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0. Introduction

We shall deal with a behavior of penetration of magnetic field into a superconducting
material in the presence of an applied magnetic field. As well known, a superconductor
has the Meissner effect, i.e., if the magnetic field applying to a superconducting material
is less than the critical field at a sufficiently low temperature, the magnetic field does not
penetrate into the material.

This phenomenon discovered in 1933 by W.Meissner and R.Ochsenfeld, has been in-
terpreted as follows : a superconductor has a property of perfect diamagnetism, so that
surface current occurs on it’s surface and the magnetic feild is excluded from it.

On the other hand, the superconductor can not preserve the Meissner effect under a
magnetic field which is much greater than the critical field, so that a penetration of
magnetic field into the superconductor arises and the superconductivity is lost partially or
completely.

Our interest is to investigate the behavior of the penetration of magnetic field into the
superconductor under the situation that a given magnetic field applying to the material is
just around the critical field.

In order to understand this penetration phenomenon, we shall present a mathematical
model using boundary conditions of Signorini type in section 1. In section 2, a theorem
of existence and uniqueness for the model equation will be shown. Our mathematical
technique is to reduce the equation of the above model to certain variational inequality.
Aftcr that, we shall use the standard method to prove the existence and uniqueness theorem
(for example, Duvaut-Lions [3] and Glowinski-Lions-Tr\’emoli\‘eres [5]).
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1. Mathematical model for penetration of magnetic field into superconductor

Let $\Omega$ be a bounded, connected domain in $R^{3}$ . Denote by $\Omega_{0}$ a domain occupied with a
superconducting material which is put in $\Omega$ and set $\Omega_{1}=\Omega\backslash \overline{\Omega_{0}}$. According to the theory of
superconductivity (Tinkham [6], Du-Gunzburger-Peterson [2]), the following equations
hold in $\Omega_{0}$ :

(1.1) rot $j_{0}=- \frac{c}{4\pi\lambda^{2}}B_{0}$ in $\Omega_{0}$ (London equation)

and

$4\pi$

(1.2) rot $B_{0}=\overline{c}j_{0},$ $divB_{0}=0$ in $\Omega_{0}$ (Maxwell equation)

where $j_{0}$ is a current density vector in $\Omega_{0},$ $B_{0}$ is a magnetic induction in $\Omega_{0}$ and $c$ is the
velocity of light, and a parameter $\lambda$ represents the penetration depth.
Hence using (1.1) and (1.2), we have

(1.3) rot rot $B_{0}+ \frac{1}{\lambda^{2}}B_{0}=0$ in $\Omega_{0}$ ,

(1.4) $divB_{0}=0$ $in$ $\Omega_{0}$ .

In $\Omega_{1}$ , the magnetic induction $B_{1}$ is generated by a stational current $j_{1}$ imposed on
$\Gamma_{1}(=\partial\Omega)$ . Let us assume that $B_{1}$ satisfies a modified Maxwell’s equation having a
dumping effect in $\Omega_{1}$ :

(1.5) rot rot $B_{1}+\epsilon B_{1}=0$ , $divB_{1}=0$ in $\Omega_{1}$

and on the boundary $\Gamma_{1}$ , $B_{1}$ satisfies

(1.6) rot $B_{1} \cross n=\frac{4\pi}{c}j_{1}$ , $B_{1}\cdot n=0$ on $\Gamma_{1}$ .

Here $n$ is the unit normal vector (directed toward the exterior of $\Omega_{1}$ ) and $\epsilon(>0)$ is small.
The first condition of (1.6) represents the direction of the given current $j_{1}$ and the

second one also describes that the magnetic field does not exclude from $\Omega_{1}$ .

Remark 1.1 From a physical point of view, the term $\epsilon B_{1}$ in (1.5) describes
a dumping effect. In the case where $\epsilon=0$ in (1.5), (1.5) together with (1.6) describes
Amp\‘ere’s law ;

$4\pi$ .(1.7) rot $B_{1}=C \int 1$ on $\Gamma_{1}$ , rot $B_{1}=0$ in $\Omega_{1}$ and $divB_{1}=0$ in $\Omega_{1}$ .
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Finally as the transmisson condition prescribed on the surface $\Gamma_{0}$ of the superconductor,
we shall impose the boundary conditions of Signorini type which could be regarded as a
representation of the Meissner effect :

(1.8) $B_{0}=B_{1}(\equiv B)$ $on$ $\Gamma_{0}$ ,

(1.9) $|$ rot $B_{1}\cross n$ –rot $B_{0}\cross n|\leq g$ on $\Gamma_{0}$ ,

(1.10) $|$ rot $B_{1}\cross n$ –rot $B_{0}\cross n|<g\Rightarrow B_{T}=0$ ,

(1.11) $|$ rot $B_{1}\cross n$ –rot $B_{0}\cross n|=g\Rightarrow B_{T}=0$ or

there exists $\mu>0$ such that $B_{T}=- \frac{1}{\mu}$ $($ rot $B_{1}\cross n$ –rot $B_{0}\cross n)$ ,

where $g$ represents an intensity of critical current which is a inherent constant to this
material, $B_{T}=n\cross(B\cross n)$ and $|x|$ denotes Euclidean norm in $R^{3}$ , i.e.,
$|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$ for $x=(x_{1}, x_{2}, x_{3})$ .

Remark 1.2 Boundary conditions $(1.9)-(1.11)$ can be rewritten by the following
two equivalent forms (1.12) and (1.13) ;

(1.12) $\{\begin{array}{l}rot B_{1}\cross n -- rot B_{0}\cross n|\leq g on \Gamma_{0},g|B_{T}|+ (rot B_{1}\cross n -- rot B_{0}\cross n)\cdot B_{T}=0 on \Gamma_{0}\end{array}$

and

(1.13) $-(rotB_{1}\cross n$ –rot $B_{0}\cross n)\in g\partial(|B_{T}|)$ .

Here $\partial(|x|)$ in (1.13) means the multi-valued subdifferential at $x(\in R^{3})$ , i.e.,

(1.14) $\partial$(国) $=\{\begin{array}{l}x/|x| if x\neq 0,\{y\in R^{3};|y|\leq 1\} if x=0 .\end{array}$

We note particularly that these conditions (1.8) -(1.11) are one of the characteristics
of our mathematical modelling (cf. Fujita-Kawarada [4], treating an example appearing
in flow problems).
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Problem I Given a positive constant $g$ and a current $j_{1}\in(H^{-1/2}(\Gamma_{1}))^{3}$ , find

$\{B_{0}, B_{1}\}\in(H^{1}(\Omega_{0}))^{3}\cross(H^{1}(\Omega_{1}))^{3}$ satisfying $(1.3)-(1.4),$ $(1.5)-(1.6)$ and $(1.8)-(1.11)$ .

Remark 1.3 The physical correspondences of the conditions $(1.8)-(1.11)$ are as
follows. Set

$\Gamma_{00}=\{x\in\Gamma_{0};| (rot B_{1}\cross n - rot B_{0}\cross n)(x)|<g\}$,

$\Gamma_{01}=\{x\in\Gamma_{0};| (rot B_{1}\cross n - rot B_{0}\cross n)(x)|=g\}$.

(i) $\Gamma_{00}=\Gamma_{0}$ implies that the magnetic field does not penetrate into $\Omega_{0}$ and the
superconductivity preserves. i.e., $B_{0}=0$ in $\Omega_{0}$ ( Meissner effect ).

In fact, from (1.10), we have

(1.15) $B_{T}=n\cross(B_{0}\cross n)=0$ $on$ $\Gamma_{0}$ .

Note that $($ rot $B\cross n)\cdot n=0$ . Using (1.15) together with (1.3) and Green’s formula, we
then deduce that

$0=(rot$ $B_{0}$ , rot $B_{0})+ \int_{\Gamma_{0}}($ rot $B_{0} \cross n)\cdot B_{0}d\sigma+\frac{1}{\lambda^{2}}(B_{0}, B_{0})$

$=(rot$ $B_{0}$ , rot $B_{0})+ \int_{\Gamma_{0}}$ $($ rot $B_{0} \cross n)\cdot(n\cross(B_{0}\cross n))d\sigma+\frac{1}{\lambda^{2}}(B_{0}, B_{0})$

$=(rot$ $B$ , rot $B_{0})+ \frac{1}{\lambda^{2}}(B_{0}, B_{0})$ ,

from which $B_{0}=0$ in $\Omega_{0}$ .

(ii) Let $x$ be in Fol. Then the penetration of magnetic field into superconduction
arises at $x$ because of Lorentz’s force.

In fact from (1.11) 9 it follows that

(1.16) rot $B_{1}\cross n$ –rot $B_{0}\cross n=-\mu B_{T}$

$=-\mu(n\cross(B\cross n))=-\mu(B-(B\cdot n)n)$

Hence

(1.17) $(rotB_{1}\cross n$ –rot $B_{0}\cross n)\cdot B_{T}=-\mu|B_{T}|^{2}\leq 0$

and
$B$ . $($(rot $B_{1}$ –rot $B_{0}$ ) $\cross n)=-\mu(|B|^{2}-(B\cdot n)^{2})=-\mu|B_{T}|^{2}$ ,
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from which
(1.18) $n$ . $($ (rot $B_{1}$ –rot $B_{0}$ ) $\cross B)=\mu|B_{T}|^{2}$ .

Therefore we could regard that the left hand side of (1.18) stands for the normal component
of Lorenz’ force operated to the superconducting material. And we could also deduce that
the only tangential component of $B$ on $\Gamma_{0}$ contributes to the penetration of magnetic field
into the superconductor from (1.16) - (1.18).

2. Existence and uniqueness theorem for penetration of magnetic field

In this section, we shall prove a theorem of existence and uniqeness for our mathematical
model. Here we shall use a variational inequality formulation which is equivalent to the
original problem I.

Now let us introduce some notations.
For any vector valued function $u$ defined in $\Omega$ , set $u_{0}=u|_{\Omega_{0}}$ and $u_{1}=u|_{\Omega_{1}}$ . We
recall that $\Omega_{0}\subset\Omega,$ $\Omega_{1}=\Omega\backslash \overline{\Omega_{0}}$ and $\Gamma_{0}=\partial\Omega_{0},$ $\Gamma_{1}=\partial\Omega$ . We then define a Hilbert
space $V$ :

(2.1) $V\equiv\{u|u\in(L^{2}(\Omega))^{3}$ , rot $u\in(L^{2}(\Omega))^{3},$ $divu=0$ in $\Omega$ ,

$u\cdot n=0$ on $\Gamma_{1}$ $\}$

equipped with an inner product

$(u,$ $v)\equiv(rotu$ , rot $v)_{\Omega}+(u,$ $v)_{\Omega}$ for $u,$ $v\in V$.

We remark that this norm
$\Vert u\Vert=\sqrt{(u,u)}$

is equivalent to the usual norm of $(H^{1}(\Omega))^{3}$ (cf. Duvaut-Lions [3]).

Let $a(u, v)$ be a bilinear form on $V\cross V$ given by

(2.2) $a(u, v)=(rotu$ , rot $v)_{\Omega}+ \frac{1}{\lambda^{2}}(u,$ $v)_{\Omega_{0}}+\epsilon(u,$ $v)_{\Omega_{1}}$ for $u,$ $v\in V$,

and we define a functional $j$ : $Varrow R$ such that

(2.3) $j(u)= \int_{\Gamma_{0}}g|u_{T}|d\sigma$ for $u\in V$.

where $u_{T}=n\cross(u\cross n)$ . Then we set up a variational inequality as follows.

Problem II Find $u\in V$ such that

(2.4) $a(u, v$ 一 $u)+j(v)-j(u) \geq\int_{\Gamma_{1}}\frac{4\pi}{c}j_{1}\cdot(v-u)d\sigma$

for any $v\in V$ .

Hereafter let us put $B_{0}=u_{0}$ and $B_{1}=u_{1}$ .
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Lemma 2.1. Problem I and Problem $\Pi$ are equivalent.

Proof. Let $u$ be a solution of Problem I.
Taking the scalar product of (1.3) and (1.5) with $v-u$ and using Green’s formula, we

have
$0=$ $($rot rot $u_{0}+ \frac{1}{\lambda^{2}}u_{0},$ $v-u_{0})_{\Omega_{0}}+(rot$ rot $u_{1}+\epsilon u_{1},$ $v-u_{1})_{\Omega_{1}}$

$=$ $($rot $u_{0}$ , rot $(v-u_{0}))_{\Omega_{0}}+ \int_{\Gamma_{0}}($rot $u_{0}\cross n)\cdot(v-u_{0})d\sigma$

$+ \frac{1}{\lambda^{2}}(u_{0}, v-u_{0})_{\Omega_{0}}+\epsilon(u_{1},$ $v-u_{1})_{\Omega_{1}}+(rotu_{1}$ , rot $(v-u_{1}))_{\Omega_{1}}$

$- \int_{\Gamma_{0}}($rot $u_{1} \cross n)\cdot(v-u_{1})d\sigma-\int_{\Gamma_{1}}$ $($ rot $u_{1}\cross n)\cdot(v-u_{1})d\sigma$

$=a(u, v-u)- \int_{\Gamma_{0}}$ $($ rot $u_{1}\cross n$ –rot $u_{0}\cross n)\cdot vd\sigma$

$+ \int_{\Gamma_{0}}($rot $u_{1}\cross n$ –rot $u_{0} \cross n)\cdot u_{0}d\sigma-\int_{\Gamma_{1}}$ $($ rot $u_{1}\cross n)\cdot(v-u_{1})d\sigma$

by (18) $($ i.e., $u_{0}=u_{1}$ on $\Gamma_{0})$

$\leq a(u, v-u)+\int_{\Gamma_{0}}g|v\tau|d\sigma-\int_{\Gamma_{0}}g|u\tau|d\sigma$

$- \int_{\Gamma_{1}}\frac{4\pi}{c}j_{1}\cdot(v-u)d\sigma$ by $(1.9)-(1.11)$ and (1.6)

$=a(u, v-u)+j(v)-j(u)- \int_{\Gamma_{1}}\frac{4\pi}{c}j_{1}\cdot(v-u)d$伍

Hence it follows

$a(u, v-u)+j(v)-j(u) \geq\int_{\Gamma_{1}}\frac{4\pi}{c}j_{1}\cdot(v-u)d$伍

This means that $u$ is a solution of Problem II.
Next let $u$ be a solution of Problem II. By taking $v-u=\pm\varphi(\varphi\in V\cap(\mathcal{D}(\Omega_{i}))^{3},$ $i=$

$0,1)$ in (2.4), we find $u=\{u_{0}, u_{1}\}$ such that

(2.5) rot rot $u_{0}+ \frac{1}{\lambda^{2}}u_{0}=0$ in $\Omega_{0}$
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(2.6) rot rot $u_{1}+\epsilon u_{1}=0$ in $\Omega_{1}$ .

It is obvious that $divu=0$ in $\Omega$ and $u\cdot n=0$ on $\Gamma_{1}$ because $u\in V$ .
Moreover from (2.5), (2.6) and Green’s formula, we have

$0=a(u, v-u)- \int_{\Gamma_{0}}($rot $u_{1}\cross n-rotu_{0}\cross n)\cdot(v-u)d\sigma$

$- \int_{\Gamma_{1}}$ $($ rot $u_{1}\cross n)\cdot(v-u)d\sigma$ ,

which, in combination with (2.4), shows that

(27) $j(v)-j(u)+ \int_{\Gamma_{0}}$ $($ rot $u_{1}\cross n-rotu_{0}\cross n)\cdot(v-u)d\sigma$

$+ \int_{\Gamma_{1}}$ $($ rot $u_{1} \cross n-\frac{4\pi}{c}j_{1})\cdot(v-u)d\sigma\geq 0$ .

In fact,

$0=a(u, v-u)- \int_{\Gamma_{0}}$ $($ rot $u_{1}\cross n$ –rot $u_{0}\cross n)\cdot(v-u)d\sigma$

$- \int_{\Gamma_{1}}$ $($ rot $u_{1}\cross n)\cdot(v-u)d\sigma$ .

$\geq-j(v)+j(u)+\int_{\Gamma_{1}}\frac{4\pi}{c}j_{1}\cdot(v-u)d\sigma$

$- \int_{\Gamma_{0}}$ $($ rot $u_{1}\cross n$ –rot $u_{0} \cross n)\cdot(v-u)d\sigma-\int_{\Gamma_{1}}$ $($ rot $u_{1}\cross n)\cdot(v-u)d\sigma$,

from which we obtain (2.7). Therefore (2.7) shows that

(2.8) rot $u_{1} \cross n=\frac{4\pi}{c}j_{1}$ on $\Gamma_{1}$ ,

(2.9) $j(v)-j(u)$ 十 $\int_{\Gamma_{0}}($ rot $u_{1}\cross n-rotu_{0}\cross n)\cdot(v-u)d\sigma\geq 0$ .

Substituting $\pm\lambda v,$ $\lambda>0$ for $v$ in (2.9),

$\lambda j(v)-j(u)+\int_{\Gamma_{0}}$ $($ rot $u_{1}\cross n-rotu_{0}\cross n)\cdot(\pm\lambda v-u)d\sigma\geq 0,$ $\forall\lambda\geq 0$
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i.e.,

(2.10) $\lambda\int_{\Gamma_{0}}(g|v\tau|\pm$ $($ rot $u_{1}\cross n$ –rot $u_{0}\cross n)\cdot v)d\sigma$

$- \int_{\Gamma_{0}}$ $(g|u_{T}|+$ $($ rot $u_{1}\cross n$ –rot $u_{0}\cross n)\cdot u)d\sigma\geq 0$ .

As $\lambdaarrow\infty$ in (2.10), then

$| \int_{\Gamma_{0}}($ rot $u_{1}\cross n$ –rot $u_{0} \cross n)\cdot vd\sigma|\leq\int_{\Gamma_{0}}g|v_{T}|d\sigma$

$\leq\int_{\Gamma_{0}}g$回 $d\sigma$ ,

which means that

$v \mapsto\int_{\Gamma_{0}}\frac{1}{g}$ $($ rot $u_{1}\cross n$ –rot $u_{0}\cross n)\cdot gvd\sigma$

is continuous on $(H^{1/2}(\Gamma_{0}))^{3}$ , having the topology induced by $(L^{1}(\Gamma_{0}))^{3}$ , and has norm
$\leq 1$ for the norm

$\int_{\Gamma_{0}}g$回 $d\sigma$ on $(L^{1}(\Gamma_{0}))^{3}$ .

Using the fact that $(H^{1/2}(\Gamma_{0}))^{3}$ is dense in $(L^{1}(\Gamma_{0}))^{3}$ and the Hahn-Banach theorem,
we have

$\frac{1}{g}$ $($ rot $u_{1}\cross n$ -rot $u_{0}\cross n)\in(L^{\infty}(\Gamma_{0}))^{3}$ ,

with norm $\leq 1$ . Hence

(2.11) $|rotu_{1}\cross n$ –rot $u_{0}\cross n|\leq g$ a $e$ . on $\Gamma_{0}$ .

Also as $\lambdaarrow 0$ ,

(2.12) $\int_{\Gamma_{0}}(g|u_{T}|+$ $($ rot $u_{1}\cross n$ –rot $u_{0}\cross n)\cdot u)d\sigma\leq 0$ .

By use of (2.11), we get

$g|u\tau|+$ $($ rot $u_{1}\cross n$ –rot $u_{0}\cross n)\cdot u\geq 0$ a.e. on Fo,

which, in combination with (2.12), shows that

$g|u_{T}|+$ $($ rot $u_{1}\cross n$ –rot $u_{0}\cross n)\cdot u=0$ a.e. on $\Gamma_{0}$

i.e.,
$g|u_{T}|+(rot$ $u_{1}\cross$ n-rot $u_{0}\cross n)$ $\cdot u_{T}=0$ a.e. on $\Gamma_{0}$ .

Therefore $u$ is a solution of Problem I. $\blacksquare$
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We now state the existence and uniqueness theorem for our model.

Theorem 2.1. There exists one and only one $u\in V$ satisfying (2.4).

proof. First note that the norm $\Vert\cdot\Vert$ and the norm associated with the inner product
given by $((u,v))=$ a(u,v) are equivalent. Then $a(u)v)$ is a symmetric bilinear form,
continuous on V and coercive on V. Also using the property of trace operator defined
on $(H^{1}(\Omega_{0}))^{3},$ $j$ is an l.s. $c$ . proper convex functional. Hence under these conditions,
(2.4) has a unique solution $u\in V$ (for example see Baiochi-Capel [1], Glowinski-Lions-
Tr\’emoli\‘eres [5] $)$ . $E$
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