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THE ACOUSTIC WAVE PROPAGATION
IN TWO UNBOUNDED MEDIA

MITSUTERU KADOWAKI
Pl bW (HEKRFE - K¥FBR)

1. Introduction.

In the present paper we study the limiting absorption and amplitude principle
for the acoustic wave operators in two unbounded media. We assume that the
propagation speed is discontinuous at the interface and the equilibrium density is
1.

Let n > 2 and z = (y, z) € R""! x R. The following equation decribes the wave
propagation here :

(1.1) Alu(t,z) — a(z)?*Au(t,z) =0, (t,z) € RxR",

where a(z) is a propagation speed. When we consider the limiting amplitude prin-
ciple, we deal with the asymptotic behaviour ( as t — 400 ) of the solutions of the
following Cauchy problem

| 12) 82u(t, z) — a(z)?Au(t, z) = exp(—it\ /@) f(z)  (t,z) € Ry x R,
' u(0, z) = 8;u(0,z) = 0,
where w > 0. But we can not deal with n = 2 (see (3.13)).
We make the assumptions for the interface separating two media and a(z).

Let ¢o(y) = bly| and ¢(y) € C1(R"~1\{0}), where b > 0. We assume that ¢(y)
describes the interface and satisfies

(A.0) > 6% (p(y) = eo(y)l = O(lyl™) (lyl — o),

lel<1

for some 6 > 0, and

(A1) Y Il e%e()l = O(lyl™) (lyl — 0).

le]<1

where 0 < o < 1/2. For ¢(y), we use the following notation :

Q+ = {2? = (y,z) tzZ > SO(y)},
Q_ = {(L’ = (y, Z) 2 < so(y)},
S={r=(7):7=pt)).
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We denote the unit normal vector at the point z € S by v = (v1,va,...,v;) with
v, > 0.

The propagation speed a(z) > 0 is assumed to satisfy the following : for some
c>1, ‘

(A.2) l/e<a(z)<c

and there exist ax > 0,af(z) € BY(Q4) and ag(z) € L°(R") such that a(z) is
decomposed as

a@)  =ex+af@)+as(@) (¢ E€),
(A3) 32l 1% @) = 0(1el™*) (1ol — ooz € ),
as(@) = 0(al=*) (le] — )

for some 6 > 0.
Under (A.0) ~ (A.3), we show the nonexistence of eigenvalues and the limiting
absorption and amplitude principle of the acoustic operator —a(z)?A for ( 1.1 ).
There are many works dealing with the acoustic wave propagation problem with
the discontinuous propagation speed at the interface separating media. Eidus [6]
proved the limiting absorption and amplitude principle for two unbounded media
problem with the interface satisfying the following conditions : for any z € S

(13) vV, Z Cl > 0,
- (14) - v <Gy,

where C; > 0,(j = 1,2), are independent of € S. For example,

o() € CH(R™), so(y>=%'f’—' (ol >> 1), oly) =0

satisfies (1.3) and (1.4), but not satisfies (A.0). We can also deal with the following
interface not satisfying (1.3),

o) =1ylI™%, wo(y)=0

where, 0 < 00 < 1/2.

The propagation speed considered in Eidus [6] is a piecewise constant function while
we can perturb the propagation speed.Wilcox [18] considered two stratified fluilds
in a half space and established the eigenfunction expansion theorem. Ben-Artzi [1],
Weder [15]~[17] and Dermenjian and Guillot [3] considered perturbed stratified
fluilds problems. They showed the limiting absorption principle by the approach of
Wilcox [18]. Kikuchi and Tamura [9] also proved the limiting amplitude principle
for perturbed stratified fluilds. On the other hand there are some works dealing with
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the case where the equilibrium density is discontinuous at the interface separating
media, for example, Debiévre and Pravica [2] and Wilcox [18].

In order to show the limiting absorption and amplitude principle for our operator,
we use Mourre’s method. This method was first developed by Mourre [10] to prove
the limiting absorption principle for 3-body Schrodinger operators ( see also Perry,
Sigal and Simon [11] and Tamura [13]). In Froese and Herbst [8], they showed by
Mourre’s method that N-body Schrodinger operators have no positive eigenvalues.
Iwashita [8] and Weder [14] showed the limiting absorption principle for first order
symmetric systems. For the acoustic wave operators in perturbed stratified fluilds,
Debiérve and Pravica [2] obtained the similar results as in [8] and [14]. Tamura
[12] used Mourre’s method in order to prove the limiting amplitude principle for
the acoustic wave operators (see also Kikuchi and Tamura [9]).

We now define the acoustic operator L as

(1.5) L = —a(z)?A

Under the above assumptions, (A.0)~(A.3), L is a symmetric operator in the
Hilbert space L2(R™;a~%(z)dz) and admits a unique self-adjoint realization . We
denote by the same notation L this self-adjoint realization. Then L is a positive
operator (zero is not an eigenvalue) and the domain D(L) is given by D(L) =
H%(R7), H*(R?) being the Sobolev space of order s over R?. We also denote by
R(z; L) the resolvent (L — z)~! of L for Imz # 0.

We need several notations to describe our results. Let L? be the usual L2space
defined on R”, with the inner product '

<u,v>= An u(z)v(z)dz

and the corresponding norm |-|o. For a € R let L2 be the weighted L?space defined
by _
= {u(z) :< £ >* u(z) € LA(RY)}, < z >= (1 + |z|?)'/?,

with the norm

Jul2 :/ <z > u(z)|*de.
R»

Let A : L% — L3 be a bounded operator. We denote by [|Alla—s the operator
when norm cons1dered as an operator from L7 to L. If, in particular, A : L? — L?

is considered as an operator from L? into itself, then its norm is denoted by the
simplified notation ||A||.
The main results are

THEOREM 1.1. Assume that (A.0) ~ (A.3). Then
(1) L has no eigenvalues.
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(ii) Let Mg > 0 and a > 1/2. Then for any compact interval I C R4 containing Ao,
there exists a positive constant C = C(I, o) such that

|<z>"*RAxik;L)y<z>"*|| <C,

for\el,0< k<1
(iii) For every A > 0 and o > 1/2, following two limits

R(A+1i0;L) = liilol R(A tik; L),

exist in the uniform operator topology of B(L2, L2 ). Moreover R() % i0; L) are
locally Holder continuous.

THEOREM 1.2. Assume that (A.0) ~ (A.3) andn > 3, Let « > 1 and B > 1/2.
Then there exists d,0 < d < 1/2, such that

IR(A % i0; L)llp——a = OA), (A —0).

By Theorem 1.1 and 1.2, we have the following theorem (see Eidus [5] or Tamura
[8))-
THEOREM 1.3(LIMITING AMPLITUDE PRINCIPLE). Assume that (A.0) ~ (A.3) and
n > 3. Let u = u(t,z) be the solution of (1.2) with f € L%,8 > 1/2. Then u(t,z)
behaves like :

A u = exp(—it\/w)R(w + i0; L) f + o(1), (t — 00)

strongly in L2 ,,a > 1.

-

2. The limting absorption principle.
We consider only the case 1 = aZ2 < af. The other cases can be proved similarly.
We define the self-adjoint operator H(A) on L? by

{ HQ) = —A - Ma~(2) — 1)
D(H(A)) = H2(R™).

Then we have
R(X Lik; L) = Q(), xik; H(X))a"%(2),
where Q(A, Lik; H(A)) = (H(X) — A Fika~2%(z))~.
- We apply Mourre’s commutator method to H()) on L? (see Tamura [12] or Kikuchi
and Tamura [9]).

‘By (A.3), we can decompose a~2(z) = Ef(z) + Es(z)(z € Q1) in such a way
that

3 lef |0 (B (2) — az2)] = O(l=l ), (Jz] — o0,z € Qu),
|e|<1

Es(z) = O(|z|~~*), (fa] — o).
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Let A be the generator of the dilation unitary group;
1
We define the commutator i[H()), A] as a form on H2(R") N D(A) as follows; For
u,v € H2(R®) N D(A)
| | < i{HQ), Alu,v > _. _
=< Au, HA)v > — < H(A)u, Av >).

Our main calculation is the integration by parts. Then, an integration on S appears
because of the discontinuity of a(z). In order to estimate this integration, we use
the following lemma

LEMMA2.1. Let s > 1/2. For u € S(R") (Schwartz space), we define
(Tou)(y) = w(y, ¢(v))-

T, has an extension to a bounded operator from H*(R") to L?(R™"!).

PROOF: we show that :

(2.1) - |Toulrametr) £ Clulgs(rn |

for u € S(R™). Let u € S(R"). Then u(y, p(y)) is represented as
too |

22) ) = @7 [ (w0
-0

where £ = (n,() € R,';‘l'x R¢ = Rf and §; is the Fourier transform in R,. By -
Schwartz’s inequality, we have

23) (TP
400 +o0
< (@) f 1+ d ] (1 + C2)*2(3,u)(y, O)PdC.

By integrating both sides of the above inequality over R”~1, we obtain (2.1). n

Moreover, a singularity at y = 0 for ¢(y) (see (A.2)) appears. We analyze this
singularity by the argument using Holder inequality and the following Sobolev’s
theorem

LEMMA 2.2 (SOBOLEV’s THEOREM). Suppose that
1/2 —-’l/m =1/¢,2< ¢ < 00.
Then we have the embedding
H'(R™) — LI(R™).

The following lemmas play an important role in the proof of the theorem 1.1 (see
Mourre [10] and Perry, Sigal and Simon [11]).
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LEMMA 2.3. the form i[H()),A] defined on H?(R™) N D(A) is extended to a
bounded operator from H'(R™) to H~!(R") which is denoted by i[H()), A]°. More-
over we have

i[H()), A]°
=20+ X(x-VEL)—Esx-V+V* - Esz —nEg
~T,(E1° — EL°)(y - Vyo(y) — ¢(v))T),

where Ef = Er(y, ¢(y) £ 0).

LEMMA2.4. Let Ag > 0 and 0 < § < min(1,)o/4) and take fs(p) € Cg°(R),0 <
fs < 1 such that fs has support in (Ao — 36, Ao +36) and fs = 1 on [Ag — 26, A+ 26].
Then, there exist a positive constant o and a compact operator K on L? which
depend on only Xy such that

(24) Fs(H(N))H(X), A fs(H (X))
> afs(H(A)? + fs(HN)K ) fs(H(X))

for A € (Ao — 8,0 + 8), in the form sense.
SKETCH OF THE PROOF OF LEMMA 2.3:‘ By integration by parts, we have
(2.5) < {[H(A), Alu,u >

=2<Vu,Vu>+A < (z-VEL)u,u>

— M< Tp(Xiyi<r (¥ - Vyp — PNEL® — EL°)Tpu,u >

+ < To(Xiyls>r (¥ - Voo — 9)(EF® — Ef°)Tpu,u >)

—nA< Esu,u>-A< Esu,z-Vu> -A <z -Vu, Esu >,

for any r > 0.
We define an operator R, as

Ryu = Xjy1<r (9) (¥ - Vy(y) — () Tou.

We show that R, is a bounded operator from H'(R") to L*(R"1).
If 0 < 0 < 1/2, there exist some s > 1/2 and p > n — 1 such that

(2.6) n—1—-0p>0,

@.7) n-1

% +s=1.

By Holder inequality, we have
(2.8) |RZ,U|%2(Rn-1)

too - o
< C/-oo (+¢’ /Iy|<r ly - Vy — @lI(F, u)(y, O) | dyd¢

n—l—o Foo
<O [ OGO 2, &,

p—1 (Rn—l)



where C > 0 is independent of r.
Lemma 2.2 implies that

(2.9) 18405 Ol 22 gy < OB u(- Ol »

It follows from (2.7),(2.8) and (2.9) that

T(Rn—l)

n—l—oc

(2.10) |Rr ule(Rn-l) <Cr 2 |UIH1(Rn),

where C'is independent of 7.

It follows from Lemma 2.1 that T} is a bounded operator from L*(R"~!) to
H~(R™). Moreover, since Esz -V is a bounded operator from H'(R") to L?(R"),
the adjoint operator (V)* - zEs is a bounded operator from L?(R™) to H~}(R").

Hence, from (2.5) and (2.10), the form i[H(A), A] has an extension to a bounded
operator i[H()), A]® on from H(R") to H~}(R"). 1
SKETCH OF THE PROOF. OF LEMMA 2.4: We simply write fs instead of fs(H(A)).
By Lemma 2.3, we have for u € L?,

< fsi[H(X), A° fsu,u >

=2 < =Afsu, fsu > +AM< ((z - VEL) — nEs) fsu, fsu >
=<z -Vfu, Esfsu>— < Esfsu,x-Vfsu>

— < (To) Xiyi>r (¥ - Voo — @) EL’ — EL )T fou, fru >
- < (R) (EF° — EZO)R;fgu,f,su >).

Let 0 < r << 1. By (2.9), there exists a positive number C independent of r such
that,

X < (R)*(EY® — EL°)R., fsu, fsu > |
=A< (E+0 — E;°)R}, fsu, R, fsu >La(mrn-1) l
< Cr =T (IV fsul + 1513).
Let Ey(z) = az?(z € Q4). Then we have
2 < —Afsu, f.su > —A < (RL)*(Ef° — EL°) Ry, fsu, fsu >

2—-Cr=7 )\ 2ok
> (! T R0 _ g

+(2=Cr=F ) < (E = Eo) fsu, fsu > .

Take h € C°(R),0 < h < 1 such that h =1 on (A/4, 7/\0/4) Using h, we define
an operator K(X) as

K()) = Zl{j‘()\)

35
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where,

K1(N) = AWHN)((2 - VEL) — nEs + (2— Cr™"5 )(E — Eg))h(H(N),
Ky(X) = =Ah(H(A))Egz - Vh(H(X)),
K3(A\) = —Ah(H(X))V* - zEsh(H (X)), A
Ka(X) = ~A(HO)TS(EE® — Bzpyie(y - Vio — 9)Toh(H()).
For each A € (Ao — 6, A0 +6), K;(A)(j = 1,2,3,4) is a compact operator on L?. §
Using Lemma 2.3 and Lemma 2.4, we can prove theorem 1.1(i) in the same way
as in Froese and Herbst [7] and Appendix I of Tamura [12].
Next, we consider the proof of Theorem 1.1(ii) and (iii).
Following Tamura [12], we consider cut off functions, x,(x) € Cg°(R") such that

Xn(z) has support in {z € R";|z| < 2} and x, =1 for |2| < 1. For ¢ > 0 small
enough, we define

Ep,e(z) = Eo(z) + Xn(ez)(Ep(z) — Eo(x)),
ES,e(x) = Xn(fx)ES(x)>

and

V() = Xiyi>r ()xn-1(e9)(y - Vye(y) — 2(y))-
We further define an operator B(e; A) as
B(e; )
=—-2A+X(x-VEL) —nEsc+ V" -2Es.— E; cx -V
- ToVE W)(BE — B)T, — (R,) (Bf — B)EY).
We can consider that B(e; ) to be a bounded operator from H1(R") to H~}(R™)

(see Lemma2.1). Moreover, for u € H2(R") N D(A) satisfing Au € H(R"), we
define the commutator [B(e; A), A] as follows

< i[B(€;A), Alu,u >

= Z < i[Bj(€; A), Alu, u >

j=1

4
= Zz(< Au, Bj(e; \)u > — < Bj(&; MNu, Au >),
j=1 :

where
Bi(e;A) = =20+ Xz - VEL ),
By(6;A) = =A((Es,ex - V) + Es ez -V +nEs )
=—-XNV*-2Esc+ Escx-V+nEg,),
By(6;X) = ~XT3V; (B — BZO)T,,
Ba(e;)) = —\(R,)' (B} - BL)R],
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Then the i[B(¢; A), A] has an extension [B(e; A), A]° to be a bounded operator from - -

H?(R™) to H=2(R"). Then we can prove the following lemma

LEMMA2.5. Let M(e;X) = fs(H(A))B(e; ) fs(H(A)). Then [M(e A), A] defined as
a form on D(A) is extented to a bounded operator on L? which is denoted by
[M(e; A), A]°.

We can also prove the following lemma by a straightforward calculation.

LEMMA2.6. Let A\g —6 < XA < Ay + 6,0 < € < 1. There exists a posmve constant C
independent of A and ¢ such that

) I(=A + 1)~ Y2(B(A) - B(e; \)(=A +1)"Y2|| < O,
(i) (A + 1)=Y/2(d/de) B(e; \Y(=A + 1)~12)| < Ceb-1,
) I+ )TBEGN, A=A+ < Ce,

where B(A) = [H(}), A]°.

SKETCH OF PROOF OF THEOREM 1.1(11) AND (111): By Theorem 1.1(i) and Lemma
2.3, we can take 6 so small that

(2.11) M(\) = fs(HN))[H(X), A]° fs(H (X))
2 (o/2)fs(H (A))2

in the form sense.
Moreover,(2.11) together Wlth Lemma 2.6(i), implies that

(2.12) M(e;X) > 7 fs(H(X))?
for € > 0 small enough, where v > 0.

It follows from (2.12) that M(e; A) is non-negative and hence we define an oper-
ator, Gg(€; A), on L? by

Gr(6;2) = (H(A) = A —ikE(z) — ieM(e; X))~

for0<k<landO0<e<<1l ‘

For 1/2 < a < 1, we write

Fi(6;A) = Xo(€)Gr(€; M) Xa(e),
where
Xo(€) = (1+|2])™ (1 +€|z])>.

Differentiating Fy(e; A) in € and using Lemma 2.3~Lemma2.6, we have (see Tamura

[13])

(2.13) 1(d/de) F(e; M| < C(e*™ + @32 |12 + 1| ).
Let €0,0 < €g << 1. Then by (2.12), we have

(2.14) |F(e0; Ml < Ceg ™

By (2.13) and (2.14), we immediately obtain

(2.15) IR <G,

where C > 0 independent of 0 < K < 1,0 < e < g and Ag — 8 < A < Ap + 6. (2.13)
and (2.15)imply Theorem 1.1(ii) and (iii).
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3. The limiting amplitude principle.
We consider only the case 1 = aZ2 < a;‘_z. The other cases can be proved similarly.
Theorem 1.2 is obtained as an immediate consequence of the following

LEMMA 3.1. Let the pair («,3) be as in Theorem 1.2. Then
1Q(, £i0; H(A) Y lp—-a = O(A%), (A —0),

for some d,0 < d < 1/2.

By the assumption (A.3), we can decompose a~2(z) as a~%(z) = Eif(z) +
Es(z)(z € Q4) in such a way :

(3.1) Y- Izl 63 (B (2) — a3?)| = O(lz|™%)  (lz] — 00,2 € Qx),
lal<1

(32)  Ea(z) =0(2[7'7%) (l2] — o0),
(33 Y <zl (B ) - e <b (),
lo|<1
for 8o > 0 small enough, 8y being fixed throughout.
LEMMA 3.2. Let Hi(A) = —A — A(E1(xz) — 1), and o > 1. Then, we have

(3.4) (L) = AF ira~2 (@) M lasma = O1), (A —0),

uniformly in k > 0 small enough, where E;(z) = EE(z)(z € Q1)

By interplation, We can show that Lemma 3.1 follows from Lemma 3.2.
we also prove Lemma 3.2 by making use of commutator method. We define

the commutator i[H1()), A] as a form on H?(R™) N D(A) as follows : For u,v €
H?(R™) N D(A),

<i[Hi(N), Alu,v >
=i(< Au, Hi(A)v > — < Hi(A)u, Av >).

The key lemmas in this section are the following lemmas (Lemma 3.3 and 3.4).

LEMMA 3.3. The form i[H;()), A] defined on H?(R™) N D(A) is extended to a
bounded operator from H'(R") to H-1(R") which is denoted by i[H;(}), A]°.
Moreover we have

i[H1(A), 4]
= =20 + MF1 — Ty (EF° — ET°) X115 (0)(¥ - Vyo(y) — 0(v)) T,
— (R (EF° — ETO)Ry),



39

where 0 < r << 1 and F} = z - VE;(z)(z € Q4).

LEMMA 3.4. Let 0 < A << 1, take fi(p) € C§°(R),0 < fr < 1 such that fy has
support in (A/3,3)) and f\ =1 on [A\/2,2)]. Then, there exists a positive constant
C which is independent of A such that

(3.5) AHEN))HLI), A (H1 (V) > CAA(H1(A))?

in the form sence.

We can prove Lemma 3.3 in the same way as in the proof of Lemma 2.3. Here,
we give only a sketch of the proof of Lemma 3.4. In order to show Lemma 3.4, we
need the following lemma.

LEMMA 3.5. Let u € HY(R"). Then, we have
'|Ttp“|%2(n‘n—1) = :FQRE/ ud,udz.
=

PROOF: Let u € S(R"). Noting that

+o0 |
/ ul,udr = + / / u0, udzdy,
Qi R~=1 Jo(y) ,

we have by integrating by parts

/ ud,udz = ¥/ |T,ul?dy — 0, uudz
Qg Rn—1 Q4

Thus we have

/ |Tpul’dy = :F2Re/ ud,udz
Rr-1 Q:k

This implies lemma because S(R") is dense in H(R"). §

SKECH OF THE PROOF OF LEMMA 3.4: We simply write f) instead of fy(H1())).For
u € L?, we have (for detail, see the proof of Lemma 2.3)

(3.6) < Hri[Hi(A), Alfru,u >
=2< VAiu,Vhiu>+A < Fifiu, ru>

A [ @ Ve E - BT fruldy
We estimate the second and the third term respectively. (3.3) implies that

(3.7) | < Fifaw, fru > | < 6ol frulp.
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Let » > 0 small enough. We decompose the third term as the following form
[ Vup = @B~ BTl
=/ (Y- Vyo — @)(EL" - ET°)|Tp frulPdy
lyl<r ,
+ [ - Vyp- o) (B - BTy
lyl>r
Repeating the argument in the proof of (2.10), we have

©9) | [ (0 Vo B - BONT i) < O (Ul + 1)
yir

~ for some p,n — l<p< "‘0;1
Noting that xjy|>r(y)(y - Vi — ¢) is bounded, by Lemma 3.5, we have

I g (y- Vo — 9)(EF® — EL) T, frul*dy < C < |faul,10; fau| > .
yi>r .
Moreover, let § > 0, small enough. Then we have

39 | lyl> (¥ - Voo — )(EF° — ETO)|T, firul’dy| < 8| frul2 + 1/8]V frul2.
y|>r

Noting 0 < A, 7, 6,80 << 1, by (3.6) ~ (3.9), we have (3.5).
We define
Ey,¢(2) = Eo(2) + xn(e2)(E1(2) — Eo(2)),

where € > 0 small enough. We further define an operator C(e; A) as
C(6;X) = —28+ A(Fi — TH(EF — BV ()T,
— (Ry)"(EY® - ETO)RY),
where Fi . = z - VE (z)(x € Q). We can consider C(¢;A) to be a bounded

operator from H'(R™) to H~}(R"). u € H%(R") N D(A) satisfing Au € H!(R"),
we define the commutator i[C(¢; A), A] as follows

< i[C(e;A), Alu,u >
3
=Y < 1Cj(e A), Alu,u >

j=1

J=

3
Z(< Au,Cj(e; N)u > — < Cj(€; N)u, Au >),
=1



where

01(6; A) =20+ AFl,e,
Cal€;X) = AT (EF® — ELOWVIT,,
Cs(€;X) = =M(R,)*(EF® — EL°)R;,.
We can also show that i[C(e; A), A] is extented to a bounded oparator H 2(R"') to
H~2(R"). Moreover, we have the following (see Lemma 2.5)
LEMMA 3.6. Let N(e;A) = fa(H(X)C(e; A) fr(H(A)). Then [N(e;A), A] defined as
a from on D(A) is extended to a bounded operator on L? which is denoted by
[N(e; A), A]°.
We can prove the following lemma by a straightforward calculation.
LEMMA 3.7. As A — 0, one has
(D) [I(=A +X)72(C(e; 2) = COYN (=L + N)~2|| = LO(1),
(i) [|(=A + )72 (£C(e M) (=L + 1) = 710(1),
(i) (=2 + N)~1[C(6 X), AP(~A + )1 = #-10(1) + O(A-1),
where C(X) = i[H1(X), A]°.
SKETCH OF PROOF OF LEMMA 3.2: Lemma 3.4 and 3.7 (i) imply that
(3.10) | N(&d) 2 A S

for € > 0 small enough, where ¥ > 0 is independent of €, A. It follows from (3.10)
that C(e; ) is non-negative and hence we define an operator, Ji(¢; A), on L? by
Je(6;2) = (Hi(X) — A —ika~%(z) —ieN(e; N)) !

for k,0 < k < 1 and € > 0 small enough.
We write

Eq(6;X) = X1J.(6; )) X1,

where X; = (1 + |z|2)~1/2.
Differentiating E(e; A) in € and using Lemma 3.3~ 3.7 , we have

(3.11) I(d/de)Ex(&; N)|| < C(1+ e V2| B ||M/2 + € 1| ).
Let €9,0 < ¢g << 1. and |
(3.12) |Ex(€0; M| = 510(1), (A — 0).

(3.11) and (3.12) imply
IE<(0; )]l = O0(1), (A—0),

uniformly k,0 < & < 1. Thus, we obtain Lemma 3.2. |
Remark. In order to show (3.12), we need the well-known inequality

(3.13) An <z >"% |u(z)|’dz < C'Ln |Vu(z)|*dz,

where n > 3.
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