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On Stein-Weiss Theorem and
Mapping Properties of
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Abstract
The conditions are given for the multidimensional potential type operators with
power and power-logarithmic kernels to be bounded from the one weighted space of
p-summable functions with power weight into another.

1. Introduction

Let R™ be the n-dimensional Euclidean space and I* be the Riesz potential, or mul-
tidimensional fractional integral

(Ia(p)(z) — Cn'a ‘/}‘l" I w(t)dt

z —t|"e

I'([n —a]/2)
(Ol > 0, Cna = m) . (1.1)

It is well known by the classical Hardy-Littlewood-Sobolev theorem (see eg. [1, § 25] and
[2, Chapter 5, §1.2]) that if 1 £ p £ 00, 1 £ ¢ £ 00 and a > 0, the Riesz potential I is
a bounded operator from L,(R") into L,(R") if and only if
' _ 1 1
0<a<n,1<p<2,—=——2. (1.2)
& g p n

This result was generalized in many directions. The weighted analogue of it was first

given by Stein and Weiss [3]. They proved thatif « >0, 1 < p < 00, 1< g < 00 and
1 a_1_1 v+n p+n _

ap—n<pu<np=-1), ———=5-5-,
( )’p n~g¢T p ¢ p
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a, (1.3)
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then the the Riesz potential /* is a bounded operator from L,(R";|z|*) into L (R";|z|*),
namely the estimate

( /R Izvl”l(f°so)(z)lqdz)l/q <k ( /R ) |z|n|<p(z)|pdm)1/p (1a)

holds, where the constant £k > 0 does not depend on ¢. Various generalizations and
modifications of such a statement for the Riesz potential (1.1) and for other connected
operators were given by many authors (see the monograph [1, § 29] for historical notices
and survey of the results). :

This paper is devoted to obtain such an estimates for the potential type operators
with the power—loganthxmc kernel

(3 0(e) = [1og* () 220 (€ ) (15)

t|"_°’

for 0 < @ < n,B = 0 and v > mes ({2) on a measurable set @ € R”. In Section 2 we prove
the estimate (1.4) for the Riesz potential on Q

(I50)(e) = [ lx"’(t)lft_a (ceq 0<a<n). (L6

The cases when Q is a unit ball B = {t € R" : |t| £ 1} in R" and its exterior B¢ =
{t € R* : |t| 2 1} are more important. We show that in these cases the condition
ap—n < pu<n(p—1)in (1.3) can be weakened till 4 > ap —n and u < n(p — 1) for B
and B¢, respectively (see Theorem 1). Section 3 deals with an extension of the result by
Stein and Weiss to the weighted space

L®59) = {14l = b, = ([ p@lsoras) "} o

with the power weight

m
p(z) = (1 +z])* I |z — zxl** (1.8)
k=1
concentrated at the finite points z1, z2, -+, 2, of Q With 0 < |21 < |z3| < - -+ < |z,n] and

at infinity, where g, y, iz, - - -, im € R. In Section 4 the results obtained are applied to
prove the estimates for the potential type operator with power-logarithmic kernels (1.5),
in particular, for the Riesz potential (1.6), in the weighted spaces L,(f; p) with the power
~ weight

IT Iz — &, if mes () < oo

p(z) =4 *=1 m (1.9)
(1+|z|)* U |z — zx|**, if mes(Q) =

concentrated at the finite points z1, z3,--+,Zm of @ with 0 £ |z1] < 22| < -+ < |2 ]
and at infinity (the latter when  is unbounded), where p, g, 2, -+, € R.



2. Riesz Potential in the Case of a Simplest Power Weight

Let us consider the cases of the unit ball B = {t € R*: |[¢| £ 1} in R" and its exterior
Be={t€ R": |t| 2 1}. Let Iy and IZ.¢ be the corresponding Riesz potentials:

(130)(0) = n [, TN (el S ), (2.1)

(I39)(2) = cna / p(t)dt

U (lz] 2 1), 2.2
o (12 ) (22)

where 0 < o < n and ¢, , is given by (1.1).

Theorem 1. Let real numbers a, p, q, 4 and v satisfy the conditions

1 1 1
a>0,1<p<oo, 1<g<oo, ——9-§-§7, vin_ptn
' p n g p q p
(i) If p > ap — n, then the Riesz potential (2.1) is a bounded operator from L,(B;|z|*)
into L,(B;|z|*) and

a. (2.3)

' o N\ e _ N\ 1p '
(ISe)(2)|%dz | Sk / |z |*(z)|Pd 2.4
([l as0@as) <k ([ lePliotelrae) 24)
holds with the constant k, > 0 not depending on ¢.

(i) If u < n(p—1), then the Riesz potential (2.2) is a bounded operator from L,(B¢;|z|*)
into L,(B¢;|z|") and

. g o \1p -
1(1ge q < o Pd 2.5
([, 1103 @lan) < ks ([ Ieblptepas) (25)
holds with the constant k, > 0 not depending on ¢.

Proof. We shall follow Stein and Weiss [3]. First we consider the case ¢ = p. We
have to prove the estimates

( /Mé1 lml”I(Igga)(:c)l”dx)l/p <k ( /Mé1 |:c["|<p(m)|”dx) " (ky, >0)  (26)

and

( /Mgl |2|V|(I§c90)($)|pd:c) v < k; ( /Mgl |x|n|p(m)|pdm)llp (ky > 0). (2.7)

We first prove (2.6). According to (2.1) we have to show that
. | - 1,1’ 1/?
’ = ’ 0 2.8
(/|:’|§1 |(J¢)(.’L‘)| dﬂ?) = C (»/lxlgl I¢($)| d.’l}) (cl > ), ( )

where

o)) = [l = ga - (60) = o). (29)
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We represent (2.9) in'the form

U@ = [ K@ 0o+ [ Kale, )00t + [ Kala, )(t)dt

(2.10)
= (19)(z) + (28)(z) + (J3¢)(2),
where .
{ le"/”lx - tla_nltl-i‘/P’ (m’t) € B = {(m’t) : ‘xl S 1, |t| < |w|/2})
Kl(m,t) = '
0) (m’t) ¢ 'Bl)
{ |z /Pl — t]>~"[e| /7, (2,1) € By = {(z,8) : |t] £ 1,[¢t] 2 2[al},
Kg(ﬁf,t) =
0) (x1t) ¢ B2’
|z[*/?|z — t|o=m|t| =7,
Ks(z,1) = (z,t) € By = {(z,8) : |2| £ L, [t| £ 1,]zl/2 < |t] < 2Jz[},

0, (z,t) ¢ Bs.

(2.11)
We prove the estimate (2.8) for J;¢. Since |t| £ |z|/2, |z — t| = |z|/2 and therefore

|Ki(z, 8)| < 2702|777, (2,1) € By,

and hence
|(J19)(z)] £ 2""’III°"‘+”"’/B [t|#/7|4(t)|dt. (2.12)
1

Let S = {0 € R*: |o| = 1} be the unit sphere in R® with the surface element do and
the surface area |o,| = 27"/2/T'(n/2). We now estimate the integral

fos (i) @

Making the substitution z = Ro for R = |z| and ¢ = z/|z| € S, and using (2.12) and the
definition of B;, we have

L, < Jooerds = [ ([ 1he)a)PraR) do

< g(n—a)p/ (/1
S 0

< 2v=a)|g, | / I(7:4)(R)|P R"1dR, (2.13)
0

Rotvl /B |t|"“/”|¢(t)|dt|p R"‘ldR) do
1 .

where

(BR) = [ Rtopglan, Bi={Ro: Ms T} (219)



Changing the variable t = rf with r = [t|,0 = t/[t| € S, we can rewrite (2.14) as
- R[2 ,
(b)) = [ {emrete [ eomssimigiroar}do = [(apmyts. @15
Here Jy¢ is given by
RJ2
(Jod)(R) = Rem++1r [ pnotoule|(rg) dr
0

and, after the substitution » = Rt and noting v = p — ap implied by (2.3), it can be
rewritten as

1/2
(Jod)(R) = / tn=1-wl|$( Rt6)|dt. (2.16)
0
Let A(R) be a function given on [0, 1] and such that

[ r-ar =1, ([ 1 @PE=R) = [ 1) R AR

Using (2.16) and applying Fubini’s theorem and Holder’s inequality, we have
1 i 1/p 1 .
([ 1y RPR=1dR) ™ = [ |(a)(R) R H(R)IR
1/2 1
= gnoi-wlr "~1n(R)d
J dt [ 1g(Rif)| " (R)dR
1/2 1 i/p s 11 , /¢!
< [Tl ( / |¢(Rt9)|”R""1dR) ( | incryp R"-ldR) dt
0 0

1/2 1 1/p
= [ eriele ( / |¢(Rt€)|”R"‘1dR) dt.
0 0

Making the change Rt = r in the inner integral, we obtain

1 1/2 R 1/p
[ 1) RPRIAR < [ gnislo=nis ( | |¢(r6)|’r"'ldr) dt
0 [ 0

1 1/p ,
< ( / |¢(r€)|”r”'ldr) (2.17)
» 0
in view of the convergence of the integral
c = /1/2 v1-nlp=nlp gy — p olutn)/p—n_
o _ np—p—n

Then by ('2.15) and Holder’s inequality we find

Go®P < |10

< ([ 1carmpan) | = loup [ 1R, @218
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Then according to (2.17), (2.18) and Fubini’s theorem we have
1= p pn—1 < p—1 1. n—1 P
[ G mP R AR < Joul™ [T BR [ |(Jod)(R)Pdo
. ,
< loal™* [ db [ 1(Je)(R)PRPdR
0

i 1
S dou™ [0 [ 60 = o [ lopas
0

l=1<1

Substituting this into (2.13) we arrive at the estimate (2.8) for J;¢:

The arguments similar to the above lead to the estimate (2.8) for J,¢ defined in (2.10):

(/MSII(quS)(z)sz)”’ sa(f |¢(z)|?dz)”p >0, (22)

The estimate for J3¢ of (2.10) follows from the correspondmg result on R® glven by
Stein and Weiss [3, pp. 509-510]:

(/. I(Js¢)(w)l”dw)llp < ([ 1ta)@pae) " ses([ 10nta)paa)”

1/p
= ¢ ( /! “ ]qﬁ(m)|”d:c) (cs > 0), (2.21)
where ¢p(z) is the function concentrated on the unit ball B:

¢5(z) =¢(z) (z€B), ¢p(z)=0 (z¢B). (2.22)

Applying Minkowski’s inequality to (2.10) and taking (2.19) - (2.21) into account we arrive
at the estimate (2.8), and so (2.6) is proved.

The inequality (2.7) can be proved similarly. This completes the proof of the theorem
in the case p = q.

Let now consider the case 1 < p < ¢ < 0o. The relations (2.4) and (2.5) are known to
be equivalent to the following ones [3]:

f()g(=)
fgs s 7 = s | S elilplally >0, (229)

and

f(t)g(=) - |
<
/t121 /|x|>1 [a[-"Tala — tp-afpls * dz < s [Ifll, Nl (es > 0), (2.24)

where || f||, = |f]|;,q)y with @ = B or @ = B*.



We prove (2.23). We represent the integral in the left hand side of (2.23) as

t)g(z)
Jt|1 Jz|£1 lml_”/'Ilz - tln—a‘ltlp/p z 1+ 12+ 13
where
I = / f(t)g(z) - dtdz (1=1,2,3),
i [e| 19|z — ¢|rat]PIP , )
with

| o |
Di={@t: <1, lal S 1, 5t S Ial < 2},

D= {(z): 1 £ 1, Iel < 31},
Dy={(&0): 1 £ 1, || > 2]}
When (z,t) € D;, we find that

|z — t|u/p—V/q < 3n/p—VIq|x|u/p—VIq < 3#/?"’/?2|V|/<1lxIM/Plt"’V/q

by noting yu/p—v/q 2 0 from the condition, and hence after applying Holder’s inequality '

we have

|14

A

lg(z)|dz
e /ltlél 70 (/|z|§1 |z — t|"—a+u/p—VIq) dt

I\

(2.25)

(2.26)

(2.27)

. . : ' ' 1/p’ .
_lg(z)ld= )" : — aulp—viaglvlla
cs || £l [/Itlél (/l;‘lél [z = t[—atalrrla dt (ce =3 2wl9),

From here by using the Hardy-Littlewood-Sobolev result given in Section 1 with o being

replaced by o — u/p+ v/q, p by ¢’ and ¢ by p', we obtain

1Ll < e £, llgll, -

If (IL‘,t) € Dg,
1
o=t 2 g, |o =t S 2y,

and after applying Holder’s inequality we have

a—n—pfp 4 z|¥/e
Ll < o f_ 15U ([ lo@lel oz )

1/p'

IIA

cs [l £1l, ( /'t < [Itla—ulP+u/q(K9)(t)]" dt)

t<1

(2.28)

, ., , 1/p' .
sl ( f  (KOF KPS femrir 1) (e =2), (229
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where

(Ko@) === [ lo(@)llel"/eda (2.30)

is the operator with the homogeneous kernel K (z,t) = [¢|™7/9|z|*/7 of degree —n.

From the condition 1 < p < ¢ < oo we have 1 < ¢’ < p' < o0 and p' — ¢’ > 0. Then
by Holder’s inequality and the condition 4 > ap — n of the theorem being equivalent to
v + n > 0, we obtain

. 1/q |0nl 1/q
(Kg)(®) < 117 lgll, (/lkalmlvd”‘) =(m) llgll g 117"

Using the assumption (2.3) we obtain

g 4 N Y lo-nl (r'-d"q
[(Kg)()F 7 te-#/pIF < oo |lg|l7™" | eo = (m) .

Substituting this estimate into (2.29), we have

105 eullly Il (ko) ( - pon (Jl) ““’"””"’) .

tj<1 v+n

" In view of Lemma 2.1 of [3] which gives conditions for an integral operator with a homo-
geneous kernel of order —n to be bounded in L, -space, we have the estimate

1/q'

([ o) < calgls
J1El£1 o
to the integral (2.30). From here we arrive at the estimate

Il < caallfll, Nglle ™" NglE™ = exa 1l Nl - (2:31)

The estimate for I3
| 1] < caslI£1l, gl (2.32)

can be proved similarly.

Substituting the estimates (2.28), (2.31) and (2.32) into (2.25) we obtain the relation
(2.23).

The inequality (2.24) may be deduced similarly and the theorem is completely proved.

Remark 1. Theorem 1 is evidently true for any ball B, = {t € R*: [t| £ b} in R®
and its exterior By = {t € R*: [t| 2 b} with 0 < b < o0.

Theorem 1 and Remark 1 imply the corresponding statements for the Riesz potential ‘

(1.6).

Theorem 2. Let Q be a measurable set in R and d € R™ be a finite point. Let the
-conditions (2.3) be satisfied. Assume that either (i) Q2 is a bounded set in R™ with d € Q



and p > ap—n, or (ii) Q is an unbounded set in R™ with d ¢ Q and u < n(p—1). Then
the Riesz potential I is bounded from L,(; |z — d|*) into L,(Q; |z — d|*) :

(/Q |z — dI”I(IS<p)(m)I"dz)1/q <k (/ﬂ |z — d|ﬂ|(P(z)|Pdm)1(p (2.33)

for the case (i) and from L,(; (|z| — |d|)*) into Lo(; (|z| — |d|)*) :
1/q 1/p
(fal=1ar1ugo@I%dz) <k ([ (el - 1d)lo(e) ) (2:34)

for the case (ii). Here constants ky > 0 and k; > 0 do not depend on .

Proof. We prove (2.33). The case @ = R" is reduced to Theorem 1 by simple
replacement ¢ — d by ¢. If Q # R", then we use the function ¢q defined as in (2.22) to
obtain (2.33) and (2.34). In fact, for example, let  be a bounded set in R®. Then there
is a ball B, such that Q C B,. Let pq be the function

(pa)(z) = ()(z) (z€9Q);  (pa)(z)=0 (z€B,\Q).
Then applying Theorem 1(i) and Remark 1 we obtain

(e arimrarsz) ™ = (f 1= driz,eaara) ™

IA

(./B, |z ~ d|V|(I§‘<pQ)(z)|qu) 1/q

A

k dlea(z)Pds)
([, 12 = dMlea(a)Paz)

= k ( /Q o — d|“|<p(z)|”dm)l/é, (2.35)

which proves (2.33). The relation (2.34) can be proved similarly.

3. Riesz Potential in the Case of a General Power Weight

We consider mapping properties of the Riesz potential I* given in (1.1) from L,(R"*; p)
into L,(R™;r) with the power weights p and r of the form (1.8). In what follows, we shall
denote by cy, ¢y, c3,- -+ the different positive constants which do not depend on the func-
tion ¢ € L,(R"; p). :

Theorem 3. We assume

0<a<n, 1<p<oo, 1<gq<oo0,

SR

1
<-=-
q

(3.1)

I

1
p
ap—n<p<nlp—1) (k=0,1,---,m), u=po— Y t; (3.2)

Vk+n_uk+n_
q p

a(k=0,1,---,m), v=vo— ) ” (3.3)
k=1
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and
p(z)=(1+ le)“kl'_I |z — 2|, r(z)=(1+ le)"kI_I |z — zx]™ (34)

with 0 £ |z3| < |z2| < -+ < |z;n| < 00. Then the Riesz potential (1.1) is bounded from
L,(R"; p) into L(R";r) : ‘

(/Rn(l +|z])” J':Il |z — zk|”t|(1a(p)(.m)lqu) 1/q

< ks ( [.a+leh# T 1o - zkl'?*w(m)lvdm)w, (3.5)

k—.

where the constant ks > 0 does not depend on ¢.
Proof. Let dy =0, d;, dy,:-,d,, be positive numbers such that

do S |z1| < di <zl < da < -+ < |Tpmt]| < A1 < |Zm| < dn < 00, dyy > 2|z,s]- (3.6)
These numbers split R" into m + 1 sets
Bi={t€R": di-y S|t|<di}, k=1,2,---;m; Bpyi={t €ER*: |t| 2 dn}. (3.7)

Each of such sets contains the simplest power weight concentrated in one point of the
weights in (3.4). That is, the spherical layers By, Bj,---, B,, contain the weights |z —
z1|", |z — zo|#2, .-+, |z — T,u|*™ concentrated at z,, z,,:--,Z,,, respectively, and B,,41
contains the weight |z|#® concentrated at infinity.

We represent the integral in the left hand side of (3.5) as the sum of the integrals over
the sets (3.7):

L 19 mi+1m+1
I= [/Rn(l + lml)"kl;[llz - a:klwl(f"‘w)(m)sz} = Z} ,Z=:1 I, (3.8)

where

= |} a+ el Tl - a

q 1/q
da:] (i =12 ,m+1). (39)

/ i (z tt))d"t“’

It is enough to prove the relation (3.5) for any I;;:

lIijl <a (/ (1 + lxl)“ H |:z: - :z:kll‘h|<p(m)|l’dz) 1/p (3.10)

k=1
(cl = cl(iyj) i,j= 1)2""7m+1)'
.First we treat the case i = j=1,2,---,m.. For fixed : = 1,2,---,m, let z € B;, then
|zxl —di S|z — 2| S |laa|l +di (1 i<k £ m),

d,._l -— 'IL‘}C' < |27 - :Ekl |mk| + d (m g 1>k g 1), (311)
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and we have

1+ |z))” H |z — 2| S oz — 2] (z€Bi), ca=c2() (:=1,2,---,m), (3.12)
k=1

which leads us to the case of the simple power weight |z — z,|* at z; € B;. Substituting
this estimate into (3.9), using Theorem 2 (with @ = B; and p(z) = |z — 2;|*¢) and taking
(3.11) into account we arrive at the estimate (3.10):

q 1/q
| £ C;/q [/ |z — 2| ( ——'(p(t)ldt ) dz]
B; B;

|z — t|r—e

/p
< il ([ o - aillp(z)Pdz)
m 1/p
< o ([, @ +1eD T e - lotalar
' k=1

m 1/p
g €3 (L"(l + I:L‘I)” kl:Il I(L‘ - mkl“*lw(x)lpdz) (C3 = CS(Z')) 1= L2, m) (313)

Let now ¢t = j =m+ 1. Then

s < [/B gy kf:[l |x-¢k|Vt ( / -'—i’i@-'fi-‘—)qdm]l/q. (3.14)

Bm41 I:l: - tln—a

For z € B4, |z| 2 dyn and therefore

- 14d |
A1+l s (B2) o) @€ Bon)
L;_'§|¢-zk|§2|z| (k=12 ,mz € Bus) (3.15)

Hence the analogue of (3.12) is valid:

(1+z))” [] lz—2xl* € cala*Ti=** = cifa[® (2 € By, ¢4 = ca(m+1) > 0), (3.16)
k=1
which leads us to the case of the simple weight |z|** at infinity. Substituting (3.16) into
(3.14), using Theorem 2 with Q = B,,4; and p(z) = |z|* and taking (3.15) into account
we obtain similarly to (3.13) the estimate: '

m . i/p
[ Ims1,me1| S c5 (/R,,(l +z)* [T |z - fckl“|90($)|pdz) (s =cs(m+1)). . (3.17)
k=1 .

Further, we consider the case 4,7 =1,2,---,m, i # j. Let i < j. In view of (3.12) we
have

e /B - f, 2O ) ] " =) 1S i< S m)

|z — t|»—=

4 (3.18)
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Here d;_; < |z| £ di £ dj_y £ |t| £ d; and we find
|z —t| 2 [t| —di, |z —t| 2 djoa —|z] 2 di— || (2 € Bi,t € By). (3.19)

If 1 < p = g, using (3.19) and Holder’s inequality, we have

. o)l P
] < — Vs
IIOJI > Cg [/B. |$ m;l ( B, |$ —tl("""‘)/P]a: —tl("_a)lP’ dt d.’l?
e =z p sle It — mj‘_ﬂ'j/P
(i) e =P g2
1/p"
cr (/ [t — z;|*](t) l”dt) (/ [t — z,| P lP(Jt] - )"'"dt)

1/p ‘
= ([ b-sblera) (=t 1si<ism. @)

IIA

A

We note that the integrals in (3.20) are convergent for v; > —n,a > 0, u;p'/p < n which
are equivalent to yu; > ap—n, a >0, y; < n(p — 1) by (3.3) and the latter is valid from
the assumption (3.2).

If p < g then by the assumption (3.1) we can choose ¢ such that 0 < e < a—n/p+n/q.
We set

,3-——5, 'y=n—a—%+e, B+y=n-—o. (3.21)

Using (3.19) and Holder’s 1nequahty, we obtain

|z — z;|"idz , —u; . -
| < S bt 1 st — o |pilP — | rilp(14] — 4
IItjl = 'CG ( B; (dj—-l _ |$|)qﬂ [B,(lt ’»mJl I(,O(t)l)'t mJl ’ (Itl dl) dt
1/p y : , 1/p
t— p.|# P — .|| — d.)P
o ( /. 1=t dt) ( /. Nt =, ) dt)

1/p
= C10 (/B It - mj[”"[w(t)P’dt) (c10=c10(3,5), 1 Si<j < m) (3.22)
i

HA

The integrals in (3.22) are convergent due to the conditions (3.1) - (3.3) and the choice
of e, B and . From (3.20) and (3.22) we arrive at the estimate (3.10):

m 1/p .
1l 5 e ([ 0+ el [ o - auplota)pae) (329
R k=1 _
(e = en(iri), (1S i< j < m)),
by (3.11).
In the case 1 £ j < ¢ £ m the relation
1/p :
115 e [ +1eb T e - auPlotopes (324
k—

(c12 = c12(3,7), 1 £ i < j £ m)),



is proved similarly to (3.23). »
Let finally 1 £ ¢ £ m and j = m + 1. On the basis of (3.11) and similarly to (3.18)
we obtain

L] < 1o [ /B o=l ( /B M)qdm] - (c1 = exa(i,m+ 1)), (3.25)

ms1 |T =t
We choose d,,+1 € R such that d,, < d,,41 < 0o and set
Bnt1i={t € R": dn £ |t| £ dmt1}, Brr12={t € R": |t| > ds1}- (3.26)

Then from (3.25) we have

Mima| < cre { [/B e _ e (/B,,.“,, %)qu] 1/q

+ [ /B ‘ |z — 2" (/E —M)qd:g] Uq} . (c14 = c14(i,m +1)).(3.27)

mit2 |2 — [

Making similar arguments to the abiove, we obtain that, if 1 < p=g,

; I»
|z — aifidz )’ (a=n)/p’
. < I et ] et —_ A\ a=n)/p
[Lim41| < c15 {( 8 (dm — |2]) /;mi»l,] le (I — di) dt
id )ll" D1(t] — di)—"dt
([ o= mitda) " [ el - d)
; I» 1/p'
|z — z;["dz 1 —uop'[p -
—_ t| — d;)*>"dt
e [( B; (dm — ||}~ /Bm+1.1 i (I )
1/p
< (. teteora)
Bm41,1
' 1/q 1/?
— .l —pop' [P (14| — 4.\ @' gt
+ (/B‘ |z — =z d:c) (/Bm+m || (It] = di)* )
" 1/p
ti#o () |Pdt |
([ el ]

1/p
t*e(t)|Pdt t|#e|p(t)|Pdt
([, WleoPd) 4o ([ lepra)

c17 (/Bm,, |t|i‘°|<p(t)|l’dt)1/pv (917 = ¢y7(i, m + 1)). (3A.28)

A

{

1/p

IA

A

the integrals in (3.28) being convergent since v;+n > 0, pop'/p < n and (n—a+uo/p)p’ >
n according to the conditions (3.1) - (3.3) of the theorem.
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If p < q, then by the assumption (3. 1) we choose and 0 < e < o — n/p+ n/q and set
B and v as in (3.21) then

) l:z:—:z:,-l”‘d:z: 1q —- ' ! 1/1)’
: < i) Sttt tlmreP lp (14 . g )P
lIt,m+1| = C15 [( B; (dm _ |$|)qﬂ Lm-}l,l | l (It! dl) dt .
/p
< (. 1tetopa)
Bm+1,
+ ([ 1o - mpeae) (/ 17417 }t] - d')““")”'"’”)
- \JBy Bm+1,3 '
1/p
X t|#|o(t)|Pdt
([ llotore) }

< cis (/Bm+1 |t|"°|<p(t)|”dt) " (c18 = élg(i,m + 1)). (3.29)

From (3.28) and (3.29) we arrive at the estimate (3.10)

1/p’

1/p
sl S i ( [ 0+ 1o Tl = s otole) (3.30)
k=1
(019 = Clg(i, m + 1), 1 g Z § m),
by (3.15).
In the case t=m+ 1 and 1 £ j £ m, the relation
m i/p
msssl S e [, (1412 [T 12 = aplotoIpa (3.1
k=1

(c20 = co(m+1,j), 1 £ j £ m),
is proved similarly to (3.30). :
Applying Minkowski’s inequality to (3.8) and using the relations (3.13), (3.17), (3.23),
(3.24), (3.30) and (3.31), we arrive at the required estimate (3.5).

Using Theorem 2(ii), the following assertion is proved similarly to Theorem 3.

Theorem 4. Let the conditions (3.1) - (3.3) be satisfied and
m u , m v
p(z) = (1+ [zl [T|lel = Be|™, r(e) = (@ +1al)” [T]1e] - Re|™, (3.32)
k=1 k=1

for 0S Ry < R, < - < R,, < 0o. Then the Riesz potential (1.1) is bounded from
L,(R"; p) into L,(R™;r) :

(/Rn(l + |zl)” kf:Illm - Rk|”‘|(1a¢)(z),q dx)ll"
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<k ([ 0+ lelr (R Rkl“"lso(z)r'dz)w (3:33)

with the constant ks > 0 being independent of .

Remark 2. Unlike Theorems 1 and 2, the limiting case 1/p — a/n = 1/q excludes in
Theorems 3 and 4 due to the impossibility to apply the method above of the estimations
of [jforj=i+1,1Si:<mandi=j5+1,1<j<m.

4. Potential Type Operators with Power and Power Logarithmic Kernels

Let I be the Riesz potential given in (1.1). The followmg statements (Theorems 5
and 6) are the direct corollaries of Theorem 3.

Theorem 5. Let Q be a measurable bounded set in R* and assume (3.1),

ap—n<u<n(p—1) (k=1,2,--- ,m); 7 (4.1)
ntn _BAn o k=12--,m) (4.2)
q P
and . ~
p(z) = [[ |z = zul*, r(z) =[] |o — 2™ | (4.3)
k=1 k=1

with z1,T3, -+, T € Q,|71| < |22| < - -+ < |2,u|- Then the Riesz potential I is a bounded
operator from L,(S; p) into L (Q;r) : :

1/p

( J kijltx—zw* |<15<,o)(x)|qu)”q < ks ( / ﬁ |:c—mk|'"'|<P(x)|"dx) )

with the constant k3 > 0 being independent of .

Theorem 6. Let Q be a measurable unbounded set in R* and assume (3.1) - (3.3).
Then the Riesz potential I is bounded from L,(Q; p) into L,(S;r) :

(fater fL1e = sl

S ks (]ﬂ(l +[z[)* kl":Il |z - wkl”*lv(w)l’dx) llp, (4.5)

with the constant k3 > 0 being independent of ¢, where constants zy, vy, px (k =
1,2,---,m),v,u are taken as in Theorem 5 and weight functions p and r as in (3.4).

We note that the constant k3 in Theorems 4 and 5 is the same as in Theorem 2.
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Let now Q be a measurable bounded set in R*. We dlSCllSS the potential type operator
with power-logarithmic kernel given in (1.5):

for 0 < a<n,B 20,7 > mes(2). Since r*—" logﬂ('y/r) < cre™¢ for sufficiently small
¢ > 0 and € > 0, the estimate

(8% < e|(T )| | (4. 7)

holds. Then Theorem 5 lead us to the followmg assertion giving mapping properties of
the operator Ig?

Theorem 7. LetQ be a measurable bounded set in R"* and assume

.
O<a<n B20, l<p<oo, 1<g<oo, 1-2clcl (4.8)
p n 49 p
ap—n<p<nip=1), Ge>re=EENTOPN G gy (a9)
p

and m ~

pz) = [ lz =, r(z) =[] |z — zul® (4.10)
k=1 k=1 A

with 21,22, +, & € Q,|21] < |22] < -+ < |Zmm|. Then the operator I3* is bounded from

L,(%2; p) into L,(2;7):

(1T 1e - 2wt [0z o) dx) sh (] ‘glm_zk|m|¢(m)|»dx)l"’, (411)

k=1

with the constant ks > 0 being independent of .
Proof. We choose ¢ such that

‘ 6 — Om — Vm
0<e< min(a, ! Ul,---, Y ) (4.12)
‘ q q
Using the boundedness of €, the relation (4.7) and Theorem 4 with o and v, being
replaced by a — € and 5,& = 1} + &4, respectively, we have

(/“ I112 — 2/ (1370 @) dz) "

k—

< ¢ (/ ﬁ l“’ _ xk|vn+zq+(5g—w—eq)
Qg

1/q
Uz~ o)(o)f i)
= (/ﬂ kf;[l = = 2+ () e dx) "

< ks (/nk]iil |z — a:k|m|<p(x)|t’dm)‘llp (ks > 0). (4.13)



The theorem is proved.

Corollary. Let —oco < a < b < 0o and let

0<ax<l B20, 1<p<oo, 1<q<<§o, l——oz<1§l; (4.14)
P q9 P
1—
ap—1<p<p—1, 6 >p= ¥ - W1 k=1, m) (4.15)
and - o
pz) = I le — zal**, r(z) =[] lo —zal™ (4.16)
k=1 k=1 :
with a < |z1] < |z2] < -+- < |zm| £ b. Then the operator
b
a,f — 8 8 p(t)dt
(IFo)(z) / log (lm—tl) o (<2< (4.17)
with 4 > b — a is bounded from L,([a, b]; p) into L([a,b];7) :
1/q b m i/p
( / 1] |z — x| | (1P o) (2)[* dm) < ke ( / I1 Iz — o™ Igo(a:)l”dx) , (4.18)
¢ k=1 % k=1

the constant kg > 0 being independent of .

Remark 3. Using Theorem 4, similar statements to Theorems 5 - 7 may be proved
for the power weight p(z) of the form :

H|’m| _ Rk Hi
k=1
pz) = - (4.19)
(1 + |=z|)* H“ml - Rklm, -if mes () = oo,
k=1

, if mes () < oo,

where 0 S Ry < Ry << Rp, <00, up €ER, k= 1,2,-~-,m, and at least one point of
the spheres Sg, = {t € R*: |t| = Rk} k=1,2,---,m, belongs to . This means that

the weights “a:l - . l‘ml I are concentrated on the spheres Sg,,---,Sg
and the weight |z|#o at 1nﬁmty (the latter when €2 is unbounded).

m
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