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Abstract

In this paper, some kind of fictitious domain method via singular
perturbation is presented iﬁ order to solve boundary value problems
for partial differential equations prescribed with Neumann boundary
conditions.

The characteristic of this method is to reformulate the original
problem into the one whefe Neumann dafa are represeﬁted as a well
defined distribution supported by I'. T' is the boundary of a domain in
which the original problem is defined. This definition of the distri-
bution makes it inevitable to have a fictitious domain adjacent to T
and outside of the domain, on which we have no governing equations.

Therefore, the regularization of the original problem from the out-
side is needed by using singularly perturbed equations.

This method is applied to the flow problems coupled with the uni-
lateral boundary conditions of the Signorini type. Finally numerical
solutions for them are obtained by means of finite difference approxima-

tion.
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1. Introduction

We propose a kind of fictitious domain method which is effectively
used to solve a boundary value problem with nonhomogeneous Neumann
boundary condition. Nowadays there are a variety of methods which are
commonly called fictitious domain method. As typical examples we can
réfer to matrix capacitance method[6], [33], [35], fictitious domain
method via harmonic extensions[3],[17], [22], fictitious domain method
via Lagrange multipliers and optimal control[4], [16] and fictitious
domain method via singular perturbations [9],[18], [18], [20], [25], (801,
[31]. All these make use of the fictitious domain in some way or other,
but their underlying ideas and algorithm differ.

Our method belohgs to the category of fictitious domain method via
singular perturbation. This paper is divided into two parts. In the
first part, we present our methodology for a simple boundary value
probiem defined in a bounded domain in R?, while its generalizafibn is
straightforward. The second one is devoted to an applfcation of the
method to the variational inequality which is equivalent to the boundary
value problem with unilateral boundary condition of the friction type
[5].[7],[8],[15],[21],[27],[36],[37J for stationary Navier-Stokes
equations. Physically speaking, this problem is to study phenomena that
the fluid leaks and / or slips on some part of the boundary. As an
example, we consider the flow in a rectangular duct with inlet-outlet
boundaries and have obtained numerical solutions for this problem by

means of finite difference approximation.
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2. Fictitious domain method via singular perturbation.

2.1
To fix the idea, we begin with the boundary value problem ( P ) for

scalar functions with the Neumann boundary condition.)(?o is assumed to
2
be a bounded domain in R with boundary T' equipped with suitable

regularity

(1) -y Au +u =1f in Q 0
(pP)
(2) ’ CANE. g on T .
2n

2 -1/12
Here f € L ( Qo)’ g el (T ), v is a positive constant

and n is the unit outward normal vector to I

[t is well known that ( P ) has a unique solution u € H1(£20).
For ( P ), we introduce three approximate problems parametrized with e
( >0 ) defined in a wider domain B according to the general idea of the
fictitious domain method via singular perturbation.

B includes ESO' and with §21= B\ ?30. we can write B = Q OL) ry e v

This extension makes it possible to define a distribution supported by
I', which represents Neumann data. We have no governing equations on
§21. Then let us regularize the original problem from the outside of

by using singularly perturbed equations, which makes approximate (2).

The purpose of this section is to prove the equivalence relations
among them and the convérgence of an apprdximate solution into the solu-
tion of ( P ) as & tends to 0. In order to make the argument about the
proof be simpler, we assume that the boundary I' is smooth and g is a
smooth function defined on I'. Then n and g have smooth extensions in B,

which are denoted by N and ?f respectively.



One of threehpproximate problems is the following [26];

1 1
Find u0 € 1 (QO) and ule il (Ql) such that

| -1
(3) - v\ u+u = f in @ (inl (Q )),
0 0 0 0
2a ’ -1
(4) - A u =0 in Q (inH (Q )),
1 1 1
1
(P) (5) u = u on- I (in HZ(I)),
3 0 1 .
, ) 1
() p 2% L e 2w L on T ( in H2(T)),
2n on
1
(n u1= 0 on 2B ( in H*= (5B)).

Here € ( > 0 ) is a small parameter, while a is a fixed positive

constant.

r
0B

Q4

Figure 2.1

For ( P ) , we have the following variational formulation
£

1
Find v & HO(B) such that

' 2 a
(p)’ (8) wva (u,v) + & «a (u,v) + (u,v) + ngdl‘
3 0 -1 0 ‘
£
1
= (f,v) , for any v € H (B).
0 0
Here ak(u,v) =S Vu- Vvdx (k=0,1)

Ok

13
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and (u,v)0= uvdx.

Here u = u (in @ ) and u = u1 ( in Q ) ).

Let x be the characteristic function of Q 1in B. By means of x,

we define an extended flux as follows

e 2a
(9) o(u)=v-(1-x)-Vu0+e 'X'Vul

Then we state ( P )” below, which is the distribution version of

£
( P) in the following way;
€
1
Find v & HO(B) such that

(P)” (10) - div o (u) + u(l-x) -F - (V x

1
in B (in H (B)).
Here f = ?'(in §20), 0 (in §21). Also, (V x - ) is a well-defined

distribution supported by I'. Actually we have

(11) <<Vx-?f>.¢>=g¢dr for any ¢ € A(B)  ( see (25) ).
v
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Let us prove the equivalence relation.

First, we show ( P ) ::ﬁ> (P)’

€ &

By use of Green's theorem, we have from (3) and (4),

(12) va(u, v)+ (u, v) = V‘S vdl + ( f, v )
0 0 0 0 on 0
r
(13) ga. a ( u, v) =- JajaU1 vdaTl,
1 1 a0

T

By adding (12) and (13) and using (6), we have

2
(14) va (u, v) + ¢ ¢ a (u, v)+ (u, v) = S'gvdI‘ + (£, v )
: 0 0 1 1 0 0 0
f

. .
for any v € HO( B ).

Next, we show ( P )’ ::é} (pP)”
&

>

We recall

(15) b4
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1
(a) For u g HO(B), we have

2a
(16) va (u, v) + ¢ al(u, v)

0
2«
g{v(l—x)Vu+.s xVul) Vv dx
B

)
- divi v (1-x)Vu + ¢ gVu}, v>1
i (B) HO(B)

1
for any v €& HO(B).

1/2
(b) For g & 1 ("), we have

(17m) gvdT Tl = _1<'§'(Vx-?f).v>1

H (B) HO(B)

TNe—

1
for any v € H0 (B),

where g € H (B) and n are the extensions of g and n into B.

, 1
In fact, let ¢ € H (B). Then

2
(1) (18) o x. 29 -x €& L (B).
a X
Define T= ¢ - o 2 (cb;c)-a¢ X
o2 X Xj X;

i) a9 1e @ G -12).
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Moreover

(iii) (20) T &€ 0 (B).

In fact, let ¢ € .&(B), Then we have

¢
(21) <T.¢>=<a(<bx)-a-x ¢ >
PR o
=—<¢x,—a—ﬁ->—<;¢"){,¢>
2 X 2 X
from which follows
¢ ¢
(22) 1 <T.¢>1 Sl -Ha I +Ha I -l el
L2 ox; L2 o Xj L2 L2

_§|[</)HH, -H¢HH1.

1 1
o&(B) is dense in HO(B) and T is continuous from ,&(B) with H -norm.
/7 ~ —1 .
Therefore TE .&. (B) can be uniquely extended to T & H (B) and again

we denote T by T.

(iv) Let T' be smooth. Then

1
(23) <T, ¢ > = S¢¢n‘ v for ¢ € H (B).
J

T
Where n_ is the jth component of n.
J
In-fact,
| (¢ 4)
(24) <T.¢>="<X,a
3 X
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(v) Let I' be smooth and T be a smooth extended vector field in B

satisfying W | = n. Then
r

1
(25) < ¢(Vx-T), ¢ > = quqﬂ dI'  for ¢ eHO(B).

In fact, we may note that

~ 2 ~
s (Tx M=% ¢ 2%
i=1 i 2%

By use of (a) and (b), we have distribution equation ( P )" .
€

Finally we show ( P ) 7 =—3) (P)
- P> £

[t is obvious that the solution of ( P )” satisfies (14).
£

If we take v & o&(QO) in (14), then we have

n
[oa}

(26) - v Au + u
0 0

in QO, ( in QLQ' (QO)).

Qo) i 1 1
Because (QO) is dense in H (QO) and uoe H (QO),

(26) holds in H (QO).
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Similarly, taking v € ,,[9(521) in (10), we have

2a -1
(27) - & -Au1=0 in Ql, ( in H (Ql)).

Furthermore take v € ﬂ(B) in (12), then by using (26), (27) and

Green' s theorem and repeating the density argument, we have

Ug 2a u -1/12
(28) v —a—- - g - 9ur = g on I', ( in H (- )).
oV 2n ' 0
Now let us prove the convergence of u . It is a known result that

£

1 ,
in HO(B) and u is estimated as:

£

( P) has a unique solution u
P &

29 ' < ‘ ; ,
I T S L U IO Y IO

2a 2
(30) e lu|l <

c .,
e H'(Q4) 2

where C and C are positive constants [1].

’ ' 0 1
Let us make & —0. Then there exists a weak limit u & HO(Q ) ; Namely

0 1
u —u weakly in H (QO) as & —90 along a suitable sequence.
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Since there holds

2a a
(31) e - | al(u L v)y = e o | al(e u o, v) |

we have, taking the limit in ( P )’
£

0 0
(32) v «a (u, v) + (u , v) + S gvdI = (f, v)
0 0 ' 0

r

1 .
for any vV € HO(B). which is the variational formulation of ( P )
[26].

0
Here we note that whole of u converges to u weakly since the
£

0
solution u of ( P ) is unique.
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2.2

Now we proceed to problems for vector valued function, again, with
the Neumann boundary condition. As an example, we deal with a stationary

Stokes-type problem defined in QO, which has smooth boundary T .

1 2 ;
Find u € i (QO) and p &€ L (QO) such that

(33) - vAu+ Vp+u-=~+1 inQ0
(34) div u =0 in QO,
(s)
(85) o (u) = g on I',
n
(36) Ut(U) = h on I'.

Here u = (u (x, x ), wu (x, x )) is the velocity of the fluid,
11 2 21 g

p =p (Xl' xz) is the pressure, f = ( fl. fz) is the external force,

o0 (u) = -p+ ve (unn 1is the normal component of the stress vector
n 1] 13

(o (wpnl (o (up) =-p6 + ve (1), o ()= 24 4 2%
J J

1 1] 1] 1] 1] X X
on I', and ot (u) = v e (u) n t is the tangential component
: ij i
( t=(t;, tz) is the unit tangential vector to I' ), and g, h are given

smooth functions defined on I' and » 1is the coefficient of viscosity

(23], (321, [38].
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An approximate problem (S) for (S) by use of the fictitious domain

£
method is the following:
Find u =u (in Q@ ), u ( in Q ) and
0 0 1 1
p=p (inQ ), 0 (in Q ) such that
0 0 1

(37) - vAu +Vp +u =f in Q
0 0 0 0

(s) (38) div u0

1
o
e
=

Lo

2
(39) - & a(Aul FV@ve ) =0 i@

i
(40) u = u on T,
- ) 1 .
: la
(41) ¢ (u) = & +e (u) nn +g on I',
n o0 : ij 1 i3
2a
(42) o (u) = & -e (u ) n_t +nh on ',
t 0 iji 1 ij
(43) u1= 0 on & B.

Variational formulation of (S) is as follows;
E

1 2 2
Find u € (H0 (B)) and p € L (B) such that

2 .
(44) v a (u, v) + & “. a (u, v) + ((u, v)) - (p, div v)
0 1 0 0 0

1 2
(s)’ + ggv dr +Shv dT = (f, v) for any v € (H (B)) ),
£ n t . 0 0

r r

(45)' (q, div u)0 = 0, for any q € LZ(QO)).
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1 2
Here a (u, v) = — X S;._(u) e (v) dx (k =0, 1),
2 i,j=1 ij 1]
Qg
us u
where e (u) = -+ 9%J
1] Xj o Xi R
2
and  ((u, v)) =X u-v dx , (p ., div v) = p div v dx.
i=1 i i 0 0
Lo Do
1 2
By using X = { v & (H (B)) | divv=20 1in Q@ 1},
o 0 0
we can reform (S)” as follows.
&
Find u &€ K such that
G
, 2a
(s) (46) va (u, v) + & -a (u, v) + ((u, v)) + gv dT
E, T 0 _ 1 0 n
' r
+ S.hv dar = ((f, v)) for any (ve K ).
t 0 i
r
By virtue of a well known argument[38] it is clear that (S)’ has
: E, 0
a unique solution u in K and u is estimated as
E o £
(47 ffu I < C (uw)- (Ut +1 gl + Ihil . ),
e B — 1 (L2 (Q¢q))2 H-'72(T) H-172(I)
2a
(48) e -a (u u ) < ¢C
1 £ & 2

Here H =
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Let &€ =0, then there exists u in H such that
0
(49) u —u in H.
3
Since there holds
2o a « a 1/2
(50) e - la(u , v)I <e (a (e u , g u ) -~lvll =0(e—=0),
1 £ 1 3 £ -

we have from (S)’ ,

£, 0

n

0 0
(51) v ao(u , v) + ((u, v)) + S gv dI + Shvt arr = (f, v)0

r r
for any v € XK , from which (S) follows for a suitable choice of the
g

additive constant in p.

Let us introduce the following extended flux ;

e 2a
(52) o (u) = {-p + 6 + v-e (Il - x)+ &~ e (u)- x.
1] ij ij o0 ij 1
Define
(53) wvay- (2L 2%
X1 X2
and
(54) w g = (2% . 2%X



25

Then the distribution equations for (S)’ can be written as

&
9 e ~ ~
(55) - o (u) - g - (Vx)-h-(2x) +u (1-x)
2%y ] j j
” . . _1
(s) = f (1-x) in B (j = 1,2) (in H (B)),
& J
(56) div u- (1 - x) =0 in B,
(517) u =20 on © B.
Concerning the equivalence among (S) , (S)’ and (S)” , we can verify as
£ £ £
in 2. 1. In fact, the part of the verification of

(s) (S$) and (S)’ :$ (s)” is quite parallel and can be
azé > > £

ommited. The part for (S )” % (S) is briefly presented below.
- ’ 8 . 8. . -

We have (S)’ from (55).' Here we should note that crucial use has been
&

made of the following relations

o
oo
/\
0 ¢
\D}
=
.
v
1]
N
0a?
Q |V
SOl ko
u‘&
(=¥
>
1]
e
oQ
o
S
oo
v
1l
oQ
hsY
oo
|

—1 .
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(59) <KW (=% ) ¢ > = j'ﬁ(zx ) ¢ dx =Sht'¢_dl‘.
J J ]

3. J
b r
1 2
= ShqﬁtdI‘. for ¢ € (HO(B)) )
‘
Then we have from (S)’
£
(60) < - vA u + u +Vp, ¢ > = < f, ¢ >
0 0 Qg

2
( for all ¢ & ( o&*(QO) ) namely.

(61) —uAu0+u0+Vp=f in Q

Similarly we have

2a
(62) - & ( Axul + Vdiv u1 )= 0 in Q
By use of (61) and (62), we have

2
(63) <o (u) ., ¢ > =< ¢ . .(ul) non o+ g, ¢ >

n 0 n. T ‘ ij i ] n T

2
(or a1l ¢ € (LB N1 s -0 onr D,

namely,
2a
(64) o (u) = €+ e {(u)n n + g on I'.
n 0 ij 1 i ]
Similarly, we have
2 a
(65) o (u) =€+ e (u)nt + h on I'.
t 0 ij 1 ij
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To be rigorous, (61), (62) and (64), (65) should be regarded as equations

-1 -1 -1/2
in H (§20), H (§21) and equalities in H ('), respectively.

We can apply the result thus obtained for the Stokes-like problem to-
the stationary Navier-Stokes-like problem, provided that the Reinolds
number is sufficiently small. In this case, we must be cautious in

dealing with

(66) b(u, u, v) = S u Y v dx.
0 i 9xi j
Qo
[f we assume that
61 v > ¢ (It fl gl fln )
g # grce

(LE(Qa))? “HOE(T)

then we have the same result as in 2.1 [38].

The distribution equations - (NS)" for the stationary Navier-Stokes-
3
like equation with the stress boundary conditions can be constructed by

use of the fictitious domain method similarly.

Remark 1.

In order to make the argument be simpler, we consider the Stokes-
liké problem mentioned above. As a matter of course, we could deal with
the Stokes problem defined in Q . which has an inner boundary F'O

except I'', and prescribed with the Dirichlet boundary condition on T

Remark 2.
Navier-Stokes equations may be treated in the same Q 0 as stated in

remark 1 when the Reinolds number is sufficiently small.
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3. Application to flow problems with unilaterallboundary conditions.

3.1
As some examples of penetrating or leaking phenomena of the fluid

through the boundary, we can refer to the flow of air through a butter-
fly net and of gas or liquid through a filter. On the other hand, we
observe typical slipping phenomena against surface with the flow of
molten polymers of Bingham fluid in a pipe and of blood in a vein [7],
[14]. In order to deal with such phenomena mathematically, we propose a
model which is described by Navier-Stokes equations coupled with uni-
lateral boundary conditions of the so called frictional type [34];

The latter boundary conditions which are composed of the following two

conditions, now read ;

. "(1)'l0k(u)l S'gk" Con T
(s) (k = n, t)
and
] | o (.l < g u =20, on I',,
. k i - 'k . -
(2)
u =0 or u # 0
k k
o (U] =g on I'.
k X
g (u)~u <0
k

To this slip boundary condition allows the following three equivalent

expressions ;

o (uw) | < g . on T,
k k
3 - { ude-le (W) = 0, - on T,
k k k
o (u)- uwu < 0. on I'.
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l o (W < g , on I,
k ' k
(4)
o+ u + g o (!l =0, on I',
k k k k
u on I'.
(5) 2% LS5 0.
an k k

Here, on the right-hand side, @ (| - | ) means the multi-valued sub-

differential at the number - of R'-to-R' function | - |.

I' is a smooth part of the boundary & Q 0 of a domain Q OEE Rz
occupied by the fluid which obeys Navier-Stokes equations. Actually, we
“consider possible leak and / or slipping on T .

Suffix t and n represent tangentiél and normal compornents of the
velocity field u and the stress [o (u) n ]. g is a positive function
defined on T', which means the thrééhholdlfor tﬁe normal or tangential
stress which controls the occurrence of leak and / or slip.

Here we focus our .attention on an inlet-outlet flow problem defined

in a rectangular domain Q bounded by Q =T U r ur U r.
0 0 in out W
I
Lin L out
I1‘w

Figure 3.1
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The model problem is described as follows

(6) - v Au + (u - V)u + Vp = f in Q@
0 0 0 0 0 0 0
(1) divu =0 in @
0 0
(8) u = B on '
0 in
(P) (9) o (u) =0 on T
0 n 0 out
(10) u = 0 on I
0t out
(11) u = 0 on I
0 W
(12) u0 satisfies (S) on T,

Where p is the pressure and f is the external force. We can check
that ( P ) is transformed into ghe variational inequality [21],[28].
As for matgematical formulation and some crucial results in this connec-
tion, we refer to our works previously presented in an oral or informal

way; [101,[11],[12], [13].

Let

1 2
I(0 = {ve&(H (QO)) lv=8 on I' , v =0 on T and v=0 on I' },
i

n t out W
J (v) = X g | v | dT
k=n, t k k
T
((u,v)) =32 (u , v )
0 i=1 j ] 0
Where B is a vector valued function defined on I' and ( +, =+ )  means

~a scalar product in L (QO).
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Find uo and p0 such that

(v. 1) (13) v ~a (u , v-u)+ (((u -VIu, v -u))
0 0 0 0 0 0 0 0 0

- (p ., div(v-u )) + J(v) - J(u) >y (Cf, v -u))
0 0 0 0 0 0 0

for any v € KO

2
(14) (q, div UO)O =0 for any q € L (QO ).
1
r
r Q
n 0 L out
1_‘w
Figure 3.2

3.2

Furthermore we approximate (V. I)0 by use of a singular-perturbed
variational inquality defined in B by introducing a fictitious domain

Q , which is pasted to QO along their common boundary T .
(see figure 3.2)

1 2
Let K = {(ve@ (B)) |v=8 on " ,v=0o0onT and v=0 on ' U(2Q \T)}
‘ in t out W 1
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€ € 2
Find u &€ K and Py & L (Q ) such that

£ £ 2a e £

(15) v - ao(u , v—-u )+ e ~af(u , v-u)

&€ P>
(v. 1) + (((u - V)u, v-u)) - (p , div (v - u ))
E 0 0 0 0 0
PO -1y ((f,v-.us))o for Vv € X
2 2
(186) (q, div u )0 =0 for ¢ € L (Q 0)

This may be regarded as another example of the regularization from the

outside[29). The present singular perturbation defined in

is given
in the added fictitious domain

Furthermore, we regularize J(v) to
N

-26
obtain differentiable J (v) by use of ¢ (A) = S tanh (¢ s)ds,
£ >

4

(6 is a fixed positive constant) in the following way [14]

(1m) I (v) = g ¢ (v ) dI.
> k=n,t k & k

r

[t is easily checked that the regularized singular-perturbed

variational inequality is reduced -to the following equations ( P )
g
nonlinear transmission conditions on ' ;

with



(p

)

(18)
(19)

(20)

(21)

(22)

(23)
(24)
(25)
(26)
(27)

(28)

o (

u

(u
0

£
- V)u
0

on

on

on

on

on

on

= f in Q
0 0
in Q ,
0
in
1
-26 £
- tanh (e - u
n on
on ',
-24 £
- tanh (e s )
ot
on I',
in
out'
out'
W
g;szl\\ r.

33



[f we follow the distribution formulation mentioned in 2.2, then we

have
g £ 2
Find u € K and P € L (QO) such that
o e € £ &
(29) - o (u) + (u +-¥V)u (1-x )
gXi 1]
/\/ /\__/
~ -26 € ~ -20 >
(p)’ + g+ tanh (e cu ) (Vyx) + g-tanh (e =+ u )(Z x)
£ n on ] t ot ]
=f (1-x ) in B, ( j=1,2)
1
. )
(30) divu =« (1-x ) =0 in B.
and
€

u. satisfies the same boundary conditions on @B as in ( P ) .
3

3.3 Numerical Results.

Hereafter, we report on the numerical solution of ( P ) solved by
£

means of both finite difference approximation and MAC methods [2]. Let

Q (i=0,1) be a rectangle whose size is 4 X 10. In this calculation,
i

-2
we chose v = 10 and B8 = (10, 0). . The parameters h and g in

Figers 8.3 ~3.7 mean h = g and g = g
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