0000000000
08940 19950 43-66 43

The Cauchy problem for hyperbolic operators of strong type

Kuniaiko Kantant ( 28 ¥RE)*
TaTsuo NisHITANI (P82 EHE)**
SEIICHIRO WAKABAYASHI (£bk  3HR—ER)*

1. Introduction

Let P be a differential operator of order m in an open set @ C R", and write
P(z,D) = 3 7, Pj(z, D), where the P;(z,£) (0 < j < m) are homogeneous polyno-
mials of £ of degree j whose coefficients are C* functions of z in Q. Let 29 = (29,£9) €
T*(Q2)\0 be a characteristic point of order r of the principal part Py, of P. It is well

* known that for the Cauchy problem for P to be C®-well posed the lower order term P;
must vanish at least of order r —2(m—j) at 2° if r—2(m—j) > 0, i.e., j > [(2m—7)/2],
where [s] denotes the integral part of s for s € R ( see Ivrii-Petkov [5]). We call the
above necessary condition for C*°-well posedness the Ivrii-Petkov condition here. On
the other hand it is also known that the Cauchy problem is C*°-well posed for any lower
order terms if and only if every characteristic point of P, is th most of order 2 and P, -
is effectively hyperbolic at every characteristic point. of order 2 (see [5], Iwasaki [6] and
the references in Nishitani [8]). Therefore, as a generalization of effective hyperbolicity
it is natural to call P, a hyperbolic operator of strong type if the Cauchy problem for
P is C*°-well posed for every lower order term P; satisfying the Ivrii-Petkov condi-
tion. So a question rises whether there exist hyperbolic operaters of strong type. The
answer is positive. Roughly speaking, we can prove that a hyperbolic operator is of
strong type if its principal part has the real characteristic roots and the difference of
any two roots is bounded from below by the absolute value of a time function, where

the precise definition of “time function” will be given later.

In Kajitani-Wakabayashi [9] and [10] we introduced the microlocal a prior: esti-
mates to solve the Cauchy problem for linear partial differential operators in C*°, and
as 1ts application we investigated the Cauchy problem for such operators with time

functions which are in involution. Nishitani studied the same problem for operators
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with one time function in [14] and the propagation of singularities in [15]. In this ar-
ticle we shall consider ‘hyperbolic operators of strong type. We shall give a large class
of hyperbolic operators of strong type ( see Theorem 1.1 below). Although we have
no general results on the characterization of hyperbolic operators of strong type, we
believe that our class is very close to the whole class of hyperbolic operators of strong
type. |

Let P(z, D) = D" +3 " 4)<m, a1 <m 3a(2) D be a partial differential operator with
coefficients in C*(R"), where m is a positive integer, z = (z1,2') = (21,22, - ,Z5) €
R" and D = (D,,D') = (D1, D,,---,D,) = —i(8/02z1,--- ,0/0z,). We assume that
[Ad] p(z,8) =€+ Zlal:m,a1<m aq(z)€™ is hyperbolic with respect to § = (1,0, - -,
0), i.e., '

(1.1) p(z, £ —i0)#0 forz € R" and £ € R".

It is well known that it follows from Lax-Mizohata’s theorem [13] that (1.1) is
necessary in order that the Cauchy problem for P(z, D) is C*-well posed.

Let P(z,£) be the full symbol of P(z, D) and denote by P;(z, £) the homogeneous
part of degree j of P(z,£). We define h;(2,£) (j = 0,1,--- ,m) as |p(z, £ — is0)|? =
Yoo sHm=i)p;(z,€) for x € R™, £ € R™ and s € R. Writing p(z,¢) = [T~ gi(2,8),
where g;(z,€) = & — Aj(=,€'), we have

hi(z,€) = > lgz, (2, )+ [a, (2, €)|* for1<j<m

15[1<lg<~-~<ljsm

and ho(z,€) = 1. We assume that for 20 = (z°,¢°) € T*(R™) =~ R*® with |¢°| =1

[A.II],0 there are a conic neighborhood U of z° and C > 0 such that
1P (2, )] < Clhaj—m(2, )"/

for (z,€) € U with |¢] =1 and [m/2] +1<j <m—1.

It should be noted that hgj_,,(z,£) # 0 near 2° if j < (2m — r)/2 and 2°
is a characteristic point of order r. We note that there are variants equivalent to the
condition [A.I] o ( see Lemma 2.5 in [10]). We remark that if the multiple characteristic
set {(z,€) € T*(R")\0; p(z,&) = dp(z,£) = 0 } of p(z,£) is a C* manifold, the
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condition [A.II],0 is necessary in order that the Cauchy problem for P(z, D) is C*°-
well posed (see [5]). We also note that if the coefficients of P belong to a Gevrey class
£ (5 < 2) and the conditions [A.I] and [A.II],0 for every 2° € T*(R™) with [¢°] =1
are valid, then the Cauchy problem is well posed in £*) ( see Kajitani [8]).

We now introduce the notion of time functions. For a multiple characteristic
point 20 € T*(R™)\O of p, we denote by p,o(X) the localization ofi) at zo,‘ ie.,
p(z° + sX) = s#(p,0(X) + 0o(1)) as s — 0 and p,o(X) #Z 0 in X € T,o(T*R"). Denote
by T'(p,e, (0,8)) the connected component of the set {X € T,o(T*(R")); p,o(X) # 0}
containing (0,60). We say that ¢(z, £) is a time function of p at 2 if (z, £) is real-valued,
continuous in 7*(R™)\0 and positively homogeneous in ¢ of degree 0 and if there are a
conic neighborhood U of z° and a compact convex set K C I'(p,o, (0, 8)) such that ¢(z, )
is Lipschitz continuous in U N {1/2 < [¢] < 2} and —([€|Vet(z,€), —Vi(z,€)) € K for
ae. (2,6) € U. In particular, #(z,£) is a time function of p at 2% if #(z,€) is a

real valued function in C'(T*(R")\0) and positively homogenuous of degree 0 and
| —H(2°) = —(V¢t, —V,t)(2°) € T'(p,0,(0,8)). In fact, it follows from continuity in
z of —H;(z) that there are a conic neighborhood U of 2° and a compact convex set
K cC I‘(pz’o, (0,8)) such that —H;(z) € K for z € U.

For a multiple characteristic point z® = (2°¢°) € T*(R") with [£°] = 1 we
assume that

[A.IIT],0 there are a conic neighborhood U of 2° and time functions #;(z,£) (1 < £ < d)
of p at z° such that

(12) B (2,€) 2 hmes(2, €)t(z,€)" for (2,€) € U with [¢] = 1,

where #(z,£) = mini ¢s<a [te(2, §)|-
In particular, [A.II1},0 implies that the multiple characteristic set of p is included
in the union of the zeros of finitely many time functions. We note that the condition

(1.2) is equivalent to

(1.3) lgi (2, )| + lar(2,€)| > ct(=, &) for (=,£) € U with [{] =1 and j # k,

where p(, &) = [T}, ¢;(,€) and ¢ > 0 ( see Lemma 2.4 in [10]). Since it follows from
[1] that the ¢; are Lipschitz continuous in T*(R")\0, (1.3) is valid if there are c;; € R
such that (c;xq; + cr;jqx)|€|™! are time functions of p at 20 for j # k.
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Now we can state our main result. Let Q be a bounded domain in R" containing
the origin. Under the assumption [A.I] we can define the generalized flows issuing from

2% in R™ by
Kz, ={=(t); £t >0, and {z(t)} is a Lipschitz continuous curve in R"

satisfying dz(t)/dt € T(p(2(t),-),8)* ( a.e. t) and 2(0) = 2°},

where T'(p(z, -),8) denotes the connected component of the set {{ € R"; p(z,£) # 0}
containing § and ['* = {z € R™; z- £ > 0 for any £ € T'}.

Theorem 1.1. Assume that the conditions [A.I] is satisfied and that [A.II],0
and [A.III),0 are satisfied for z2° = (2°,¢°) € T*(R™) with |¢| =1,2° € Q, 29 > 0 and
dp(z°) = 0. Then for any f € D' with supp f C {2, > 0} the Cauchy problem

{P(m,D)u(z) =f in 9,
(CP)

supp u C {21 > 0}

has a solution u € D'. If 2° € @, K_, N {2, > 0} C ©, and u € D’ satisfies (CP) with
f =0 near K, then z° ¢supp u. Moreover if 2° € Q, Ky N{z; >0} CQ, ue D
satisfies (CP) and f € C*(R"), then z° ¢ sing supp u, i.e., u € C*® near z°.

- Here we give a simple example to elucidate the geometrical meanings of the

conditions [A.IT],0 and [A.III],0. Let p(z,£) be factorized as
(1.4) p(z,€) = e(z,6) [ ] 4i(2,8)
i=1

in a conic neighborhood U of 2°, where e(z,£) and g;(=,£) are smooth near 2° and
positively homogeneous of degree m — r and 1, respectively, and e(2%) # 0, dg;(z°) #
0 and g¢;(z°,8) > 0. Assume, for simplicity, that dg; are linearly independent at
2%, Recall that the cone generated by the Hamilton vector fields H,(z°) of g; forms
the pi‘opagation cone I'(p,0,(0,8))? of the localization pzo(X), where I'" = {X €
T,o(T*(R")); o(Y,X) >0 for any Y € T} for I' C T,o(T*(R")) and 0 = ), d§; A dz;.
Then the condition [A.III],0 is fulfilled if and only if I'(p,o,(0,8))? is transversal to
the tangent space at 20 of each intersection of any two hypersurféces gy =0,¢; =0
(see [15]). On the other hand, the condition [A.II},0 is satisfied if and only if P;(z, £)

vanishes of order r — 2(m — j) on each intersection of any two hypersurfaces ¢, = 0,
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¢¢ = 0 near z° whenever r — 2(m — j) > 0. Even if the ¢;(z, £) are not smooth in (1.4),
j

we can show that (1.2) implies that

(1.5) L(p.o, (0,6))° N E(p.0) = {0},

where X(p,0) = {X € T,o(T*(R")); dp,o(X) = 0}. If 2° is a characteristic point of
order 2, or if p(z, €) can be smoothly factorized as (1.4), then the converse is also true
( see [8]). So one can conjecture that the condition (1.5) is necessary for (CP) to be

C°-well posed with arbitrary lower order terms P; satisfying [A.II},0.

The major part of the proof of Theorem 1.1 is devoted to the proof of Theorem
2.2 below. We now explain the basic ideas proving the microlocal a priori estimates
(2.1),0 in Theorem 2.2 for a fixed z°. To derive the microlocal a priori estimates we
consider Py(z, D) = e®(z, D)~ P(z, D)e”(z, D), where e* (2, D) is a pseudodifferential
~ operator with symbol eA(®¢), Here the Hamilton vector field Hy of A(z, €) satisfies

d
Hpy~ MY (t(z, ) + N|g|™) 2 H,,,

i=1

where M and N are large parameters and the ¢; (=, £) are the time functions in [A.II],o.

The conjugated operator Py(z, D) admits the following expansion:

m

Pu(,6) ~ Y (iHAY pl2,6)/i1+ - .

ji=0

To estimate the norm of Pyu from below, following the classical idea attributed to

Leray [12] and Garding [3] we separate Py by Q(z, D) and estimate
(1.6) Im (Pp(z, D)u, Q(z, D)u)r2 = (S(z, D)u, u)Le,

where S(z, D) = (2i)"'(Q* Po— P} Q) and (f, g) .2 denotes the inner product of L?(R").
A desired Q(z,§) is given by

Qz,&) = [H|"'H Y _(iHA) p(z,8)/3",
| P

where H = ({(€)1VeA(z, €), =V A(z, €)) and (€), = (h2+|¢|?)1/2. From the conditions
[A.IT],0 and [A.III];o.and microhyperbolicity for p(z,€) with respect to —H,, ( see
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[16]), S(z,£) becomes a ”weight” in the sense of Hormander [4] and S(z, §) — So(z,€) €
S(NM~2%5y,g), where a suitable metric g associates with the ¢j(z,£) and Sp(z,§) is
the principal part of S(z,£). Then, if we can choose NM~2 < 1, constructing an
inverse of S(z, D), we can show that (1.6) is bounded from below by “u”%{(m_l),g(R,,).
Then P, satisfies the microlocal a priori estimates and, therefore, P also does. From

the microlocal a priori estimates we can prove Theorem 1.1, following the idea of the

proof of Theorem 1.5 in [9].

In our argument, under the restriction that NM~? < 1, we must construct an

inverse of the pseudodifferential operator with symbol

d
M8~ T (5 (=, €718 + M)V + 15(=, €)M,
j=1

In [10] we consider the cases where the t;(z,£) are in involution. If the t;(z, ) are not
in involution, we have serious difficulties in this construction, since e?(z, D) is a pseu-
dodifferential operator of type 1/2, 1/2 with two large parameters. This construction

is essential in proving Theorem 1.1, which will be given in §3.

2. Proof of Theorem 1.1

In this section we shall give an outline of the proof of Theorem 1.1 from the

microlocal a priori estimates ( see Theorem 2.2 below).

Let © be a bounded domain in R”. Denote Q4 =QN{z; >0} and Q4 5 ={z €
R"; dis(z,Q4) < 6} for 6 > 0. Let 6 > 0 and choose R > 0 so that Q4 25 C {|z| < R}.
Moreover, choose gs(z) € C*(R") and xg,s(z) € C°(R"; R") such that ps(z) =1
in Q45 and s = 0 in the complement of Q4 25 and xrs(z) = z in {|z|] < R} and
= Rz/|z| in {|z| > R+ 6}. For P(z,£) = 34 1<m @a(2)€* we define

P(z,6) =(1 = (1 - ¢5(2))*1€'(9/06:))™ " Y aalxrs(=))E"

|a]=m

+o52(2) 3 aala)E.

laj<m
We denote by p(z, €) the principal part of P. Then we have the following

Proposition 2.1. Assume that P(z,£) satisfies [A.I], [A.Il],0 and [A.III},o.
Then, (i) P(z,€) = P(x,€) forz € Q4 572, (i) the coeflicients of P belong to B*(R")
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and p(z, €) is strictly hyperbolic with respect to § = (1,0,.--,0) in the complement of
Q4.25, and (i) P(z,£) satisfies [A.1], [A.I1],0 and [A.II1],0.

Let 20 = (22,£%) € T*(R") be fixed so that |€°] = 1 and dp(z°) = 0. We use
the following notations: (i) Py(z,D) = P(z,D —i46) for v > 0 and § = (1,0,--- ,0) €
R", (ii) t1(z,£) € B=(T*(R")\0), positively homogeneous in & of degree 0, satis-
fying t1(z,€) = (2, — 29) + |z — 2°2 + [¢/¢] — €°]? in a conic neighborhdod of
2%, (iil) O(t) € CP(R) satisfying 0 < O(t) < 1 and O(t) = 1 for |t/ < 1 and
O(t) = 0 for |t| > 2, (iv) ©4(€) = O(|¢]/R) for h > 0, (v) pi(z,£) € C=(T*(R")\0)
(i = 1,2) being positively hombgeneous in £ of degree 0, (vi) ¢;n(z,€8) = (1 —
On/2(€))pi(z, £), (vii) {(x) satisfying V((z) € B*(R") and ((z) = 9. (z —z°) +k|z —
- 2°|? near 2° for fixed z° € R™, k > 0 and 6° € T'(p(2%,),9), (vii) P(z, D;v)u(z) =
eV P(z, D)(*Pu(a)), (ix) (€} = (A + [§])/? for b > 0, (x) Ax(z,€) =
At ap(2,8) = {(ats(z,€) — b)log(&)h}cpzh/g(m,f) for a > 1 and b € R, and (xi)
Poa,(z,D) = e 2#(z, D)P,(z,D)e?r+(z, D), P (z,D;7) = e‘Ai(z,D)P(z, D; )
x e2%(z, D), where e*#(z, D) are pseudodifferential operators with symbols e2+(:€),

Similarly, we define I~’(a:, D;«), --- and so on.
'~ We begin with the microlocal a prior: estimates for P at 2°.

Theorem 2.2. Let 29 = (2°,£°) with |£°] = 1 be a multiple characteristic point
of p. Assume that P(z,D) satisfies [A.I], [A.I],0 and [A.Ill],o. Then there are conic
neighborhoods U; and U, of 2% ¢i(z,€) € C®(T*(R")\0) (i = 1,2) and {; € R
(7=1,2,3) such that supp @s CC U3, pi(z,€) =11in U, and for any a > 1 andb € R
there are v9 > 1 and C > 0 satisfying

(2.1):0 (D) vllzs < C{IKD)S Pa, (2, Div)vlla + KDY (1 = @i,n(z, D))ollze}

ifve CP(R™) and h =+ > . |

An outline of the proof of this theorem will be given in §4. The inequality (2.1),0
is called the microlocal e prior: estimate for P. We can also obtain the microlocal
a prior: estimates with Ay replaced by A_ for tP. From Theorem 2.2 we have the

following

Lemma 2.3 ( Lemma 3.1 in [9]). There is ¢(z) € Cg°(R") such that ¢(z) =1
near z° and for any s > 0 there are £ ,Zi’ € R satisfying the following; for any £ € R
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there are 49 > 1 and C > 0 such that

DY, e(@)ulls < CLIKDYSH x(=1) Bz, D; v)ullee |
+ (DY, ullza + KDY x(21)@2n( D)ull 2}

if u € CP(R™), supp u C {21 > 27 — 8} and h = v > 7o, where x(z1) = O((z1 —
z)/(380)).

Let Qo be a bounded domain in R™ such that V¢(z) € I'(#(z,),8) for = € Q.
Using ellipticity of ﬁ(z,f; v) for z € Qo and £ € R with [(] < Cv, we have the
following ;

Lemma 2.4. For any t € R and 8y > 0 there is 6y > 0 such that for any s > 0

there is ' € R satisfying the following; for any £ € R there are v > 1 and C > 0 such
that » |

(DY, 755 (21 — )ullza < CLDYS 750 (21 — ) P(z, D5 y)ullza + (D)5 *ullz2}

ifu € C(Qo N{z1 >t —68}) and v > 7o, where 15:(z1) = O(2z1/8').

In particular, Lemma 2.4 gives a Carleman estimate for }3(2:, D). Therefore, we

have the following

Theorem 2.5 ( Theorem 1.2 in [9]). Assume that P satisfies [A.I}, [A.Il],0 and
[A.II1),0 for any multiple characteristic point z° of p. Then for any z° € R" there is
a neighborhood Uy of 2° such that z° ¢supp u if u € D', supp PunV =0 and supp
un {z € 8V; {(z) < ¢(2°)} = 0 for some neighborhood V of 2° with V @ Uy.

The method of sweeping out due to John [7] proves the following uniqueness
theorem, noting that f&;; N{z, >t} is bounded for each z € R" and t € R, where I?f
denote the generalized flows issuing from z for P ( see, e.g., [12], [16] and [17]).

Theorem 2.6. Assume that the bypoiheses'of Theorem 2.5 are fulfilled. Let
z° € R” andt € R. Then z° ¢supp u if u € D', supp u C {z; >t} and Pu = 0 near
K.

Note that —6 € I'(p(z,-), —0) for z € R". By Theorem 2.2 we obtain the microlo-

cal a priori estimates with A, replaced by A_ for tp. Applying the same argument as
in the proof of Lemma 2.4, we can see that for any £ € R and 8, > 0 there is 65 > 0
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such that for any s > 0 there is £ € R satisfying the following; for any £ € R there are
Y > 1 and C > 0 such that '

(DY 75y (21 = t)ulla
< C{I{DYsH rs (21 — 1) P(2, D + iv6)ulls + [[{ D)5 *ullz2}
ifu € CP(N{z1 <t+68}) and v > . Define

llll+7,(m,0) = IE{|{DYT(DVU|l; Ulx = uand U € Hm,o)(R")},

where X = {z € R"; 2; > —66}. By the same argument as in [9] we can see that there

is # € R such that for any £ € R there are 79 > 1 and C > 0 satisfying

lull+,3,0) < CUI*Pl=, D+ iv8)ull4,1,(e+e0,0) + I P(@, D + iv8)ull 4,4, (0,641 }

if u € C§(2) and v > v9. By the Hahn-Banach theorem and Theorem 2.6 we can
prove Theorem 1.1. For the detail of the proof we refer to [11].

3. Construction of the inverse of e*(z, D)

Let tx(z,€) ( 1 < k < d) be real valued bounded mesurable functions in R*"
satisfying |

(3.1) te(z + 4, € +1) — a2, )] < CLlyl + 1€17 nl}

for (,€), (y,n) € R* and |n] < [€]/2. Put ti (2, €) = (1-On(€))te(2,€) (1 < k < d),
where ©4(€) was given in §2. Then t; j, satsifies ‘

[te,n(z + 9, €+ 1) —tin(z, ) < C{lyl + (€); " Inl}

for (z,£),(y,n) € R?™, where (£) = (h? + |¢2)1/2 . Put, with parameters h > 1 and
N >d,

nk(w,ﬁ) = {tk,h(m>€)2(£>h + N}1/21 Tk(zyg) = nk(xig) + tk,h(xa 6)(6)};/21
or(2,6) = ()7 Pnr(2,6), Wi(2,6) = o(z, E)(E)n,
d
e(2,0)7 = ei(e, &7, Uz, €) = o(=, E)(E,
k=1

90y (W, 1) = @(2,6) |y + ¥(z, )7 ?|n]?,
9.6y m) = ¥(2, )yl + o(2,€)[n|>.
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Following [4] we say that a positive real valued function m(z,£) defined in R is g

continuous, if there are positive constants cg and C such that if g, ¢)(y,7) < co
(32) C™'m(z,€) < m(z +y,€+1) < Cm(z,§),

and that a g continuous function m(z,£) is o,g temperate, if there are C > 0 and

£ € R such that ,

m(z +y,€ +n) < Cm(z,&)(1+ g{ ¢ (3, m))"
for (z,£), (y,n) € R?". For simplicity we denote A ~ B if A/B and B/A are bounded.
For example m(z+y,{+n) ~ m(z,€) means (3.2). By giving a series of lemmas without

proof we want to show an outline of the construction of the inverse of e*(z, D). For

the detail of the proof we refer to [11].
Lemma 3.1. Assume that (3.1) is valid and h > N > d. Then (£), and ni(z,§)

are o, g temperate.

It follows from Lemma 3.1 that ¢r , ¥i, ¢ and ¥ are 0,9 temperate. Hence we

have the following

Lemma 3.2. Assume that (3.1) is valid and h > N > d. Then the metric
9(z,6)(y, m) is o temperate.
Lemma 3.3. Assume that (3.1) is valid and h > N > d. Then, (i)

oz +y, £+ )" < Co(z,6) {1+ N2g0, (v, m)}/*
for (z,€), (y,n) € R>™. (ii)
oz +y,€+1) < Colz, {1+ N2, o (y,m)}'/?

for (z,€), (y,n) € R*™. (iii) ¥ also satisfies (i) and (ii), replacing ¢ by V.
Lemma 3.4. Assume that (3.1) is valid and h > N > d. Then Ty(z,£) =
np(z, &) + tk’h(m,f)(g)}‘/z (1 <k < d) are 0, g temperate and satisfy

Te(z +y,€ + m)*' < CTi(2, &) (1 + N72g¢, ¢ (v, )

for (z,£), (y,n) € R*".
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We have to approximate ¢ and ¥ by functions in some Gevrey class. Let p(z) be

a function in C§°(R?") satisfying p(z) > 0, p(z) = 0 for |z| > co, [ p(z)dz =1 and
|D2p(2)| < CAl|a|!*  for z € R™,
where £ > 1 and A > 0. Define
3(2,€) |
= [ [ ot = wptwm™ (€ = 0¥ ) )0l myn,

¥(z,£)
- / / o((z — 9)e(y, )", (€ — 1) ¥(y, )~ )(@¥)(y, 7)™ ¥ (y, n)dydn,

T(=,¢)
= //p((ﬂ»‘ ~ 932,67, (€~ n)¥(z, ) @) (2, )" T(y, n)dydn,
where T(y, n) = szl Tr(y, n)-
Lemma 3.5. There is a positve constant C such that (i) C~1¢(z,£) < p(=,€) <

Co(2,€), C~1U(z,€) < ¥(2,£) < C¥(2,£), and C1T(z,£) < T(2,£) < CT(z,¢) for
(z,€) € R”. (ii)

155)(2, 6)1/3(2,€) + [¥(3) (2, 1/ ¥(2, &) + |5 (=, &)1/ (=, )
< CletblH o 4 Bltmo(z, £) 1P E (2, £) 71

for (z,€¢) € R?™. (iii) » and ¥ satisfy (i), (ii) and (iii) in Lemma 3.3, replacing ¢ and
V¥ by ¢ and \AI'I, respectively.

We note that it follows from Lemma 3.4 and (i) of Lemma 3.5 that T is 0, ¢
temperate. For M > 0 we define

(3.4) Az, &) = A(z,§; M, N, h) = Mlog T'(z,§), |
where T' is given in (3.3). Denote
wg(A;2,8) = e_A(‘”’E)DfBgeA(:”’E).

Then we have the following
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Lemma 3.6. There is a positive constant C, independent of M and N, such that
(1)
AL (2, €)] < MCIo+P+ o 1 Blt= (2, £) 1Pl (=, €)7o

for (z,€) € R*™ and |a + 8| > 1, and (ii)
la+8] . ‘
D307 wg (A;,6)] < C(Co™)PHl(Cut)letrl S 7 (CM)I=+P173 |y + 6] + )"
j=0
for (z,€) € R?™.

We obtain from (ii) of Lemma 3.6

(3.5) |DiOJwg(A;z,€)| < ClatAtrtiltlly 4 5|15 (|a + BI* + M)l=+Al
x (2, &) P+ (z, &)~ lat1l for (2,€) € R™,

noting that M1*+A1= (Jy+ 6|+ j)!* < C{a+ﬂl+h+5‘h+6|!"(j'°+M)"'+ﬂ| for j < |a+8).
Following [4], for a positive function m(z, 5) and the metric g = ¢~ 2|dz|? + ¥~2|d¢|?
we define the symbol class S(m,g) of pseudodifferential operators by the set of all
a(z,£) € C*(R®") satisfying

|a{5) (2, €)| < Capm(z, E)¢(z, €)1 (2, €)1 for (z,€) € R™".

Denote by e®(z, D) the pseudodifferential operator whose symbol is eA#¢) and by

Re=A(z, D) the reversed operator of e~A(z, D), i.e.,

Re=A(z, D)u(z) = (2m)™" //e"(z—y)-f—/\(y,f)u(y)dydg4
for u € C8°(R"). Put ¢(z, D) = Be~A(z, D)e?(z, D). Then we can express

oz, €) = (21r)—nos_//e-—-iyAn—A(:v+y,£+n)+A(:v+y,€)dydn,
where os- [ [ meané an oscillatory integral. By Taylor’s expansion we have

(3.6) DJ0Yq(z,€) = > DIP8]w*(—A;z,€)/a! + DO} qu(z, ),

jaj<t
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where w*(—A;z,€) = eA(”’f)agfe—A(r,E) and
(3.7)
4%(“’ £) = D3] qu(=, )

wf [ g

fal=t

x / €1 —6) "1 DgtP 3] {eh (9 e™2) }dydnds,
0

1
s-//e"”'" / (1- H)I’IeAl"A“wzﬂ(z + y, &, 6n)dydndd,
O .
where Ay = A(z + y,€), A2 = A(z +y,€ + 0n) and

(3.8) wig(z +,€,0m) =LY ottt M DIHEaY (M (BFe 7)),
|aj=¢

2 5, ()0)

|al=t v'<v,8'<a+8

X wh(Asz +y, )wii 3 % (—Asz + y, £+ 7).

Denote

91 =96+1,0(0,1), p1=9e(z+y,E), p2=p(z+y+0n),
¥, = ‘I’(.’E + Y, £)> v, = ‘I,(m +, E + 07’)) “"g(Al) = ‘*’g(A}m +y, £)>
| wi(=A2) = W (~A;z +y, & + On).
Then we have the following
Lemma 3.7. There are C > 0 and c¢g > 0, independent of N and‘ M, such that |
. (39) |D6 aP wz,g(m‘*'y,ﬁ:g’?)!
< C|ﬂ+'7|+|6+p|+1(|ﬂ +|+ 16+ pl)!“gal_lﬂl_lal‘I’l_h‘_lpl{CM%_lN_l}l,
for £ =M if g1 < cp.
By virtue of (3.5), noting that ¢¥ > c¢N, we can estimate w*(—A) in (3.6) as
follows:
(3.10) |D5 8] Dgw*(—A)| /o
< at"teh+8+el|y 4 g4 ot (Jalf + M)llp-l8+alg=latr]
< CIPF g 4+ 41 {]af 1) 4 fa] Aol Py bl
< C’I”ﬂlh + Bl {Cy M1 N1} el =18l g=l
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for |a| < £ = M. Let us prove that
(1) gk (@, )| < Cap{CM>* I N~ o1l glel

for £ = M, where Cyp is independent of M and N, and C is independent of M, N, «
and 8. Let x(t) be in C°(R) such that x(t) =1 for [t| < 1/2 and x(t) = 0 for |¢| > 1,
and |

|Dix(t)| < CA'j*™  for any j and t € R,

where A > 0. In brief we denote

=(m+y)£)’ Z2=($+y,5+977),
Y = <p(zi)1 ¥, = ‘I’(Zi)) 5.‘ = S’B(Zi)) {I;i = ‘i(zi) ( i= 1’2))
x1 = x(eg ¥ (z1) 2 [nf?).

Then we can write from (3.7)

(312) gy (2, €) = (2m)" /// '”"x1(1 0)~t e A2y, dydnds
+(2m)7" /// "””(1_x1)(1_e)“1 M—ha b dydndf = 1) + I,

where wjy = wps(= + y, &, 0n) is given in (3.8).

Lemma 3.8. There is C > 0 such that

|Dfogx] < CletP o 4 gltpr Plurlel,

Now we shall estimate I; in (3.12). Noting that ¢; ~ g, ¥1 ~ ¥y, ehi—A < OM

and |n| < (€)x/2 on supp x1, we can estimate, by use of (3.5), (3.9) and (ii) of Lemma
3.3,

(3.13)
(82 {e™ "M x1w)s(z + 3, €, 0m)}|

P\ s ar AieAarapp!
<3 (2)1605 M0y (e + 6
Py

< Z (,f,) M\ (|p'|" + M)PIClP=o+8471p — g 4 B4 4|t

(CMZIc 1N l)l Iﬂl‘I’ v+l
< Ol 4 Bt At (CL M2 N )T Pl T lot]
< Copy(CLMP AN TPl =I(1 4 g7 (3, 0)) 0471/
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for £= M. Since g7, (¥,0) = ¥2|y|2, we can estimate from (3.13)

1
(3.14) 1| =|(27)~" / / / (1 — 6)-1(1 — W2A, )P
0
x [(14 ¥3|yl*) P {x1e* " **w]s(z + y, £, 6n) } dydndo)|
<Cpp+ {CM%—lN—-l}lgo—lﬁl\I,_—hl ,

x / / / (1 + W2|y )P +8+ V2 dydndp
suppxi

for p > |3+ v|/2. Since |n| < C¥; on supp x1, taking account of Lemma 3.3 we get
/// 1+ \Ilﬂy|2)—"+lﬂ+"’|/2dydnd0
suppx1
<C, [+ gy iy

< Cop /{1 + W2|y|2(1 + N~292|y|2)-1}-PpHlE+1/2
(14 N dy
S Cl /(1 + ‘I"yl)—p+lﬂ+‘7|/2+n‘l,ndy S Cz,

if we choose p > |8+ v|/2 + 2n + 1. Thus we obain from (3.14)
1| < Cpy(CM2* N~V lBlg=1l for =M.

Next we shall estimate I in (3.12). From (3.7) and (3.8) we can write

(315)  (1=x))eh T, =03 al7 (1 = x)fet (M) )T,
a={
- o+ ﬂ Y '
=£) ot Y ( L )( ,)(1 = x1)(e™)a
lal=t  p'<atp’<y i
—Azy(a+y=7")
X (€7 ) ars-pry

where w((g)) denotes D? O w(z, €). For simplicity we put
r o= (1 _ Xl)(eAl)(‘Y ) ry = (e—Ag)(a+"{—'Y )

8’y (a+8-8")"

Then it follows from (3.5) and Lemma 3.8 that

(3.16) |D30211| < Cppinr CM{C(6]" + M)}l A o 1P +el g 4ol
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Similarly, we can estimate
(3.17) | D202ry| < Cppy CM{C(|2a + 8| + M) }20¥8le= A2 o7 latF=F4 8l g tlota=a4ol,

Therefore, we obtain from (3.15)-(3.17)

II) = |(22)~ / / / {1~ 01 (1 — x1) e Aaw, dydndd)

= I(27r)’"///0 e™ V0| T2 AL [{(1 - 6) (1 — x1)et A2}
X wzﬂ]dydndﬂl

eyt () (1) et

la|=t B'<a+B,v'<~ |6|:s

<3 (G [ [ era-viapas et

§'<26
x {(1 = x1)(e™)F) hon (e )t a—p ) heas—s) (1 — 8)* " dydndb).

By (3.16) and (3.17), a simple calculation yields

(1 —W2A,)P (1 + ©2|y|?)~?|n| =22 DE 1 D251y
< Cpp CM{C((|120] + 25)" + M)}221+25(1 4 W2|y|?) 7P (1 + ¥, /W,) %

Ar=Ag| =28, —|8'+8' | g=h'l _—la+B-B'+26-8'| g—latv—7]
x e 1T | T g L2 ¥, ]

where ' < a+ 8, < v, § <26 and |§] = s, since |5]? > co¥?/2 on supp (1 — x1)-
Ai-A -2 Md —

It follows from Lemma 3.4 that e1=42 < {C(1 4+ N~%¢7)}"?¢, where g7 = g7 (0, 7).
Therefore, by Lemma 3.3 we have

eAl—-A;(pl—lﬂ'+'5"\I,l-l’v'l(pz-|a+/3"ﬂ'+26‘5'|‘1,2—|0+’7—’Y'|(1 + ‘1’1/\112)21)

< Cl2a+ﬂ—ﬂ’+26—6’+1—7’I+Md+p(p;|a+/3|—28‘1,1—|°t+‘7|

x (14 N—2g¢1r)(|2a+ﬂ—ﬂ’+w—1'|+2a)/4+Md+p/2
< Cpﬂ’yci’+M{]- + N-—-2giy}(2l+2a+|ﬂ+'7|)/4+Md+p/2(¢1\Pl)—l¢;2a¢~|ﬂ|‘I’—I’y|

X {1+ N2, 00 O,

where ' < a+f,9 <+, 8 <26, |a| =€ =M and |§| = s. Noting that

97 = ¢ilnl* = (¢1¥1)g1 > cod®N?/2 for g1 > co/2,
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we have by virtue of Lemma 3.3

12| < Cpﬂ”IC§+MM2’°(’+M)/// 1+ ‘I’flyl?‘)"’
supp(l—x1)
X (‘Pll’?l)"z’{N'2gif}(2t+|ﬁ+w|+2a)/4+Mdp/2
x oI (o 01) ™4 (1 + By |) P+ 2 dydnds

< Cppy CLN~(2emn=1)=L pr2(s+M) =18l g~bl

if we choose p > |y+B|2+n+1 and 2Md+p+|y+B|/2+L+n+1} < s < CM+|B+1].
In fact, noting that (1 + ¥1|y|)~! < C(1 + ¥,|y|)(1 + ¥|y|)~!, Lemma 3.3 yields

f// S /2(1+‘I’%Iy|2)_p(¢1lﬂ|)~(n+1)(1+\Ill|y|)lﬁ+vldydnd0

giZ2co

< Cpy ///(1 + Uly) " 1 + @|n]) (1 + Uy y|) 2Rt 2t gy dy
< Cay //(1 + ¥ly|)™"" (1 + @lnl) """V dydn < C3,.

Choose s, N and ¢ so that
- N>M?>™¢ 2—¢>k,
(3.18) -
(2-¢)(2s—n—-1)>2ks+ M.
"Then we have
II2] < Cay(CMPIN )~ 1Bl
if
(3.19) 1<k<2

Note that we can choose € > 0 so that 0 < € < 2 — & if (3.19) is valid. Therefore, we
can choose s > 0 so that (3.18) is valid. Thus we have just proved (3.11). Moreover
if CM?*IN=1< 1, ie,0<e<3—2k1<k<3/2and M > 1, then from (3.6),
(3.10) and (3.11) we have the following

Proposition 3.9. Assumel < k< 3/2,0<e<3—2kandh>N>M?**>1
are valid. Then q(z, D) = Be~A(z, D)eA(z, D) satisfies

Ho(2,&) = 3 Drw(=Ajz, )alk)] < Cugy (M NHpVu=hl,
|a]<k
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for any' 'k > 0 with k < M, where w*(—A;z,§) = eA(”'E)(??e'A(“”’f) and Cypy Is
independent of M, N and h.

Repeating the same argment as in Proposition 3.9, we can prove the following

Proposition 3.10. Assume that the same conditions in Proposition 3.9 are
satisfied. Let m(z,£) be a positive function defined in T*(R"™) which is o, g temperate
and w(z,£) € S(m, g) satisfying

waf;))(w, Ol < m(z’g)Alaﬂ?Ila + ﬂ|!'°<p_|ﬁ|\1‘_|°‘| for (‘z,ﬁ) € R*™.
Denote k(z,€) = eA(x,E)w(z, ¢) and ¢(z, D) = Re~A(z, D)k(z, D). Then we have

Hale &)= Y DU (A2, €z, ) /al})]

lel<k
< Crgym(z, )M~ N"V)ro~lBlg=1l for any k with k < M,
where w*(A; z,€) = e‘A(”'f)ageA(”’f) and Cyg. is independent of M, N and h.

Now we can construct the inverse of e?(z, D). Put
J(z,D) = Re~?(2, D)e* (2, D) - I.
Then it follows from Proposition 3.9 that J(z, &) € S(1, g) satisfies
|7 (2, D)|lc(z2,L2) S CM* IN~ < CM* =3+ <1

ife <3—-2k,1<k<3/2, N> M?*¢and M > 1. Therefore {I + J(z, D)}~ =
Y reo(=J(x, D))* converges in £(L?, L?). Moreover it follows from Beals [2] that
(I + J(z, D))~ is a pseudodifferential operator with symbol in S(1, g). Thus we have

obtalned
(3.20) (e*(z, D))"t = (I + J(z, D)) 'Re~*(z, D)

which is also a pseudodifferntial operator with symbol in S(C(M)e=A(=%) g).

Let go = (Blog(€)n)*(|dz|? + (£);|d€[?) be a metric, where B > 1 is a pa-
rameter, and g = ¢~ 2|dz|> + ¥~2|d¢|? is the metric given in Lemma 3.3. In this
case H(z,€&) = Blog(€)p¥(z,£)~! < BAN-'h~2logh < 1 if h'/2(logh)~' > B.
Moreover (go + g)/2 ~ g and go/g§ < 1 are valid. Therefore it follows from [4] that
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a(a(m,D)b(z,D))(z,f) ‘e S(m1m2yg) for a € S(mlag) and b € S(m2)90)s where m

and m, are 0, g and o, go temperate, respectively.

For p(z,€) in S({E)7, 90) ( m € R) we define
(3.21) pa(z, D) = (e*(z, D))"'p(z, D)e*(z, D).
Then i£ follows from [4] that

(3.22) o(p(z, D)er(z, D))(,€) — D p'*(=,€)(e"™9)(ayal™?

la]<k
belongs to S(C(M, k)eA=:€) (S)T_klz(B log(¢)n)*, g), where C(M, k) is independent of
h and B.

Lemma 3.11. Let a(z,£) and b(z, &) be in S(mq,g) and S(ms, go) respectively.
Then

a(z, € = > (=1)lg( (“)zD)b(a)(z D))(z, &)/

le|<k
is in S(mymq(B log(f)h)k(ﬁ);k/z,g) for any integer k > 0.

Applying Lemma 3.11 to (eA(”’E))(a)p(“)(z, £), we see that

(3.23) P (2, ) (")) o

= > (-)Ple(kP(z, D)p(5) (2, D)/B!)(=, €)
[8l<t

s in S(C(M)eAu= (€3 log(E)1)", ), where ku(z, ) = (eM=0) . Since kP,
&) = G?Dg‘e/\(”rf) = eA= 6w (A; 2, €), it follows from Proposition 3.10 and (3.5) that

(324)  o(%e M=, D)kP) (2, D))(z,8) = Y DI{w(—A;z,E)wi(A;2,€)/+'}

vt

is in S(C(4,|e + B) (| + B|* + M)latBlo=lalw-18l(M25-1 N-1)¢ g) for any £ with
¢ < M, Moreover, noting that

o((I+J(2, D)) = I) = o(~J(z, D)(I + J(z, D)) € S(M*~'N", )
we get, from (3.20) and (3.24) with £ =1,

(3.25) - o((eMz, D)) P (2, D))(=, ) — wh(A; 2, €)
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in S(CupMI*+Plo=lalg=I8I pr2s-1 N =1 g). From (3.22), (3.23) and (3.25) we have the

following

Theorem 3.12. Assume that the same conditions in Proposition 3.9 are satisfied
and, moreover, that h'/?(logh)~! > B > 1 and N < M?*. Let p(z,£) be in S({€)7", g0)-
Then for pj(z, D) gi‘}en in (3.21) we can see that

(3.26) pa(z, &)= Y. pi5(,O)wli(z,¢)

Ja+B|<k

isin S(C(M, k)(Blog({)h)k(f);"_kn,g) for any k > 0, where w3(z,£) = 1 and
(3.27) wh(z,€) — (=A¢(2, )7 (~iAs(2,€))* /(!B

is in S(CagMla+blp=lalg=18I pr2e=1 N=1 o) for | + ] > 0.

4. Outline of the proof of Theorem 2.2

In this section we shall give an outline of the proof of Theorem 2.2. Let 20 =
(0, €°%) € T*(R") with |¢°] = 1 be a multiple characteristic point of p. We assume
that P(z, D) satisfies (i), (ii) and (iii) of Proposition 2.1. For simplicity we denote P
by P. Let r be the multiplicity of 2°, i.e., d’p(z°) = 0 for j < r — 1 and d"p(z°) # 0.

Following the notation in §2, we have

P(z, D; 7)u(z) = ¢ P(z, D)(e”* P u(z))

= 3 al@) X (&) en-w2002 ua),

Jal<m a'fa

where we write wa(7¢) = e D¢, Note that w,(7(¢) is a polynomial in v and its

principal part is (—iy(;)*. Therefore, we can write
(41) - P(z,&1) = D P(z,Ewa(r¢)/al,
‘ lal<m

where wo(7() — (—iv{z)™ is a polynomial in 7 of degree |a| — 1 whose coefficients are

in B®(R"). Since Ay(z,£) given in §2 satisfies

4G (@, )] < {C“"(“ +[b)log(€)n(€); ! for (2,6) € R*",

" Cap(alog(€)n + [B)(E);'™ if oo p/a(z,6) =1 and |+ | 2 1,
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we have eA+(#:8) € S(eh+ go), where go = {(a+|b|)log(£)h}2{|dz|2 (€)7%|d€|?}. More-
over wi(Ay;z,€) = e~ M= DEJEA+(=:0) belongs to S(Capf{(a + |b|)log(§)h}|°‘+’9|
X (&), 161 ,9o) and

Wh(At;2,6) = (=Ase)*(=ilts)’

is in S(Cag{(a+ |b]) log(€)s He+#1-1(£); 1!, go) for |a+ ] > 1. Put
Jy(z, D) = e~ M (z, D)e*+ (2, D) —

Then, J4(2,£) is in S({(a+ [b]) log{€)}2(€)7 ', 90). So we have ||J4(z, D)|lc(z2,12) < 1
if k > {(a+|b|) log }? and the symbol of (eA+(z, D))~ = (I+J4+(z, D))" le A+(z, D)
belongs to S(e™#+, go). On the other hand we have

(4.2) P(Ay,2,67) = Y. P)(2,&71)wha(z, )

. a8kt

is in S(C{E)T{(€)7 * (a+]b])(log(€)n)}, go) for any € > 0 and v < h, where P(A4, z, D;
v) = e*+(z, D)~ P(z, D; v)e?r+(z, D) and

wia(mag) - (_iA;x)a(—A+£)ﬂ/(a!,3!)' v

is in S(Cap{(a+1b]) log(€)s Ho+#1-1(6)7 1! go) for |a+f] > 1 and wlo(z, €) = 1. Thus
it follows from (4.1) and (4.2) that

(4.3) P(Ay, &7~ Y. Py, 8)@h(,6,7)

|a+8]<t

is in S(C(€)7{(€); (a + |b]) log(€) }*, go) for any £ > 0, where

(4.4) @h(2,€,7) — (=i7¢e — i) (=Ase)? /(1)

is in S(Cag {7+ (a+[8]) log(€)a }+#1=1();17!, go) for [ar+B| > 1 ( Cap is independent

of v and h) and @W3(z,€,v) = 1.

It suffices to show that P(A4,z, D;~) satisfies (2.1),0. Then we can see that
Pr,(z,D;v) = e+ (a, D)P(z, D; y)eM*(z, D) also satisfies (2.1),0.

From now on we choose parameters h, M, N, v, a and b such that h = 7,

N = M?*¢ >d, h'?/logh > a+ b, a > 1 and b € R, where 0 < ¢ < 3 — 2«
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and 1 < k < 3/2. Let tx(z,€) ( k = 1,---,d) be the time functions of p at z°
which appear in [A.Ill},0, and let A(z,£) be defined by (3.4). We conjugate again
P(Ay) = P(A4,z,D;) by e*(z, D). Then it follows from (3.26), (3.27) of Theorem
3.12, (4.3) and (4.4) that

(45) P(A;z,8) = Y. Po)(z, Ewi(z,8)
la+8]<t
is in S(C(M, a, b)(€)7 /> (log(€))", g) for any £ > 0, where P(A;z, D) = (e*(z, D))~
x P(A4,z,D;v)e?(z, D) and
46) (2,8 = wi(2,8) — (=76 — iAo — iAs)*(=Ase — A)’ /(1)
is in S(Cap M *N=V[{7y+ (a +[b]) log(&)a }p + M]lx+Flplelg-18l, g).
We deﬁné the principal part of P(A) = P(A;z, D) by

p(Az, &)= D a2, )(=ivCe — ihe — iA)(—Aye — Ag)?/(lBY),
fat+Bl<m+2

where p(z, £) is the principal part of P(z,£). Then we can write from (4.5) and (4.6)
P(A;z,8) =p(Asz,6)+ Y. pig)(2,6)0h(=,8)

0<|a+8|<m+2
m-—1 ’
+3 Y P\(,0wi(=,6) +r(z,8),
J=0 |a+Bl<m+2
where 7(z,€) € S(C(M,a,b){€)y" " (log(€))™*?, g) and wh(z,€) and pi(z,€) are
given in (4.6).
For ¢ = (y,1) € R™ we define
P60 = D pa(=,&(n)*(—y)?/(a!f).

Ja+Bl<m+2

Then we have
p(A, z, 5) = p(za 67 HA1)7
where A; = v((z) + A+ + A and Hy, = (A1¢, —A1z). We put
Q(z, &) =((E)|Ae)® + A1) M2
X Y (A1g;0/02; — Ao, 8/06)p(2, & O)le=Ha,

S(:l:, D) =(2i)—1{Q*(2:,D)P(A;:c, D) - P*(A; T, D)Q(z’ D)}’
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where we denote by Q* the adjoint operator of Q as (Qu,v)r2 = (u,@Q*v);2 for u
and v € C(R™). Taking ¥n(2,€) = (1 — ©4(6))$(z, £), where § € C=(T*(R™)) is

homogeneous in £ of degree 0 for |£| > 1 and % = 1 in a conic neighborhood of z°, we

can prove that there are ¢ > 0 and C > 0 such that

(47) (S(z, D)yu(z, D)o, ¥n(z, D)o)sa

> (DY D22, — CI(DYR TR (1 = n)v]|2a

for v € S. Then (2.1),0 easily follows from (4.7). We omit the proof of (4.7), since the

proof is not short and the method is similar to one used in [10]. For the proof of (4.7)

we refer to [11].

[1].

[2].

[3].

[4].

[5]-

[6].

[8].

[9]-

REFERENCES

M.D. Bronshtein, Smoothness of polynomials depending on parameters, Sibirsk.

Mat. Zh. 20 (1979), 493-509.

R. Beals, Weighted distribution spaces and pseudodifferential operators, J.
d’analyse Math. 39 (1981), 131-187.

L. Garding, Solution directe du probléme de Cauchy pour les equations hyper-
boliques, Coll. Int. CNRS, Nancy, 1956, 71-90.

L. Hormander, “The Analysis of Linear Partial Differential Operators III,”
Springer, Berlin-Heiderberg-New York-Tokyo, 1983. '

V. Ja. Ivrii and V. M. Petkov, Necessary conditions for the Cauchy problem for
non-strictly hyperbolic equations 1o be well posed, Uspehi Mat. Nauk 29 (1974),
3-68.

N. Iwasaki, The Cauchy problem for effectively hyperbolic equations (general case),
J. Math. Kyoto Univ. 25 (1985), 727-743.

. F. John, On linear partial differential equations with analytic coefficients, unique

continuation of data, Comm. Pure Appl. Math. 2 (1949), 209-254.

K. Kajitani and T. Nishitani, “The Hyperbolic Cauchy Problem,” Springer Lecture
Note in Math. 1505, 1991.

K. Kajitani and S. Wakabayashi, Microlocal a priori estimates and the Cauchy
problem I to appear. |



[10].

[13].

[14].

[15].

[16].

[17].

66

K. Kajitani and S. Wakabayashi, Microlocal a priori estimates and the Cauchy
problem II, to appear.

. K. Kajitani, S. Wakabayashi and T. Nishitani, The Cauchy problem for hyperbolic

operators of sirong type, to appear.

J. Leray, “Hyperbolic Differential Equations,” The Institute for Advanced Study,
Princeton, 1953.

S. Mizohata, Some remarks on the Cauchy problem, J. Math. Kyoto Univ. 1 (1961),
109-127.

T. Nishitani, Hyperbolic operators with symplectic multiple characteristics, J.

Math. Kyoto Univ. 29 (1989), 405-447.

T. Nishitani, Propagation of singularities for hyperbolic operators with transverse

propagation cone, Osaka J. Math. 27 (1990), 1-16.

S. Wakabayashi, Singularities of solutions of the Cauchy problem for symmetric
hyperbolic systems, Comm. in Partial Differential Equations 9 (1984), 1147-1177.

S. Wakabayashi, Generalized flows and their applications, Proc. NATO ASI on
Advances in Microlocal Analysis, Series C, D. Reidel (1986), 363—-384.



