+1}K_{q(\nu-1)}(qr)dr$ .

If we account the asymptotic behavior of the Macdonald function $K_{\mu}(x)=O(x^{-|\Re\mu|})(xarrow$

$+0)$ and $K_{\mu}(x)=O(e^{-x}/\Gamma x)(xarrow\infty)$ , then the integral by $r$ is convergent for any $\nu$ ,
whereas the integral by $\varphi$ is covergent only for $\nu>1/p$ . Hence denoting the integral
(3.21) by $C$ we arrive at the inequality (3.16). $\blacksquare$

It is natural to seek that the convolution (1.6) belongs to the conjugate space $L_{q}(R_{+})$

if we put in the inequality (3.16) $\nu=1/q,$ $q<p$ which means $1\leqq q<2,p\geqq 2$ or
$1\leqq q\leqq 2,p>2$ .

Corollary 3.1. The conirolntion operator (1.7) $wit\Lambda$ kernel (1.8) is bounded from
$t\Lambda e$ space $L_{p}(R_{+})(p\geqq 1)$ into the space $L_{\nu,q}(R_{+})(q=p/(p-1), \nu>1/p)$ , if the charac-
teristic function $g(x)$ of the kernel belongs to $L_{p}(R_{+})$ .

Using the H\"older inequality let us estimate now the kernel $K(x, u)$ in (1.8) of the
operator (1.7) provided that $g(x)\in L_{p}(R_{+})$ . We have

(3.22) $|K(x, u)| \leqq\frac{1}{2x}\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xu}{y}+\frac{xy}{u}+\frac{uy}{x}])|g(y)|dy$

$\leqq\frac{1}{2x}(\int_{0}^{\infty}\exp(-\frac{q}{2}[\frac{xu}{y}+\frac{xy}{u}+\frac{uy}{x}])dy)^{11}q||g||_{p}$ ,

and recffiing the formula (3.18), we obtain the estimate

(3.23)

where $K_{1}(z)$ is the Macdonald function of the order 1. As it can be found from (3.23)
that the kernel $K(x, u)$ has an integrable singularity at the point $x=u,$ $K(x, x)=$
$O(x^{-1})(xarrow+0)$ .

As it was mentioned above, the convolution (1.6) is closely related to K-L transform
(1.1). Now we establish this connection by means of the factorization property of the
convolution (1.6) and an analogue of the Parseval equality.

Theorem 3.8. Under conditions of Theorem 3.7 and $1/p<\nu<1,p>1K-$
$L$ transform of $t\Lambda e$ convolution $(f*g)(x)$ for $f(x)$ and $g(x)$ exists and is $equal$ to the
prod$uct$ of If-L transforms for $t\Lambda ese$ functions

(3.24) $(RC[f*g])(\tau)=(RCf)(\tau)(RCg)(\tau)$ .
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$Furt\Lambda ermoret\Lambda e$ ParseVaiV type $equaIity$

(3.25) $(f*g)(x)= \frac{2}{\pi^{2}}\int_{0}^{\infty}\tau\sinh(\pi\tau)\frac{K_{1r}(x)}{x}$(flC$f$) $(\tau)(fflg)(\tau)d\tau$ ,

$\Lambda olds$ valid for any $x>0_{\partial J1}d$ the $integr\partial l(3.25)$ is absolutely convergent.
Proof. The existence of K-L transform of the convolution (1.6) follows from the

previous theorem, because according to (2.14) $K_{ir}[(f*g)]\in KL(L_{\nu,q})$ . Hence applying
K-L operator to the convolution (1.6), and we obtain the iterated integral
(3.26)

$(R C[f*g])(\tau)=\frac{1}{2}\int_{0}^{\infty}\frac{K_{1r}(y)}{y}\int_{0}^{\infty}\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{yt}{u}+\frac{yu}{t}+\frac{ut}{y}])f(u)g(t)dudtdy$ .

Changing the order of integrations, the inner integral in $y$ is calculated by means of the
known formula deduced from [10, Vol.2 (2.16.9.1)]

(3.27) $K_{\mu}(u)K_{\mu}(t)= \frac{1}{2}\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{ut}{y}+\frac{yu}{t}+\frac{yt}{u}])K_{\mu}(y)\frac{dy}{y}$ .

Such a change may guaranteed by the similar arguments with that for (2.3). Thus,
motivating it for example by estimate (2.11) and H\"older inequality like (2.3}, we use
the Macdonald formula (3.27) and obtain (3.24). Furthermore, taking into account the
integral representation [10, Vol.2 (2.16.56.1)]

(3.28) $\exp(-\frac{1}{2}[\frac{xy}{u}+\frac{xu}{y}+\frac{yu}{x}])=\frac{4}{\pi^{2}}\int_{0}^{\infty}\tau\sinh(\pi\tau)K_{ir}(x)K_{ir}(y)K_{ir}(u)d\tau$

and substituting it in the formula (1.6), we change the order of integrations by the Fubini
theorem by using the estimate

(3.29) $\int_{0}^{\infty}\tau\sinh(\pi\tau)|K_{ir}(x)K_{ir}(y)K_{ir}(u)|d\tau$

$\leqq K_{0}(x\cos\delta_{1})K_{0}(y\cos\delta_{2})K_{0}(u\cos\delta_{3})\int_{0}^{\infty}\tau\sinh(\pi\tau)e^{-r(\delta_{1}+\delta_{2}+\delta_{3})}\ell d\tau<+\infty$,

which follows from (2.11) and where $\delta_{i}\in[0, \pi/2)(i=1,2,3)$ can be choosen to converge
the integral (3.29). Then applying the H\"older inequality like (2.12), we have

(3.30) $|(f*g)(x)| \leqq\frac{2K_{0}(x\cos\delta_{1})}{\pi^{2}x}\int_{0}^{\infty}\tau\sinh(\pi\tau)e^{-r(\delta_{1}+\delta_{2}+\delta_{3})}d\tau$

$x||f||_{p}||g||_{p}(\int_{0}^{\infty}K_{0}^{q}(y\cos\delta_{2})dy)^{11^{q}}(\int_{0}^{\infty}K_{0}^{q}(u\cos\delta_{3})du)^{1l}q$

Hence we verify that it can be changed the order of integration and thus we establish the
Parseval equality (3.25). $\blacksquare$

Now we estimate the convolution (1.6) in the special weighted space $L^{\alpha}\equiv L(R_{+};\dot{K}_{\alpha}(x))$

$(\alpha\geqq 0)$ by putting $\rho(t)=K_{a}(t)(p=1)$ in (1.3) and slightly modifying results from [12],
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[16], where $K_{a}(t)$ is the Macdonald function of index $\alpha$ . We show that this space of ab-
solutely integrable functions on $R_{+}$ with forms a normed ring or a Banach algebra with
the norm

(3.31) $||f||_{L^{\alpha}}= \int_{0}^{\infty}K_{a}(t)|f(t)|dt<+\infty$ .

We draw parallel results here with [16]. First from the asymptotic of the Macdonald
function we observe the embedding

(3.32) $L^{\alpha_{1}}\subseteq L^{\alpha}2$ , iff $\alpha_{1}\geqq\alpha_{2}$ .

Theorem 3.9. Let $f(x),$ $g(x)\in L^{a}$ . Then the convolution (1.6) exists and belongs
to the $cl_{\partial}ssL^{\alpha}$ and $t\Lambda ere$ holds

(3.33) $||f*g||_{L^{\alpha}}\leqq||f||_{L^{\alpha}}||g||_{L^{\alpha}}$ .

Proof. By definitions of the norm $L^{a}$ and of the convolution, and performing to
change the order of integrations by the Fubini theorem and using the Macdonald formula
(3.27), we obtain

(3.34) $||f*g||_{L^{\alpha}}= \int_{0}^{\infty}K_{\alpha}(x)|(f*g)(x)|dx$

$\leqq\frac{1}{2}\int_{0}^{\infty}\frac{K_{a}(x)}{x}\int_{0}^{\infty}\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xy}{u}+\frac{uy}{x}+\frac{xu}{y}])|f(u)g(y)|dudydx$

$= \frac{1}{2}\int_{0}^{\infty}\int_{0}^{\infty}|f(u)g(y)|\int_{0}^{\infty}K_{\alpha}(x)\exp(-\frac{1}{2}[\frac{xy}{u}+\frac{uy}{x}+\frac{xu}{y}])\frac{dx}{x}dudy$

$= \int_{0}^{\infty}K_{\alpha}(u)|f(u)|du\int_{0}^{\infty}K_{\alpha}(y)|g(y)|dy=||f||_{L^{\alpha}}||g||_{L^{\alpha}}$.

$\blacksquare$

This property of integrability of the convolution (1.6) with positive weight $K_{\alpha}(x)$

shows that it takes finite values for almost all $x>0$ .

Theorem 3.10. Let $f(x),$ $g(x \int\in L^{\alpha}$ . Then K-L transform (1.1) of the convolu tion
$(f*g)(x)$ exists and is $equ\partial l$ to the product of K-L transforms of $f(x)$ and $g(x)$ , that is,
there holds the formula (3.24).

Proof. The existence of K-L transform of the convolution follows from previous
theorem and we have the estimate

(3.35) $|K_{ir}[f*g]| \leqq\int_{0}^{\infty}K_{0}(y)|(f*g)(y)|dy$

$= \int_{0}^{\infty}K_{0}(u)|f(u)|du\int_{0}^{\infty}K_{0}(y)|g(y)|dy<\infty$

due to the embedding (3.32). This allows us to change the order of integrations in the
respective iterated integral and to use the Macdonald formula (3.27). $\blacksquare$
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Let us now consider a subspace of $L^{\alpha}$ , whi$ch$ is $L_{\beta}^{\alpha}\equiv L_{1}(R_{+};K_{\alpha}(\beta x))(\alpha\geqq 0,0<$

$\beta\leqq 1)$ . The embedding
$L_{\beta}^{\alpha}\subseteq L^{a}$

follows from the asymptotic of the Macdonald function and $L_{1}^{a}\equiv L^{a}$ .

Theorem 3.11. Let $f(x),$ $g(x)\in L_{\cos\delta}^{\alpha}(\pi/3<\delta<\pi/2)$ . Then the Parseval $equ\partial iity$

(3.25) $\Lambda olds$ true.
Proof. Indeed by using (3.28) and (2.11) we have the estimate

(3.36) $|(f*g)(x)| \leqq\frac{2}{\pi^{2}}\frac{K_{0}(x\cos 6)}{x}\int_{0}^{\infty}\tau\sinh(\pi\tau)e^{-3r\delta}d\tau$

$x\int_{0}^{\infty}K_{0}(u\cos\delta)|f(u)|du\int_{0}^{\infty}K_{0}(y\cos\delta)|g(y)|dy$ ,

in which integrals by $u$ and $y$ are finite, because the same embedding with (3.32) for the
set of spaces $L_{\beta}^{\alpha}$ is true when $\beta$ is a fixed number. According to the condition on 6, the
integral by $\tau$ is convergent. Hence changing the order of integrations and invohng to
(1.1) we arrive at the Parseval equality (3.25). $\blacksquare$

Let us note now that in the Macdonald formula (3.27) the range of the parameter $\mu$

is the complex number field. Thus K-L transform (1.1) for $f\in L^{\alpha}$ may be defined with
the index $\mu=\Re\mu+i\tau$ from the strip $|\Re\mu|\leqq\alpha$ :

(3.37) $(R Cf)(\mu)=\int_{0}^{\infty}K_{R\mu+ir}(y)f(y)dy$

and the equation (3.24) can be extended for such transform due to the assumption, the
behavior of the Macdonald function and the absolutely convergency of corresponding
integrals.

Considering the question of the one-to-one correspondence of the function between the
space $L^{\alpha}$ and its K-L transform $K_{\mu}[f]$ of complex index $\mu$ , we obtain the following theorem.

Theorem 3.12. If K-L traiisform $(RCf)(\mu)$ of the function $f(x)\in L^{a}(|\Re\mu|\leqq\alpha)$

is identicalIy zero, $t\Lambda enf(x)$ is $equ$al to zero almost everywhere on $R+\cdot$

Proof. From the formula (1.2) we have the representation of the Macdonald function
is true

(3.38) $K_{\mu}(x)= \frac{1}{2}\int_{-\infty}^{\infty}e^{-x\cosh u-\mu u}du$.

The assumption $f(x)\in L(R_{+};K_{\alpha}(x))$ leads to the estimate

(3.39) $| \int_{0}^{\infty}K_{\mu}(t)f(t)dt|=\frac{1}{2}|\int_{0}^{\infty}f(t)dt\int_{-\infty}^{\infty}e$
‘

$tco\epsilon hu-\mu udu|$

$\leqq\int_{0}^{\infty}|f(t)|K_{\Re\mu}(t)dt<+\infty$

for $|\Re\mu|\leqq\alpha$ , by noting the asymptotic behavior of the Macdonald function near the point
zero. Thus using the Fubini theorem, we have the composition representation

(3.40) $(RCf)(\mu)=\sqrt{\frac{\pi}{2}}S\{e^{-(R\mu)u}L\{f(x);\cosh u\};\tau\}$ ,
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where

(3.41) $S \{f(u);\tau\}=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(u)e^{-i\tau u}du$.

is the classical Fourier transform and

(3.42) $L \{f(x);\cosh u\}=\int_{0}^{\infty}f(x)e^{-x\cosh u}dx$ .

is the Laplace transform calculated at $\cosh u$ . From (3.38) and the estimate

(3.43) $\int_{-\infty}^{\infty}e^{-(R\mu)u}|\int_{0}^{\infty}f(t)e^{-tco\circ hu}dt|du\leqq 2\int_{0}^{\infty}|f(t)|K_{\Re\mu}(t)dt<\infty$,

for $|\Re\mu|\leqq\alpha$ , we find that $e^{-(R\mu)u}L\{f(x);\cosh u\}\in L_{1}(R)$ . Thus K-L transform $(RCf)(\mu)$

is an analytic function on the strip $|\Re\mu|<\alpha$ . Moreover, according to the well-known
property of the Fourier transform of absolutely integrable functions [11], it follows from
equality

(3.44) $(J\mathfrak{B}f)(\mu)\equiv 0$ $(\mu=\Re\mu+i\tau)$

that

(3.45) $\int_{0}^{\infty}e^{-x\cosh u}f(x)dx=0$

for almost all $u\in R$ . It is easy to note from properties of the space $L(R_{+};K_{\alpha}(x))$ , that
the integral in (3.45) converges absolutely and uniformly for $u\geqq u_{0}>0$ , then it defines a
continuous function. Hence, it follows that equality (3.45) is an identity for $u\geq u_{0}>0$ .
Further, that there is an $\epsilon>0$ such that $v=\cosh u-1-\epsilon>0$ implies that the equality
(3.45) takes the form

(3.46) $\int_{0}^{\infty}e^{-vx}f(x)e^{-(1+e)x}dx\equiv 0$ .

This relation and the assumption of the theorem yields the Laplace transform of the
absolutely integrable function $f(x)e^{-(1+e)x}$ is identically zero on some closed interva10 $<$

$a\leqq v\leqq b$ and, moreover, on the right half-plane $\Re(z)\geqq a$ . Then from the uniqueness
theorem for analytic functions we have

(3.47) $\int_{0}^{\infty}e^{-zx}f(x)e^{-(1+\epsilon)x}dx\equiv 0$ $(\Re(z)\geqq a)$ .

Using the inverse theorem for the Laplace transform [11] we obtain

(3.48) $\int_{0}^{x}f(x)e^{-(1+\epsilon)x}dx\equiv 0$ .

Thus from the properties of primaries of summable functions, $f(x)=0$ for almost every
$x\in R_{+}$ . $\blacksquare$

For our applications of the convolution operator (1.6) to integral equations we need
to consider the space $L^{a}$ in view of the theory of commutative normed rings [8]. Here we
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repeat some results from [16] for the modified convolution (1.6). Our purpose to prove
an analogue of the Wiener theorem on the existence of an inverse element of the given
normed ring. Obviously, the space $L^{\alpha}$ is isometric to $L_{1}(R_{+})$ and is a Banach one with
the norm (3.31). Due to Theorem 3.9, we can define an operation of multiplication for
elements $f(x)$ and $g(x)$ in the form of the convolution (1.6) in the space $L^{\alpha}$ . According
to the definition of the convolution, this operation of multiplication is commutative in
the class $L^{\alpha}$ (see (3.1)). Using the Fubini theorem, we can establish its associativity and
distributivity

(3.49) $(f*(g*h))(x)=((f*g)*h).(x)$ ,

(3.50) $(f*(g+h))(x)=(f*g)(x)+(f*h)(x)$

for $f,$ $g,$ $h\in L^{\alpha}$ . Thus, the space $L^{\alpha}$ forms a commutative Banach ring with the operation
of multiplication in the form of the convolution (1.6). We note some properties of the
ring $L^{\alpha}$ .

Theorem 3.13. The ring $L^{\alpha}$ does not contain the unft wfth respective to the
operation of convolu tion (1.6).

Proof. We firs$t^{-}$show that the convolution $(f*g)(x)$ of a bounded functi\={o}n $g(x)$ with
$f(x)\in L^{\alpha}$ is a continuous function for $x\geqq x_{0}>0$ . Indeed, let $|g(x)|\leqq C$ , where $C>0$
is a constant and $f(x)\in L^{a}$ . Then we have

(3.51) $|(f*g)(x)| \leqq\frac{C}{2x}\int_{0}^{\infty}\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xy}{u}+\frac{xu}{y}+\frac{uy}{x}])|f(y)|dydu$.

Calculating the integral by $u$ in (3.51) by using (3.18), we obtain

(3.52) $|(f*g)(x)| \leqq C\int_{0}^{\infty}\frac{yK_{1}(\sqrt{x^{2}+y^{2}})}{\sqrt{x^{2}+y^{2}}}|f(y)|dy$ ,

where the integral converges absolutely and $uniforn4y$ for each function $f(x)\in L^{\alpha}(\alpha\geqq 0)$

and for $x\geqq x_{0}>0$ . In fact, since $f(x)\in L^{a}$ , then due to the property of embedding (3.32)
$f(x)$ is an element of the space $L^{0}$ , and by its definition we get

(3.53) $\int_{0}^{\infty}\frac{yK_{1}(\sqrt{x^{2}+y^{2}})}{\sqrt{x^{2}+y^{2}}}|f(y)|dy\leqq\int_{0}^{\infty}\frac{If_{1}(\sqrt{x_{0}^{2}+y^{2}})}{K_{0}(y)}K_{0}(y)|f(y)|dy\leqq C_{1}||f||_{L^{0}}$,

with a constant $C_{1}$ depending on $x_{0}$ . Hence, $(f*g)(x)$ is a continuous function for
$x\geqq x_{0}>0$ . If the ring $L^{\alpha}$ contains the unit for the convolution (1.6), then each bounded
function from $L^{\alpha}$ must coincide almost everywhere with some function continuous in
$x\geqq x_{0}>0$ as a function which is obtained as its convolution with the unit. But it is
evident that the Lebesgue space $L^{\alpha}$ contains bounded discontinuous functions which differ
from the functions being continuous for $x\geq x_{0}>0$ on a set of positive measure. $\cdot$

The
function which is equal to 1 on the interval $(a, b)$ and equal to zero outside of $(a, b)$ with
$x_{0}<a$ is a such simple example. This contradiction shows that the class $L^{\alpha}$ does not
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contain the unit. $\blacksquare$

Let us denote by $V^{\alpha}\equiv V(R_{+};K_{\alpha}(x))$ the commutative ring, obtained by means of
formal addition of a unit to $L^{\alpha}$ . Thus, $V^{a}$ consists of elements $\xi=\lambda e+f(t)$ , where
$e$ is the unit, $\lambda$ is an arbitrary complex number, and $f(t)$ is any element from $L^{\alpha}$ . We
introduce the norm in $V^{a}$

(3.54) $||\xi||_{V^{\alpha}}=|\lambda|+||f||_{L^{\alpha}}$ .

Now we need some preliminary information from the theory of ideals of the rings [8].

Definition 1. A subset $I_{l}$ of a ring $R$ is called a left ideal, if

1. $I_{l}\neq R$;
2. $x+y\in I_{l}$ for $x,$ $y\in I_{l}$ ;
3. $z\cdot x\in I_{l}$ for $x\in I_{l},$ $z\in R$ .

The right ideal is defined analogously.

Definition 2. A subset $I$ of a ring $R$ is called a bilateral ideal or ideal in $R$ , if $I$ is
the left and right ideal, simultaneously.

Definition 3. A bilateral ideal is called a maximal ideal, if it is not contained in any
other bilateral ideal of the ring $R$ .

Our problem is now to find all maximal ideals of the ring $V^{a}$ . Directly from Definitions
1-3 it follows that the ring $L^{\alpha}$ is a certain maximal ideal in the ring $V^{\alpha}$ . For each
$\xi=\lambda e+f(x)\in V^{\alpha}$ let us set

(3.55) $(\mathcal{F}\xi)(\mu)=\lambda+(RCf)(\mu)$ ,

where $\lambda,$ $\mu\in C,$ $(RCf)(\mu)$ is K-L transform (3.37). By using Theorem 3.10 we can show
that the mapping $\xiarrow(\mathcal{F}\xi)(\mu)$ is a homomorphism of the ring $V^{\alpha}$ onto C. As it is known
in [8] that the maximal ideal $M_{\mu}$ generated by this mapping contains the set of elements
$\xi=\lambda e+f(x)$ of the ring $V^{\alpha}$ such that $(\mathcal{F}\xi)(\mu)=0$ .

The following theorem states on all maximal ideals of the ring $V^{\alpha}$ .

Theorem 3.14. There does not exist any maximal ideaI in the ring $V^{\alpha}$ except for
$L^{\alpha}$ and $M_{\mu}$ with $|\Re\mu|\leqq\alpha$ . $Moreover\rangle$ two $ideaIsM_{\mu 1}$ and $M_{\mu 2}$ coincide iff $\mu_{1}=\pm\mu_{2}$ .

Proof. Let $M$ be a maximal ideal in $V^{a}$ which differs from $L^{\alpha}$ . Then we correspond
by $F(f)$ some linear functional on $V^{a}$ . But we can regard it as a linear functional in the
space of summable functions with the weight $K_{\alpha}(x)(\alpha\geqq 0)$ . Therefore from the Hopf
lemma we have

(3.56) $F(f)= \int_{0}^{\infty}f(x)\omega(x)dx$ ,

where $\omega(x)/K_{\alpha}(x)$ is an essentially bounded function or it belongs to $L_{\infty}$ with $\omega(x)\not\equiv 0$ .
Since the mapping $farrow F(f)$ is a homomorphism and $F(f_{1}\cdot f_{2})=F(f_{1})F(f_{2})$ , where the
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operation of multiplication in the ring is the convolution (1.6). That is, we can rewrite
this property as follows

(3.57) $\int_{0}^{\infty}f_{1}(x)\omega(x)dx\int_{0}^{\infty}f_{2}(y)\omega(y)dy$

$= \frac{1}{2}\int_{0}^{\infty}\frac{\omega(u)}{u}\int_{0}^{\infty}\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xy}{u}+\frac{xu}{y}+\frac{uy}{x}])f_{1}(x)f_{2}(y)dxdydu$

$= \int_{0}^{\infty}\int_{0}^{\infty}f_{1}(x)f_{2}(y)\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xy}{u}+\frac{xu}{y}+\frac{uy}{x}])\frac{\omega(u)}{2u}dudxdy$ .

Thus we conclude that the function $\omega(x)$ must satisfy the functional equation

(3.58) $\omega(x)\omega(y)=\frac{1}{2}\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xy}{u}+\frac{xu}{y}+\frac{uy}{x}])\frac{\omega(u)}{u}du$

for almost all positive $x$ and $y$ . As it follows from the Macdonald formula (3.27), the
function $\omega(x)=K_{\mu}(x)$ satisfies the equation (3.58), where $\mu$ is some complex number.
Here, we have the reverse of this fact, which is stated as a lemma.

Lemma 1. Let the function $\omega(x)/K_{\alpha}(x)$ be $essenti_{\partial}lly$ boun$ded$ for $x>0$ and let
$\omega(x)\not\equiv O$ . Then the solu tfon of $t\Lambda e$ functionaI $eq$uation (3.58) is the Macdon$aId$ function
$K_{\mu}(x)witI_{J}|\Re\mu|\leqq\alpha$ .

Proof. First we show that the integral

(3.59) $I(x, y) \equiv\int_{0}^{\infty}\exp(-\frac{1}{2}(\frac{xy}{u}+\frac{xu}{y}+\frac{uy}{x}))\frac{\omega(u)}{u^{\gamma}}du$ $(\gamma>1)$

converges uniformly in the region $\{x\geqq x_{0}>0, y\geqq y_{0}>0\}$ for any $x_{0}>0,$ $y_{0}>0$ .
Indeed,

(3.60) $|I(x, y)| \leqq\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xy}{u}+\frac{xu}{y}+\frac{uy}{x}])\frac{K_{\alpha}(u)}{u^{\gamma}}du\Vert\frac{\omega(u)}{K_{a}(u)}\Vert_{L}\infty$

$\leqq[\int_{0}^{1}\exp(-\frac{x_{0}y_{0}}{2u})\frac{K_{\alpha}(u)}{u^{\gamma}}du$

$+ \exp(-\frac{x_{0}y_{0}}{2})\int_{1}^{\infty}\exp(-u)\frac{K_{\alpha}(u)}{u^{\gamma}}du$
$\frac{\omega(u)}{K_{\alpha}(u)}L_{\infty}$

$\leqq C$,

where $C>0$ is a constant. Then $I(x, y)$ can be differentiated with respect to parameters
$x\geqq x_{0}>0$ and $y\geqq y_{0}>0$ . We have from (3.58)

(3.61) $\omega’(x)\omega(y)=\frac{1}{4}\int_{0}^{\infty}(-\frac{y}{u}-\frac{u}{y}+\frac{uy}{x^{2}})\exp(-\frac{1}{2}[\frac{xy}{u}+\frac{xu}{y}+\frac{uy}{x}])\frac{\omega(u)}{u}du$

$=( \frac{y}{4x^{2}}-\frac{1}{4y})I_{1}(x, y)-\frac{y}{4}I_{2}(x, y)$ ,
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where we set

(3.62) $\{$

$I_{1}(x, y)= \int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xy}{u}+\frac{xu}{y}+\frac{uy}{x}])\omega(u)du$;

$I_{2}(x, y)= \int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xy}{u}+\frac{xu}{y}+\frac{uy}{x}])\frac{\omega(u)}{u^{2}}du$ .

In a similar manner we have

(3.63) $\omega(x)\omega’(y)=(\frac{x}{4y^{2}}-\frac{1}{4x})I_{1}(x, y)-\frac{x}{4}I_{2}(x, y)$.

From these equalities it follows that

(3.64) $y \omega’(y)\frac{\omega(x)}{x}=(\frac{1}{4y}-\frac{y}{4x^{2}})I_{1}(x, y)-\frac{y}{4}I_{2}(x, y)$ ,

(3.65) $x \omega’(x)\frac{\omega(y)}{y}=(\frac{1}{4x}-\frac{x}{4y^{2}})I_{1}(x, y)-\frac{x}{4}I_{2}(x, y)$ .

Differentiating left and right sides of (3.64) with respect to $y$ and (3.65) with respect to
$x$ and subtracting them, we obtain the differential equation for $\omega(x)$

(3.66) $(y \omega’(y))’\frac{\omega(x)}{x}-(x\omega’(x))’\frac{\omega(y)}{y}=(\frac{y}{x}-\frac{x}{y})\omega(x)\omega(y)$ ,

which leads to

(3.67) $\frac{y(y\omega’(y))’}{\omega(y)}-y^{2}=\frac{x(x\omega’(x))’}{\omega(x)}-x^{2}=\mu^{2}$ .

since the variables $x$ and $y$ are arbitrary. But both sides in the chain of equalities (3.67)
are Bessel equation [1]

$\omega’’(y)+\frac{1}{y}\omega’(y)-(1+\frac{\mu^{2}}{y^{2}})\omega(y)=0$

with the solution being the Macdonald function $K_{\mu}(y)$ for which $|\Re\mu|\leqq\alpha$ due to the
assumptions. $\blacksquare$

Proof of Theorem 3.14 (continued) Now we prove the last result in Theorem 3.14.
Since $\omega(x)=K_{\mu}(x)$ , the maximal ideal $M$ generated by homomorphism (3.55) coincides
with $M_{\mu}$ due to the formula (3.56), where the parameter $\mu$ is taken in the strip $|\Re\mu|\leqq\alpha$ .
By the evenness of the Macdonald function $K_{\mu}(x)$ with respect to the index two maximal
ideals corresponding to the numbers $\mu_{1}$ and $\mu_{2}$ coincide if and only if $\mu_{1}=\pm\mu_{2}$ . Thus
Theorem 3.14 is completely proved. $\blacksquare$

The mentioned properties of the ring $L^{\alpha}$ allow us to obtain the following analogue of
the Wiener theorem.
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Theorem 3.15. If the function $\mathcal{F}(\mu)$ defined by the relation (3.55) does not vanish
noivhere in the closed strip $|\Re\mu|\leqq\alpha$ including infinity, then there is a unique element
$q(x)$ in the ring $L^{\alpha}$ such that

(3.68) $\frac{1}{\mathcal{F}(\mu)}=\lambda+K_{\mu}[q]$ .

Proof. Since $\mathcal{F}(\mu)$ does not vanish nowhefe in the strip $|\Re\mu|\leqq\alpha$ , then $f(x)$ does
not belong to any maximal ideal and such a set is completely exhausted by Theorem
3.14. As it is known from [8], such an element $f(x)$ has a unique inverse $q(x)$ in the ring
$V^{\alpha}$ , because the mapping $\mathcal{F}(\mu)$ is a homomorphism. Thus.we obtain the equality $(3.68).\blacksquare$

FinaUy we establish the analogue of the Titchmarsh theorem [11] on the absence. of
the divisors of zero for the convolution (1.6).

Theorem 3.16. Let the functions $f(x),$ $g(x)$ be from the ring $L^{a}$ aiid $(f*g)(x)\equiv$

$0,$ $x>0$ . $T\Lambda en$ at $le\partial st$ one of the functions $f(x)$ and $g(x)$ is $equaI$ to zero $aImost$ every-
$i_{V}\Lambda ere$ on $R_{+}$ .

Proof. As already noted, the equality (3.24) can be extended for K-L transform
(3.37) of the index $\mu$ in the strip $|\Re\mu|\leqq\alpha$

(3.69) $(RC(f*g))(\mu)=(RCf)(\mu)(RCg)(\mu)$ .

So, we find that the right side of equality (3.69) is equal to zero. Since the func-
tions $(RCf)(\mu),$ $(RCg)(\mu)$ are analytic as functions of the complex variable $\mu$ in the strip
$|\Re\mu|<\alpha$ , at least one of them is identically zero and Theorem 3.12leads to that $f(x)$ or
$g(x)$ is equal to zero almost everywhere on $R_{+}$ . $\blacksquare$

4. Convolution Hilbert spaces

Now we return to study mapping properties of the convolution operator (1.6) and
weighted space $L_{\beta}^{\alpha}$ being define as so-called convolution Hilbert space by means of com-
pletion of pre-Hilbert space with the inner product as the convolution (1.6). The most
important results for this purpose are respective Theorerns 3.9 and 3.10 for subspace $L_{\beta}^{\alpha}$ .
Let us consider at first the mapping properties of the convolution (1.6) at the subspace
$L_{\beta}^{\alpha}$ with $0<\beta<1$ .

Theorem 4.1. Let $f(x),$ $g(x)\in L_{\beta}^{\alpha},$ $(0<\beta\leqq 1, \alpha\geqq 0)$ . Then the convolution (1.6)
exists aiid belongs to the space $L_{\beta}^{\alpha}$ and satisfies the estimation

(4.1) $||f*g||_{L_{\beta}^{\alpha}}\leqq C_{\beta}||f||_{L_{\beta}^{\alpha}}||g||_{L_{\beta}^{\alpha}}$ ,

where $C_{\beta}$ is a positive constant depending only on $\beta$ .
Proof. By the definition of the norm in the space $L_{\beta}^{\alpha}$ we have

(4.2) $||f*g||_{L_{\beta}^{\alpha}}= \int_{0}^{\infty}K_{a}(\beta x)|(f*g)(x)|dx$

$\leqq\frac{1}{2}\int_{0}^{\infty}\frac{K_{a}(\beta x)}{x}\int_{0}^{\infty}\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xv}{u}+\frac{uv}{x}+\frac{xu}{v}])|f(u)g(v)|dudvdx$ .

105



By interchanging the oreder of integrations, the integral by $x$ corresponds $lo$ formula [10,
Vol2) (2.16.9.1)$]$ which gives

(4.3) $\frac{1}{2}\int_{0}^{\infty}\frac{K_{a}(\beta x)}{x}\exp(-\frac{1}{2}[\frac{xv}{u}+\frac{uv}{x}+\frac{xu}{v}])dx$

$=K_{\alpha}( \frac{1}{2}[\sqrt{u^{2}+v^{2}+2uv\beta}+\sqrt{u^{2}+v^{2}-2uv\beta}])$

$xK_{a}(\frac{1}{2}[\sqrt{u^{2}+v^{2}+2uv\beta}-\sqrt{u^{2}+v^{2}-2uv\beta}])$ .

Thus we have the norm estimate of the convolution (1.6)

(4.4) $||f*g||_{L_{\beta}^{\alpha}} \leqq\int_{0}^{\infty}\int_{0}^{\infty}K_{\alpha}(\frac{1}{2}[\sqrt{u^{2}+v^{2}+2uv\beta}+\sqrt{u^{2}+v^{2}-2uv\beta}])$

$xK_{\alpha}(\frac{1}{2}[\sqrt{u^{2}+v^{2}+2uv\beta}-\sqrt{u^{2}+v^{2}-2uv\beta}])|f(u)g(v)|dudv$.

Let us now establish the uniform boundedness of the function of two variables

(4.5) $F(u, v)= \frac{K_{a}([\sqrt{u^{2}+v^{2}+2uv\beta}+\sqrt{u^{2}+v^{2}-2uv\beta}]/2)}{K_{\alpha}(\beta u)}$

$x\frac{K_{\alpha}([\sqrt{u^{2}+v^{2}+2uv\beta}-\sqrt{u^{2}+v^{2}-2uv\beta}]/2)}{K_{a}(\beta v)}$

$(0<\beta\leqq 1, u, v>0)$

From the asymptotic behavior of the Macdonald function (2.4) it is easy to see that
$F(u, v)<C_{\beta}$ for $0<u,$ $v<\infty$ . Further

(4.6) $F(u)v)=O(\exp(\beta(u+v)-\sqrt{u^{2}+v^{2}+2uv\beta}))$

$\leqq C_{\beta}\exp((\beta-\sqrt{\beta})(u+v))=O(1)$ $(u+varrow\infty)$ .

Under these circumstances we can change the order of integrations in (4.2) and get

(4.7) $||f*g||_{L_{\beta}^{\alpha}} \leqq\int_{0}^{\infty}K_{\alpha}(\beta u)|f(u)|du\int_{0}^{\infty}K_{a}(\beta v)|g(v)|dv=||f||_{L_{\beta}^{\alpha}}||g||_{L_{\beta}^{\alpha}}$

$\blacksquare$

For such subspaces $L_{\beta}^{\alpha}$ the embedding of type

(4.8) $L_{\beta_{1}}^{\alpha}\subseteq L_{\beta_{2}}^{\alpha}$ $(\beta_{1}\leqq\beta_{2})$

is true, and for the convolution (1.6) the previous theorem gives the validity of the equal-
ity (3.24).
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In order to introduce the convolution Hilbert space it is more suitable to consider the
space $L_{\beta}^{\alpha}$ . Let $\omega(x)(x\in R_{+})$ be an arbitrary positive function satisfying the conditions

(4.9) $\omega(x)\in L_{1}((0,1);\frac{\log x}{x})$ , $\omega(x)\in L_{1}((1, \infty);e^{-\beta x})(0<\beta\leqq 1)$ .

Then K-L transform (1.1) of the function $\omega(x)/x$ exists as it is seen from the asymptotic
behavior of the Macdonald function and the inequality (2.11):

(4.10) $|R C[\frac{\omega(x)}{x}]|\leqq\int_{0}^{\infty}|K_{ir}(y)|\frac{\omega(y)}{y}dy$

$\leqq e^{-\delta r}(\int_{0}^{1}K_{0}(y$ coe $\delta)\frac{\omega(y)}{y}dy+\int_{1}^{\infty}K_{0}(y$ coe $\delta)\frac{\omega(y)}{y}dy)$

$\leqq e^{-\delta r}(C_{1}\int_{0}^{1}\log y\frac{\omega(y)}{y}dy+C_{2}\int_{1}^{\infty}e^{-y\cos\delta}\omega(y)dy)<\infty$ ,

where $6\in[0, \pi/2)$ and we can put $\cos\delta=\beta$. In our further considerations we need to
impose some additional conditions on the function $\omega(x)$ for the positiveness of K-L trans-
form $(RC[\omega(x)/x])(\tau)$ for $\tau\geqq 0$ . Of course, from the representation of the Macdonald
function $K_{1r}(x)$ through the integral (1.2) (letting there for instance $6=0$) it follows that
this function is real. Further we have the composition representation like (3.40) under
conditions (4. 9):

(4.11) $(R C[\frac{\omega(x)}{x}])(\tau)=\sqrt{\frac{\pi}{2}}S_{c}\{L\{\frac{\omega(x)}{x};\cosh u\}$ ; $\tau\}$ ,

where we mean $S_{c}\{f(u);\tau\}$ the cosine-Fourier transform

(4.12) $S_{c} \{f(u);\tau\}=\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}f(u)\cos(\tau u)du$ .

Let us recall now to a useful result $hom$ [ $11$ , Theorem 124] to get a sufficient condition
for the positiveness of the composition (4.11). By the assumptions (4.9) the Laplace
transform (3.42) of the function $\omega(x)/x$ is bounded function on $R_{+}$ depending on the
variable $\cosh u(u\geqq 0)$ and steadily decreases to zero as $u$ diverges to infinity. Indeed,
for $u_{1}>u_{2}$ we obtain

(4.13) $L \{\frac{\omega(x)}{x};\cosh u_{1}\}=\int_{0}^{\infty}\frac{\omega(y)}{y}e^{-y\cosh u}1dy$

$\leqq\int_{0}^{\infty}\frac{\omega(y)}{y}e^{-yco\epsilon h_{02}}dy$

$\leqq C_{1}\int_{0}^{1}\log y\frac{\omega(y)}{y}dy+C_{2}\int_{1}^{\infty}e^{-y\beta}\omega(y)dy<\infty$ ,

and this Laplace transform tends to $0$ as $uarrow+\infty$ by virtue of the Lebesgue theorem.
Moreover we can differentiate this integral with respect to $u$ under the integral and we
have

(4.14) $\frac{d}{du}L\{\frac{\omega(x)}{x};\cosh u\}=-\sinh u\int_{0}^{\infty}\omega(y)e^{-y\cosh u}dy$ .
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Theorem 4.2. Let assume the condition (4.9) for the function $\omega(x)$ , and let $t\Lambda e$

in $tegr\partial l$ in $rig\Lambda t$ side of the equality (4.14) be positive and non-fncreasing and tend to a
liwit at infinity. Then $K- L$ transform (4.11) is positive $fu$nction for $\partial 11\tau\geqq 0$ .

Proof. The proof foUows from [11, Theorem 124], because under above assumptions
the Laplace transform $L\{\omega(x)/x;\cosh u\}$ is bounded function, which decreases steadily
to zero at infinity. Thus we conclude that the Laplace transform $L\{\omega(x)/x;\cosh u\}$ is a
convex downwards function of the variable $u$ and therefore the composition (4.11) with
the cosine-Fourier transform is positive for $\tau\geqq 0$ . $\blacksquare$

Let us give several concrete examples of function $\omega(x)$ and corresponding K-L trans-
forms (1.1). Evidently the function $\omega(x)\equiv x$ satisfies conditions (4.9). Invoking to the
formula [10, Vol.2, (2.16.2.1)], we obtain the expression for K-L transform

(4.15) $(R C1)(\tau)=\int_{0}^{\infty}K_{ir}(y)dy=\frac{\pi}{2\cosh(\pi\tau/2)}$ .

Letting $\omega(x)\equiv x^{\gamma}(\gamma>0)$ , we have

(4.16) $(R Cx^{\gamma-1})(\tau)=\int_{0}^{\infty}y^{\gamma-1}K_{ir}(y)dy=2^{\gamma-2}|\Gamma(\frac{\gamma+i\tau}{2})|^{2}$

by virtue of the integral [10, Vol.2, (2.16.2.2)]. Next we consider the function $\omega(x)\equiv$

$e^{-x}x^{\gamma}(\gamma>0)$ . Appealing to the integral [10, Vol.2, (2.16.6.4)], and we obtain

(4.17) $(fl C(e^{-x}x^{\gamma-1}))(\tau)=\int_{0}^{\infty}y^{\gamma-1}e^{-y}K_{ir}(y)dy=2^{-\gamma}\sqrt{\pi}\frac{|\Gamma(\gamma+i\tau)|^{2}}{\Gamma(\gamma+1/2)}$.

As the last example, we demonstrate for the function $\omega(x)\equiv xe^{-\gamma x}(0\leqq\gamma<1)$ . Making
use of the formula [10, Vol.2, (2.16.6.1)] we have

(4.18) $(R Ce^{-x})(\tau)=\int_{0}^{\infty}e^{-\gamma y}K_{ir}(y)dy=\frac{\pi\sinh(\tau\cos^{-1}\gamma)}{\sinh(\pi\tau)\sqrt{1-\gamma^{2}}}$.

So we consider below the function

(4.19) $q( \tau)=(RC[\frac{\omega(x)}{x}])(\tau)$ $(\tau\geqq 0)$ ,

as a weight function for respective Lebesgue spaces.
Let us take in general two complex-valued functions $f(x)$ and $g(x)$ from the space

$L_{\cos\delta}^{\alpha}\subset L^{\alpha}(\pi/3<\delta<\pi/2, \alpha\geqq 0)$ . Then according to Theorem 4.1 the convolution
$(f*\overline{g})(x)$ exists and belongs to the space $L_{\cos\delta}^{\alpha}$ . Moreover the factorization equality
(3.24) is true and due to Theorem 3.11 the Parseval relation (3.25) holds. Multiplying
left and right parts of (3.25) by $\omega(x)$ and integrating on $R_{+}$ , we obtain the equality
(4.20)

$\int_{0}^{\infty}(f*\overline{g})(x)\omega(x)dx=\frac{2}{\pi^{2}}\int_{0}^{\infty}\frac{\omega(x)dx}{x}\int_{0}^{\infty}\tau\sinh(\pi\tau)K_{ir}(x)(RCf)(\tau)(RC\overline{g})(\tau)$.

Hence, using the estimate (3.36) and the condition (4.9) for $\omega(x)$ , we have

(4.21)$\int_{0}^{\infty}|(f*\overline{g})(x)|\omega(x)dx\leqq\frac{2}{\pi^{2}}\int_{0}^{\infty}K_{0}(x\cos\delta)\frac{\omega(x)}{x}dx\int_{0}^{\infty}\tau\sinh(\pi\tau)e^{-3r\delta}d\tau$

$x\int_{0}^{\infty}K_{0}(u\cos\delta)|f(u)|du\int_{0}^{\infty}K_{0}(y\cos\delta)|g(y)|dy$ ,
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where $aU$ integrals are convergent under the assumptions. Thus finally we apply the Fubini
theorem that enables us to change the order integrations at the right part of (4.20), and
we come to the equality

(4.22) $\int_{0}^{\infty}(f*\overline{g})(x)\omega(x)dx=\frac{2}{\pi^{2}}\int_{0}^{\infty}\tau\sinh(\pi\tau)q(\tau)(i\mathfrak{B}f)(\tau)(flC\overline{g})(\tau)d\tau$

where the weight function $q(\tau)$ is defined by the formula (4.19). Let us denote the left
part of (4.22) as

(4.23) $\int_{0}^{\infty}(f*\overline{g})(x)\omega(x)dx=\{f,g\rangle$ .

It is not difficult to see from the equality (4.22) and Theorem 3.12 that $(f,$ $g\rangle$ possesses
all properties of the inner product. With this inner product the set of functions $L_{\cos\delta}^{a}$

becomes the pre-Hilbert space. Its completion we call as the convolution Hilbert space
and is denoted by $S_{q}$ . From this inner product $(f, g)$ the norm $||f||s=\sqrt{\langle f,f\rangle}$ is defined.
If $f,$ $g\in L_{\cos\delta}^{a}$ , then we have

(4.24) $(f,$ $g \}=\int_{0}^{\infty}(f*\overline{g})(x)\omega(x)dx$

$= \frac{1}{2}\int_{0}^{\infty}\frac{\omega(x)}{x}dx\int_{0}^{\infty}\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xu}{v}+\frac{xv}{u}+\frac{vu}{x}])f(u)\overline{g}(v)dudv$

$= \int_{0}^{\infty}\int_{0}^{\infty}S_{\omega}(u, v)f(u)\overline{g}(v)dudv$,

where

(4.25) $S_{\omega}(u, v)= \frac{1}{2}\int_{0}^{\infty}\frac{\omega(x)}{x}\exp(-\frac{1}{2}[\frac{xu}{v}+\frac{xv}{u}+\frac{vu}{x}])dx$ .

Of course we can perform to change the order of integrations by the above estimate and
the Fubini theorem. Thus if $f(x)$ satisfies the condition

(4.26) $\int_{0}^{\infty}\int_{0}^{\infty}S_{td}(u, v)|f(u)f(v)|dudv<\infty$,

then $||f||_{S}<\infty$ and $f\in S_{q}\supset L_{\cos\delta}^{a}$ . Furthermore if $f(x)$ and $g(x)$ satisfy the condition
(4.26), then from the Cauchy inequality

(4.27) $|(f,$ $g\}|\leqq||f||_{S}||g||_{S}$ ,

it follows that the integral

$\int_{0}^{\infty}\int_{0}^{\infty}S_{\omega}(u, v)|f(u)g(v)|dudv$

is convergent and the equality (4.24) is valid.
Let us now introduce the weighted Hilbert space $H_{q}\equiv L_{2}(R_{+};2\tau\sinh(\pi\tau)q(\tau)/\pi^{2})$

with the norm

(4.28) $||h||_{H_{r}}= \frac{\sqrt{2}}{\pi}(\int_{0}^{\infty}\tau\sinh(\pi\tau)q(\tau)|h(\tau)|^{2}d\tau)^{1/2}$ ,
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where $q(\tau)$ is the weight function (4.19). As it follows from (4.22) the operator of K-L
transform (1.1) maps the space $L_{\cos\delta}^{a}$ into $H_{q}$ and moreover

(4.29) $||R Cf||_{H_{q}}^{2}=\frac{2}{\pi^{2}}\int_{0}^{\infty}\tau\sinh(\pi\tau)q(\tau)|(RCf)(\tau)|^{2}d\tau$ .

$= \int_{0}^{\infty}(f*\overline{f})(x)\omega(x)dx=||f||_{S}^{2}$ .

According to the known Banach theorem we can extend K-L operator on all $f\in S_{q}$ . So
K-L transform is defined for all $f\in S_{q}$ , its range $KL(S_{q})$ belongs to $H_{q}$ and there holds
the property for any $f\in S_{q}$

(4.30) $||f||_{S}=||RCf||_{H_{q}}$ , $(i\mathfrak{B}f)(\tau)=0$ iff $f=0$ .

Consequently we conclude that there exists the inverse bounded operator $(RC^{-1}h)(x)$ .
Due to the definition of the norm (4.28) and the equality (4.24), the inner product of two
elements $\varphi,$ $\psi\in H_{q}$ can be written by the formula

(4.31) $(( \varphi, \psi))=\frac{2}{\pi^{2}}\int_{0}^{\infty}\tau\sinh(\pi\tau)q(\tau)\varphi(\tau)\overline{\psi}(\tau)d\tau$.

Returning to considered examples of function $\omega(X^{\vee})$ we get the respective examples of
Hilbert spaces $S_{q}$ and $H_{q}$ with the relation (4.22) and the condition (4.26) for each case.
For instance, putting $\omega(x)\equiv x$ using the formula (4.15) and the equahty (4.22), we have

(4.32) $\int_{0}^{\infty}(f*\overline{g})(x)xdx=\frac{2}{\pi}\int_{0}^{\infty}\tau\sinh(\frac{\pi\tau}{2})(nCf)(\tau)(1\Im C\overline{g})(\tau)d\tau$ .

To obtain the corresponding condition (4.26) we calculate the integral (4.25) by means of
the formula (3.23) and it gives the boundedness

(4.33) $\int_{0}^{\infty}\int_{0}^{\infty}\frac{uy}{\sqrt{u^{2}+y^{2}}}K_{1}(\sqrt{u^{2}+y^{2}})|f(u)f(y)|dudy<\infty$ .

Similarly we can treat other examples (4.16)-(4.18).
As we noted above if $f(x),$ $g(x)\in L_{\cos\delta}^{a}$ , then $(f*g)(x)\in L_{\cos\delta}^{\alpha}$ and the equality (3.24)

is valid. Hence there holds the representation

(4.34) $(f*g)(x)=(RC^{-1}[(J\mathfrak{B}f)(\tau)(RCg)(\tau)])(x)$.

If for two elements $f,g$ of the convolution Hilbert space $S_{q}$ the function $(RCf)(\tau)(flCg)(\tau)$

$=\varphi(\tau)\psi(\tau)$ belongs to $KL(S_{q})$ , then the element $RC^{-1}[\varphi(\tau)\psi(\tau)]$ may be called the gen-
eralized convolution of the elements $f,$ $g$ and denoted by $f*g$ . Let us prove that for any
$f\in S_{q}$ and $g\in L_{\cos\delta}^{\alpha}$ the convolution (1.6) exists and there holds the inequality

(4.35) $||f*g||s \leqq\sup_{\tau>0}|\psi(\tau)|||f||_{S}$ ,

where

(4.36) $\psi(\tau)\equiv(RCg)(\tau)=\int_{0}^{\infty}K_{ir}(y)g(y)dy$ .
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Indeed since the function $g(x)$ belongs to $L_{\cos\delta}^{\alpha}$ , then due to the estimate

(4.37) $| \psi(\tau)|\leqq e^{-\delta r}\int_{0}^{\infty}K_{0}(y\cos\delta)|g(y)|dy$

we have that $\sup_{\tau>0}|\psi(\tau)|=M<\infty$ and consequently, $\varphi(\tau)\psi(\tau)\in H_{q}$ for $\varphi(\tau)\equiv$

$(oef)(\tau)$ . Let us now prove $\varphi(\tau)\psi(\tau)\in KL(S_{q})$ . There exists some sequence $f_{n}(x)\in$

$L_{\cos\delta}^{\alpha}$ such that $||f-f_{n}||_{S}arrow 0$ as $narrow\infty$ . Hence we obtain according to Theorem 4.1
that $h_{n}(x)=f_{n}(x)*g(x)\in L_{\cos\delta}^{\alpha}$ and denoting by $\varphi_{n}(\tau)=(RCf_{n})(\tau)$ , we have (see
(4.29) $)$

(4.38) $||h_{n}-h_{m}||=||(f_{n}-f_{m})*g||_{S}=||(RC[f_{n}-f_{m}])(fflg)||_{H_{q}}$

$=||(\varphi_{n}-\varphi_{m})\psi||_{H_{l}}\leqq M||\varphi_{n}-\varphi_{m}||_{H_{2}}=M||f_{n}-f_{m}||_{S}$.

Thus the sequence $\{h_{n}\}$ is convergent at the Hilbert space $S_{q}$ . Let the corresponding limit
be $h$ . Then we obtain

(4.39) $(i\mathfrak{B}h)(\tau)=(RCf)(\tau)(1\mathfrak{B}g)(\tau)=\varphi(\tau)\psi(\tau)$,

and the product $\varphi(\tau)\psi(\tau)$ belongs to $KL(S_{q})$ .
We now turn to establish the inversion formula for K-L transform at the convolution

Hilbert space.

Theorem 4.3. Let the weight function $\omega(x)$ satisfy the condition (4.9) $wi$ th $\beta=$

$\cos 6(\pi/3<\delta<\pi/2)$ . Then for a function $f(x)$ from $t\Lambda e$ conirolution Hilbert space $S_{q}$

there holds the fnversion formula of K-L transform

(4.40) $(f* \frac{\omega(x)}{x})(x)=\frac{2}{\pi^{2}x}\frac{d}{dx}\int_{0}^{\infty}\tau\sinh(\pi\tau)q(\tau)$

$x\Re[\frac{x^{1-\cdot\tau}2^{r}\Gamma(i\tau)}{1-i\tau}1F2(\frac{1-i\tau}{2};1-i\tau,$ $\frac{3-i\tau}{2};\frac{x^{2}}{4})](1\mathfrak{B}f)(\tau)d\tau$ ,

where $1F_{2}(a;b, c;z)me\partial Jis$ the hypergeometric function $fl$] and notation $\Re[F(i\tau)]=$

$(F(i\tau)+F(-i\tau))/2$ gives the $reaI$ part of arbitrary function $F(i\tau)$ . Besides, if $f(x)\in$

$L_{\cos\delta}^{\alpha}\subset S_{q}$ , then the formula (4.40) takes the classical form

(4.41) $(f* \frac{\omega(x)}{x})(x)=\frac{2}{\pi^{2}}\int_{0}^{\infty}\tau\sinh(\pi\tau)q(\tau)\frac{K_{ir}(x)}{x}(RCf)(\tau)d\tau$ .

Proof. In order to prove the formula (4.40) we start from formula (4.22). Letting
there $g(y)=1(0<y\leqq x);g(y)=0(y>x)$ , we transform the right-hand side of the
equality (4.22) by calculating the respective integral $(RCg)(\tau)$ in view of the formula
[10, Vol.2, (1.12.1.2)] as

(4.42) $\int_{0}^{x}K_{ir}(y)dy=\Re[\frac{x^{1-\cdot r}2^{i\tau}\Gamma(i\tau)}{1-i\tau}F(\frac{1-i\tau}{2};1-i\tau,$ $\frac{3-i\tau}{2};\frac{x^{2}}{4})]$ .
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The left-hand side of the equality (4.22) is an absolute convergent integral under conditions
of the theorem from the inequality (4.27). So, by denoting the right-hand side as $R(\tau, x)$ ,
temporary, the formula (4.22) becomes

(4.43) $\int_{0}^{x}\int_{0}^{\infty}S_{\omega}(u, y)f(u)dudy=\frac{2}{\pi^{2}}\int_{0}^{\infty}\tau\sinh(\pi\tau)q(\tau)R(\tau, x)(iiCf)(\tau)d\tau$,

by the notation (4.25). Moreover this enables us to perform differentiation of the left-
and right-hand sides of (4.43) to obtain

(4.44) $\int_{0}^{\infty}S_{\omega}(u, x)f(u)du=\frac{2}{\pi^{2}}\frac{d}{dx}\int_{0}^{\infty}\tau\sinh(\pi\tau)q(\tau)R(\tau, x)(RCf)(\tau)d\tau$.

But the left-hand side of (4.44) is equal to $x(f*[\omega(x)/x])(x)$ , which leads to (4.40). The
formula (4.41) can be easily deduced by performing the differentiation under the integral
with respect to $\tau$ in the right-hand side of (4.44), provided that $f(x)\in L_{\cos\delta}^{\alpha}$ invoking to
the representation (4.42) and the inequality (3.36) meaning there instead of $g$ the function
$\omega(x)/x\in L_{\cos\delta}^{\alpha}$ under condition of the present theorem. $\blacksquare$

Putting $\omega(x)\equiv x$ at the formula (4.40), we attract our attention to corresponding
inversion formula for the space (4.33), namely

(4.45) $(f*1)(x)= \frac{2d}{\pi xdx}\int_{0}^{\infty}\tau\sinh(\frac{\pi\tau}{2})R(\tau, x)(i\mathfrak{B}f)(\tau)d\tau$

Let us note that if the range of K-L transform $KL(S_{q})$ coincides with the space $H_{q}$ , then
for the existence of the convolution $(f*g)(x)$ of $f,$ $g\in S_{q}$ it is necessary and sufficient
that the product $(RCf)(\tau)(RCg)(\tau)$ belongs to the space $H_{q}$ . However it is true that
$KL(S_{q})=H_{q}$ .

Theorem 4.4. The raiige of K-L transform $KL(S_{q})$ coincides with the weighted
Hilbert space $H_{q}$ .

Proof. We note that there exists in $H_{q}$ no element except zero that is orthogonal
to $KL(S_{q})$ . In fact, let us assume $(\varphi_{0}, (RCg))=0$ for arbitrary $g\in S_{q}$ , where the inner
product means the formula (4.31). In particular, we take the function $g$ as in the Theorem
4.3 that $g(y)=1(0<y\leqq x);g(y)=0(y>x)$ . The equality

(4.46) $(\varphi_{0},$ $\int_{0}^{x}K_{i\tau}(y)dy)=\frac{2}{\pi^{2}}\int_{0}^{\infty}\tau\sinh(\pi\tau)q(\tau)\varphi_{0}(\tau)\int_{0}^{x}K_{i\tau}(y)dyd\tau=0$

after differentiation with respect to $x$ yields

(4.47) $\int_{0}^{\infty}\tau\sinh(\pi\tau)q(\tau)\varphi_{0}(\tau)K_{ir}(x)d\tau=0$

for $\mathfrak{N}x>0$ . The last operation is possible due to its absolute and uniform convergence
of the integral (4.47) in view of the estimate

(4.48) $\int_{0}^{\infty}\tau\sinh(\pi\tau)q(\tau)|\varphi_{0}(\tau)K_{ir}(x)|d\tau$

$\leqq\frac{\pi K_{0}(x\cos 6)}{\sqrt{2}}||\varphi_{0}||_{H_{q}}(\int_{0}^{\infty}\tau\sinh(\pi\tau)q(\tau)e^{-2\delta r}d\tau)^{1/2}$
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So this estimate shows that the left hand-side of (4.47) is a function in $L_{1}(R_{+})$ and
according to Fourier integrals theory [11] we can take the cosine-Fourier transform (4.12)
of both sides of the equality (4.47). Changing the order of integrations by the Fubini
theorem and calculating the inner integral by formula [10, Vol.2, (2.16.14.1)] we obtain a
new equaIity

(4.49) $\int_{0}^{\infty}\tau\sinh(\frac{\pi\tau}{2})q(\tau)\varphi_{0}(\tau)\cos(\tau\log(x+\sqrt{x^{2}+1}))d\tau\equiv 0$ .

In view of the above estimates, observing the integrand in (4.49) from the space $L_{1}(R_{+})$

by $\tau$ , applying the H\"older inequality and using known theorem [11] about uniqueness of
cosine Fourier transform of summable functions of $L_{1}(R_{+})$ , we obtain $\varphi_{0}(\tau)=0$ almost
everywhere. $\blacksquare$

5. Kontorovich-Lebedev convolution integral equations

In this last section we consider some class of integral equations with the kernel (1.8)
which contains the inner integral of the Kontorovich-Lebedev convolution (1.6). Such
equations were first mentioned in [7] and were exhibited in details recently in [16]. Com-
paring with usual convolution equations of Fourier, Mellin or Laplace type [11] it is not so
easy to recognize the convolution property of the operator (1.7). Nevertheless this class
of integral equations is also worth mentioning in connection with some applications to
problems of mathematical physics [7]. First it was described in [12] using the algebra of
the introduced convolution (1.6). Here we give some examples of Kontorovich-Lebedev
type convolution integral equations and their solutions in slightly different form than in
[16] in view of the considered convolution operator (1.6) and its new properties. The
operational method of solutions of such equations was demonstrated in [15] and [16].

The most familiar form of the integral equation is

(5.1) $f(x)=h(x)+ \lambda\int_{0}^{\infty}K(x, u)f(u)dy(x>0)$ ,

where $\lambda$ is some complex parameter, $h(x)$ and $K(x, u)$ are given functions, and $f(x)$ is to
be determined. We will call such equation as usually the integral equation of the second
kind. It can be solved by means of the K-L integrals in certain special cases meaning such
ones in which the integral operator (5.1) is the convolution operator (1.7) with the kernel
(1.8).

Let us consider some examples of concrete kernels (1.8) choosing different functions
$g(x)$ and calculating the respective integrals. Let $g(x)=\exp(-x\cos\mu)x^{\gamma-1}(0\leqq\mu<$

$\pi,$ $\Re\gamma>0)$ . Then due to the formula [10, Vol.l, (2.3.16.1)], the function $K(x, u)$ is

(5.2) $K(x, u)= \frac{x^{\gamma-1}u^{\gamma}}{(x^{2}+u^{2}+2xu\cos\mu)^{\gamma/2}}K_{\gamma}(\sqrt{x^{2}+u^{2}+2xu\cos\mu})$

and the equation (5.1) takes the form

(5.3) $f(x)=h(x)+ \lambda\int_{0}^{\infty}\frac{x^{\gamma-1}u^{\gamma}K_{\gamma}(\sqrt{x^{2}+u^{2}+2xu\cos\mu})}{(x^{2}+u^{2}+2xu\cos\mu)^{\gamma/2}}f(u)du$.
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If we set $\gamma=1/2$ , then by invoking to the fact that the Macdonald function $K_{1/2}(z)$ is
$equal^{\iota}$ to $e^{-z}\sqrt{\pi/2z}[1]$ , we have the equation (5.3) of the form

(5.4) $f(x)=h(x)+ \lambda\sqrt{\frac{\pi}{2x}}\int_{0}^{\infty}\frac{\exp(-\sqrt{x^{2}+u^{2}+2xu\cos\mu})}{(x^{2}+u^{2}+2xu\cos\mu)^{1/2}}u^{1/2}f(u)du$.

The simplest case was first considered in [7] when $\mu=0$ as

(5.5) $f(x)=h(x)+ \lambda\sqrt{\frac{\pi}{2x}}\int_{0}^{\infty}\frac{\exp(-x-u)}{x+u}u^{1/2}f(u)du$.

Let $g(x)=(x+a)^{-1}$ with a parameter $a>0$ . Then the integral (1.8) can be evaluated
by the formula [10, Vol.1, (2.3.16.4)]

(5.6) $K(x, u)= \frac{\sqrt{\pi/a}}{2x}\exp(a\frac{x^{2}+u^{2}}{2xu}+\frac{xu}{2a})$ erfc $( \sqrt{\frac{xu}{2a}}+a\frac{\sqrt{x^{2}+u^{2}}}{2xu})$ ,

where

(5.7) erfc $(x)= \frac{2}{\pi}\int_{x}^{\infty}e^{-t^{2}}dt$

is the error function [1].
Let us return to the general convolution operator (1.7). We already noted in Corollary

3.1 its mapping properties and behavior of the kernel $K(x, u)$ at the neighborhood of the
poi.nt.(0,.0). The considered examples of the kernel $K(x, u)$ confirm that it contains
removable singularity at the origin $(0,0)$ . We begin from the homogeneous equation

(5.8) $f(x)= \lambda(\tau)\int_{0}^{\infty}K(x, u)f(u)du$ $(x>0)$ ,

where $\lambda(\tau)$ is a continuous function on $R+$ of variable $\tau$ .

Theorem 5.1. Let $g(x)\in L^{0}\equiv L(R_{+}K_{0}(x))$ . If $1/\lambda(\tau)=(fflg)(\tau)$ , then the
function $K_{ir}(x)/x$ satisfies the $equatioi\iota(5.8)$ .

Proof. Substituting $K_{1r}(x)/x$ in the right-hand side of the equality (5.8) and taking
into account the inequality $|K:r(x)|\leqq K_{0}(x)$ , we obtain the estimate

(5.9) $| \lambda(\tau)\int_{0}^{\infty}K(x, u)K_{ir}(u)\frac{du}{u}|\leqq|\lambda(\tau)|\int_{0}^{\infty}|K(x, u)|\frac{K_{0}(u)}{u}du$ .

Due to the Macdonald formula (3.27), we have

(5.10) $\int_{0}^{\infty}|K(x, u)|K_{0}(u)\frac{du}{u}\leqq\frac{K_{0}(x)}{x}\int_{0}^{\infty}K_{0}(y)|g(y)|dy=\frac{K_{0}(x)}{x}||g||_{L^{0}}$ .

Hence we perform to change the order of integrations by the Fubini theorem and obtain
the identity (5.8) with $f(x)=K_{ir}(x)/x$ . $\blacksquare$
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The partial solution of the equation (5.1) is given by the following:

Theorem 5.2. Let $h(x),$ $g(x)\in L_{p}(R_{+})(p\geqq 1)$ and $\sup_{r\geqq 0}|(J\infty g)(\tau)|<1/|\lambda|$ . Then

the function

(5.11) $f(x)= \frac{2}{\pi^{2}}1e.iarrow 0\dotplus$

is a partiaI $L_{p}$-solu tion of the $eq$uation (5.1) and the limit is meant in the norm of $L_{p}(R_{+})$ .
Proof. First let us show that the space $L_{p}(R_{+})(p\geqq 1)$ is a subspace of the space

$L_{\cos\delta}^{0}(6\in(0, \pi/2))$ . Indeed, if $g\in L_{p}(R_{+})$ , then by the usual H\"older inequality we have

(5.12) $\int_{0}^{\infty}K_{0}(y\cos\delta)|g(y)|dy\leqq(\int_{0}^{\infty}K_{0}^{q}(y\cos\delta)dy)^{1/q}||g||_{L_{p}}<\infty$

which gives the desired result. On the other hand, according to Theorem 2.2 for the
function $h\in L_{p}(R_{+})$ we have the limit relation

(5.13) $h(x)= \frac{2}{\pi^{2}}1.i.m\epsilonarrow 0\dotplus\int_{0}^{\infty}\tau\sinh((\pi-\epsilon)\tau)\frac{K_{ir}(x)}{x}(RCh)(\tau)d\tau$

and the estimate due to the fact $h(x)\in L_{\cos\delta}^{0}$ as

(5.14) $|(i\mathfrak{B}h)(\tau)|\leqq e^{-\delta r}||h||_{L_{co\epsilon\delta}^{0}}$ $(\delta\in(0,$ $\frac{\pi}{2}))$ .

Hence denoting the right-hand side of (5.11) as $(I_{\epsilon}f)(x)$ , we obtain under the assumption
for $(RCg)(\tau)$ that for each $\epsilon>0$

(5.15) $|(I_{e}f)(x)| \leqq C\frac{K_{0}(x\cos 6)}{x}||h||_{L_{co*\delta}^{0}}\int_{0}^{\infty}\tau\sinh((\pi-\epsilon)\tau)e^{-2\delta r}d\tau$ ,

where $C$ is an absolute positive constant and 6 is chosen from the interval $((\pi-\epsilon)/2, \pi/2)$ .
Therefore there exists the convolution $(g*(I_{e}f))(x)$ provided by the estimate

(5.16) $|(g*(I_{e}f))(x)| \leqq\frac{C}{x}||h||_{L_{co\epsilon\delta}^{0}}\int_{0}^{\infty}|g(y)|dy$

$x\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xu}{y}+\frac{xy}{u}+\frac{yu}{x}])\frac{K_{0}(u\cos\delta)}{u}du$

$\leqq C\frac{K_{0}(x\cos\delta)}{x}||h||_{L_{co\cdot\delta}^{0}}\int_{0}^{\infty}K_{0}(y\cos\delta)|g(y)|dy$

$\leqq C_{\delta}\frac{K_{0}(x\cos\delta)}{x}||h||_{L_{co\cdot\delta}^{0}}||g||_{p}$ ,

where $C_{\delta}$ is a positive constant. To get this estimate we used the inequality (4.5) as well
as the usual H\"older inequality. Hence from the assumption we have

(5.17) $\frac{(RCh)(\tau)}{1-\lambda(flCg)(\tau)}\in KL(L_{p})$ ,
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in view of the result of Theorem 2.3 such that the condition (2.27) holds. Invoking to
the Macdonald formula (3.27), Theorem 2.2 and the Lebesgue theorem, we have the limit
equality

(5.18) $\lim_{earrow 0+}\lambda(g*(I_{e}f))(x)=(f*g)(x)$

$= \lim_{earrow 0+}\frac{2\lambda}{\pi^{2}x}\int_{0}^{\infty}\frac{\tau\sinh((\pi-\epsilon)\tau)(RCh)(\tau)}{1-\lambda(J\mathfrak{B}g)(\tau)}(RCg)(\tau)K_{ir}(x)d\tau$

$=- \lim_{earrow 0+}\frac{2}{\pi^{2_{X}}}\int_{0}^{\infty}\tau\sinh((\pi-\epsilon)\tau)K_{ir}(x)(Rgh)(\tau)d\tau$

$+ \lim_{\epsilonarrow 0+}\frac{2}{\pi^{2}x}\int_{0}^{\infty}\frac{\tau sinh((\pi-\epsilon)\tau)(RCh)(\tau)}{1-\lambda(J\mathfrak{B}g)(\tau)}K_{i\tau}(x)d\tau=-h(x)+f(x)$

almost everywhere, where the last equality is easy seen from Theorem 2.2. $\blacksquare$

Now we consider an equation similar to (5.1) with the kernel (1.8) and $\lambda=-1$

(5.19) $h(x)=f(x)+ \int_{0}^{\infty}K(x, u)f(u)du$

with respect to the function $f(x)$ in the class $L(R_{+};K_{\alpha}(x))$ , where the given functions
$h(x)$ and $g(x)$ in (1.8) belong to normed ring $L(R_{+};K_{a}(x))$ . Applying K-L transform
(1.1) with the index $\eta=\Re\eta+i\tau$ in the strip $|\Re\eta|\leqq\alpha$ to the both sides of the equality
(5.19), we obtain from the factorization equality (3.69) for the convolution $(f*g)(x)$ the
following algebraic equation

(5.20) $(RCh)(\eta)=(i\mathfrak{B}f)(\eta)(1+(flCg)(\eta))$ $(|\Re\eta|\leqq\alpha)$ .

If the condition

(5.21) $1+(RCg)(\eta)\neq 0$ , $(|\Re\eta|\leqq\alpha)$ ,

holds, then by the analogue of the Wiener Theorem 3.15, there is a unique function
$q(x)\in L^{\alpha}$ such that

(5.22) $\frac{1}{(J\mathfrak{B}g)(\eta)}=1+(RCq)(\eta)$ .

Then from (5.20), we obtain the equality

(5.23) $(i \mathfrak{B}f)(\eta)=\frac{(RCh)(\eta)}{1+(fiCg)(\eta)}=(1+(fiCq)(\eta))(i\mathfrak{B}h)(\eta)$ $(|\Re\eta|\leqq\alpha)$ ,

which is equivalent to

(5.24) $f(x)=h(x)+ \int_{0}^{\infty}K_{q}(x, u)h(u)du$ $(x>0)$ ,
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where $K_{q}(x, u)$ is a new kernel similar to (1.8) with the function $q(x)$ . It is easily seen
that, conversely, the function $f(x)$ in the formula (5.24) gives the solution of the equation
(5.19) for any function $h(x)$ from the ring $L^{\alpha}$ only under condition (5.21). Thus we have
proved:

Theorem 5.3. Let functfons $g(x),$ $h(x)\in L(R_{+};K_{\alpha}(x))$ . Then the equation (5.19) is
solvable in the dass $L^{\alpha}$ if and only if condition (5.21) holds. Moreover, its unique solution
is represented by the formula (5.24).

Corollary 5.1. The $equ$ation (5.3) witA $\lambda=-1$ is solvable in the ring $L(R_{+};K_{0}(x))$

if and only if

(5.25) $1+\sqrt{\frac{\pi}{2}}\Gamma(\gamma-i\tau)\Gamma(\gamma+i\tau)\sin^{1/2-\gamma}\mu P_{-1/2+ir}^{1/2-\gamma}$(coe $\mu$) $\neq 0$ $(\tau\in R)$ ,

$w\Lambda ereP_{-1/2+ir}^{1/2-\gamma}(\cos\mu)$ is the Legendre function [1].
Proof. Actually the inequality (5.25) means the condition (5.21) for K-L transform

(1.1) of the function $g(x)=e^{-x\cos\mu}x^{\gamma-1}$ . To $ev4uate$ this we use the integral [10, Vol.2,
(2.16.6.3)$]$ and we have

(5.26) $\int_{0}^{\infty}x^{\gamma-1}e^{-x\cos\mu}K_{ir}(x)dx$

$=\sqrt{\frac{\pi}{2}}\Gamma(\gamma-i\tau)\Gamma(\gamma+i\tau)\sin^{1/2-\gamma}\mu P_{-1/r}^{1/2-\gamma}2+:(\cos\mu)\neq 0$ $(\tau\in R)$ ,

which leads to (5.25). $\blacksquare$

Corollary 5.2. The Lebede$vs$ equation (5.5) is solvable for $\lambda=-2/\pi^{2}$ in the class
$L(R_{+};K_{\alpha}(x))(0\leqq\alpha<1/2)$ , and moreover, $fts$ umque solution $h_{\partial}s$ the form

(5.27) $f(x)=h(x)+ \frac{2}{\pi^{2}}\int_{0}^{\infty}\frac{uK_{1}(u)K_{0}(x)-xK_{1}(x)K_{0}(u)}{x^{2}-u^{2}}uh(u)du$ .

Conversely, $t\Lambda eeq$uation (5.27) is solvable in the ring $L(R_{+};K_{\alpha}(x))(0\leqq\alpha<1/2)$ and
its unique solution has the form (5.5) in the case $\lambda=-2/\pi^{2}$ .

Proof. The proof of can be obtained by using the same integral (5.26), when $\mu=$

$0,$ $\gamma=1/2$ . In this case the result is reduced to $(flCg)(\eta)=\pi^{3/2}/(\sqrt{2}\cos(\pi\eta))$ , where
$g(x)=e^{-x}x^{-1/2}$ . Hence we get the equation (5.23) in the form

(5.28) $(R Cf)(\eta)=\frac{\cos(\pi\eta)}{1+\cos(\pi\eta)}(RCh)(\eta)=(1+(fflq)(\eta))(RC\cdot h)(\eta)$ $(|\Re\eta|\leqq\alpha)$ ,

where the value of the function $q(x)$ can be obtained by using the formula [10, Vol.2,
(2.16.33.2) $]$ and $q(x)=-(2/\pi^{2})K_{0}(x)$ . The respective kernel $K_{q}(x, u)$ is evaluated from
the formula (1.8) and the integral [10, Vol.2, (2.16.9.1)], which leads to the kernel in the
solution (5.27)

(5.29) $K_{q}(x, u)=- \frac{1}{\pi^{2}x}\int_{0}^{\infty}\exp(-\frac{1}{2}[\frac{xy}{u}+\frac{xu}{y}+\frac{uy}{x}])K_{0}(y)dy$

$= \frac{2}{\pi^{2}}\frac{u(uK_{1}(u)K_{0}(x)-xIf_{1}(x)K_{0}(u))}{x^{2}-u^{2}}$ .
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The condition $0\leqq\alpha<1/2$ arises from the convergence of the integral (3.31) for $||g||_{L^{\alpha}}<$

$+\infty,$

$\cdot$

where $g(x)=e^{-x}x^{-1/2}$ . $\blacksquare$

Concerning the convolution equation of the first kind like (1.7)

(5.30) $\int_{0}^{\infty}K(x, u)f(u)du=h(x)$

its solution can be written based on the factorization equality (3.24) for K-L transform
and its range for corresponding space of functions. Thus, for example, if we look for a
solution in the convolutional Hilbert space $S_{q}$ , we have to take the given function $h(x)$

from $S_{q}$ as well as the kernel function $g(x)$ (see (1.8)). According to Theorem 4.4 the
range $KL(S_{q})$ coincides with the Hilbert space $H_{q}$ . So from (5.30) we have the algebraic
equation in terms of K-L transform

(5.31) $(i\mathfrak{B}f)(i\tau)(RCg)(i\tau)=(RCh)(i\tau)$ .

Hence

(5.32) $(fl Cf)(i\tau)=\frac{(RCh)(i\tau)}{(RCg)(i\tau)}$

and the solution of the equation (5.30) on the space $S_{q}$ can be written by the formula
(4.40) if and only if the right-hand side of (5.31) belongs to the space $H_{q}$ .
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