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Introduction.

Recently, the notion of Fuchsian partial differenital equation of [BG] has been gen-
eralized to that of Fuchsian system of linear partial differential equations along a sub-
manifold of arbitrary codimension by Laurent and Monteiro Fernandes [LM]. (See also
[Osh2] for a little more restricted class of systems with regular singularities and their
boundary value problem.) Especially, it has been proved in [LM)] for Fuchsian systems
that any power series solution which converges with respect to the variables of Y and
formal with respect to the variable(s) normal to Y converges with respect to all the
variables. It is also known that the holonomic system with regular singularities in the
sense of Kashiwara and Kawai is Fuchsian along any submanifold (cf. [KK], [LM]).

Thus Fuchsian systems constitute a nice and substantially wide class of systems
containing many interesting examples (especially as holonomic systems). However, the
definition of Fuchsian system is rather abstract and it would be difficult to apply it
directly to a given system.

Suppose that a system of linear partial differential equations

M: Pu=.---=Pau=0

for an unkown function u in an open subset of C**! and a non-singular complex
analytic hypersurface Y are given. (For example, if M is holonomic, then we take
as Y an irreducible component of the “loci of singularities” of M.) Then, from the
computational point of view, we have the following basic problems about M:

A. Is M Fuchsian along Y?
B. If so, find the structure of the space of multi-valued analytic (or hyperfunction,
etc.) solutions of M around Y.

If the system M is Fuchsian, we can define its characteristic exponents as in the
case of ordinary differential equations, and the “boundary values” of (multi-valued)
analytic solutions of M, which are analytic functions on Y. (Boundary values can be
also defined for hyperfunction solutions (cf. [KO],[Osh1},[Osh2],[Oa]). However, in the
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present paper, we restrict ourselves to analytic solutions for the sake of simplicity.) -
Then a somewhat vague problem B reduces substantially to the more concrete one:

C. If M is Fuchsian along Y, compute its characteristic exponents and the sys-
tem of equations which their boundary values satisfy (i.e. the induced, or the
tangential system of M along Y).

The porpose of the present paper is to present algorithmic methods as pa.rtia.l but
effective answers to the problems A and C. More precisely, we first give an algorithmic
method, together with its theoretical foundation, that enables us to know whether
or not M is formally Fuchsian in our terminology. Then we describe procedures for
answering the problem C with the aid of the first method.

For this porpose, we introduce a new notion of Grobner basis for the ring of dif-
ferential operators with respect to a filtration of [K2] attached to the hypersurface
Y. ’

The method of Grobner basis was first introduced by Buchberger [Bul] for the
polynomial ring, and has been extended to various rings of differential operators by
several authors (e.g. [Ga],[C],[N],[Takl]). In particular, the singular loci and the rank
(i.e. the dimension of the solution space) of a holonomic system are efficiently computed
by using the Grébner basis algorithm for the ring of differential operators of polynomial
or rational function coefficients (cf. [Tak1], [Tak3]). The Grobner basis for the ring of
* differential operators with analytic coefficients, which is more directly. related to the
analytic theory of systems of differential equations, was studied in [C],[OS].

In the present paper, we introduce Grobner bases for rings of differential operators
with analytic or rational function coefficients. The analytic version, which we call the
FD-Grobner basis (F for filtration, and D for the ring of differential operators with
analytic coefficients), has a precise theoretical meaning concerning the local structure
of the system, but it would be difficult to carry out actual computation in case of more
than two variables. On the other hand, the rational version, which we call the F'R-
Grébner basis (R for the ring of differential operators with rational coefficients), has an
algebraic and global nature and is more suitable for actual computation by computers.
Furthermore, it is shown that an F' R-Grobner basis supplies complete information on
the precise local structure at a generic point of Y. (At a non-generic point, however,
the FD-Grobner basis is indispensable.) These Grébner bases are defined by a new
total order among (exponents of) monomials of differential operators, and the fact that
this order is not a well-order makes the situation slightly more complicated than in the
usual theory of Grébner basis.

Our methods are efficient enough for the computation (by using computer alge-
~ bra systems) of holonomic systems of two variables (possibly with additional several
parameters) such as those for Appell’s hypergeometric functions. We hope methods
presented here will serve as new tools for the concrete computation of special systems
with regular singularities of real research interest.

After the main part of the present work had been completed the author was informed
that Takayama [Tak4] proposed a different method (a kind of Hensel construction)
for solving the problem C with the porpose of ﬁndmg connection formulas of special
functions of several variables.

1. Fuchsian system of partial differential equations along a hypersurface.
Let (¢,z) = (¢, 21,...,Ty) be a coordinate system of the (n+1)-dimensional complex
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8 = (By,...,0n) with 8; = 8/0xz;. We write z® = 22 ... 22, 8,° = 8P ... 9P,
la| = a1 + --+ + a, for multi-indices a = (a1,...,a,), B = (B1,...,0n) € N with
N=1{0,1,2,...}.

1.1. Single Fuchsian partial differential equations.

Let us recall the definition of Fuchsian partial differential operator (or equation)
following Baouendi and Goulaouic [BG] (in fact, the definition here is slightly more
general than that given in [BG]). Let P = P(t,z, 8;,9;) be a linear partial differential
operator with holomorphic function coefficients defined on an neighborhood of p =
(0,z9). Then P is said to be a Fuchsian partial differential operator (and the equation
Py = 0 is said to be a Fuchsian partial differential equation) with respect to the
hypersurface Y = {t = 0} at p if there exist non-negative integers k, m such that P is
written in the form

Euclidean space X = C™*! (with n > 1) and we use the notation 8, = 8/0t and

m
P= ao(t, m)tlcatm + ZAj(t5 x,az)tmax{k—j,ﬂ}atm—j’

=1

where a(t, z) is a holomorphic function with ag(0, zp) # 0 and A;(¢,z,8;) is a differ-
ential operator of order at most j free from 9; satisfying

A;(0,2,8;) = aj(z) (aholomorphic function of z) for 1 < j < min{k,m}.

Then we call P a Fuchsian operator of type (k,m) (or of weight m — k following [BG]).
Fuchsian equation is also called equation with regular singularity in a weak sense by
Kashiwara and Oshima (|[KO], [Osh1]). S

The indicial polynomial of P at p is a polynomial

min{k,m}

a0(0,$0)0m+ Z aj(a;o)0(0— 1).(0—m+]+1)

i=1

in 8. And its zeros are called the characteristic exponents of P at p. Note that if
k < m, then there are m — k trivial characteristic exponents 0,...,m — k — 1.

These definitions are generalized to general hypersurface instead of t = 0. Let ¢(t, z)
be a holomorphic function defined on a neighborhood of p = (¢, zg) with ¢(p) = 0 and
dp(p) # 0. Then we can take a holomorphic local coordinate system (¢, ') around p
such that t’ = @(t,z). Then P is said to be a Fuchsian operator with respect to the
hypersurface ¢ = 0 if P satisfies the conditions above with (¢, x) replaced by (¢/,z’).
The characteristic exponents of P are also defined in the same way. It is easy to see that
the definition of Fuchsian operator and the characteristic exponents are well-defined,
i.e., independent of the choice of the local coordinate system.

The structure of the multi-valued analytic solutions of a Fuchsian equation was

determined by Tahara [Tah].

1.2. Fuchsian systems of partial differential equations.
In the present paper we consider the system of linear partial differential equations

M: Pu=.--=Pu=0
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for an unknown function u, where Pi,..., P, are linear partial differential operators
whose coefficients are holomorphic functlons on an open subset 2 of X = C"+1, (In
the sequel, we assume 0 € .)

To study systems of linear partial differential equations such as M, it is natural
to consider the ideal of differential operators generated by Pi,...,P;. For this por-
pose, let us denote by D the sheaf of rings of linear partial differential operators with
holomorphlc coefficients on X. Let Z be the sheaf of left ideals of D generated by
Pi,..., P ie.,

I=DP1+---+DP3.

Moreover, we can regard the system M as a coherent sheaf of D-modules D/Z (cf.
[K1]). Let Y be a non-singular complex analytic hypersurface in  and p be a point
of Y. Then the system M is called a Fuchsian system along Y at p after [LM] if there
exists an element (section) P of Z which is a Fuchsian operator with respect to Y at
p. We call such P a Fuchsian generator of the system M at p.

1.8. A filtration of Dy .and formally Fuchsian operators.

We denote by Dy the stalk of the sheaf D at the origin 0 € X. Put Y = {(¢,z) €
X |t =0}. The following arguments apply likewise to the stalk D, of D at p€ Y. An
element of Dy is a linear partial differential operator whose coeflicients are holomorphic
at 0; i.e. convergent power series of (t,z). An operator P € Dy is written in the form

11  P= Z a,,,ﬁ(t,m)at"azﬁ = Z a,,,,,,a,,gt"a:“at"amﬂ,
VZO,ﬂGN" V,[LZO,ﬂ,aEN"’ ’

where the sum is finite with respect to v and B. The order of P ord(P) is defined as
the maximum of v + |8| such that a, g(t, z) is non-zero as a power series.
We introduce a filtration {F, }mez of Dy as follows: For each integer m, put

Fm={P = Z a,,,,,,a,,,tﬂzaat"af €Dy | aupap=0if v—p>m}
I‘,V7a,ﬁ .
Then F,, is a C-subspace of Dy and satisfies

FaCFACRCACHR..., |JFn=D
meZ

For a nonzero P € Dy, its F-order ordp(P) is defined as the minimum integer m
satisfying P € F,,. If the F-order of the operator P written as (1.1) is m, then we put

G(P)=6m(P)= D tuuapt’z*8"8," € Dy

v—p=m

and call it the formal symbol of P after [LS]. (We put 6(0) = 0.)

The filtration defined above was introduced by Kashiwara [K2] and was used sys-
tematically with the formal symbol for the study of induced systems by Laurent and
Schapira [LS].

Lemma 1.1. For P,Q € Dy, we have 6(PQ) = 6(P)é(Q).
Note that in general, 6(Q)6(P) # 6(P)5(Q).
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Lemma 1.2. P € Dy is a Fuchsian operator with respect toY = {t = 0} at 0 if and
only if P satisfies the following two conditions (FC1) and (FC2):

(FC1) There exist non-negative integers k, m and holomorphic functions a;(z) with
ao(0) # 0 such that

min{k,m}

6(P) = Z a;(x)t*=39,™7,

3=0
(FC2) The order of 5(P) is equal to the order of P.

Definition 1.3. We call P a formally Fuchsian operator with respect to Y at 0 if P
satisfies the condition (FC1). The system M is said to be formally Fuchsian along Y
at 0 if there exists a formally Fuchsian operator P € 7 with respect to Y at 0.

The notion of formally Fuchsian system is a special case of that of “systéme elliptique
le long de Y” defined in [LS].

1.4. Characteristic exponents of a Fuchsian system.
Let Dy be the graded ring associated with the filtration {F,,}; i.e.,

ﬁo = @ fm/]:m—l-
meZ

Note that Dy is a non-commutative ring. Then the formal symbol induces a map
G =06m:Fm — Fm[Fm-1C 'ﬁo

for any integer m. ~
We shall define an injective ring homomorphism % of Dy into the ring

Dylo, 7,771 := P Dololr™,
meZL

where 7 and 6 are indeterminates and Dg[f] denotes the polynomial ring in 6 with
coefficients in the ring Dy = C{z}(9,) of differential operators in z with convergent
power series coefficients. We give a ring structure to Dj[0, 7,7] by

(P(8,z,0;)77) - (Q(8, z,0,)T*) := P(0 — k,x,0,)Q(0, z,d; )77 tF.
Any element P of 7T, := Fp, \ Fm—1 can be written uniquely in the form
P =t"™P(t8;,z, ;).
Then we put ¥(P) = P(6,z,8,)r™. This defines a map 9 : Fr,/Fm_1 — Dh[f]7™ for

each m. Moreover, it is easy to see that this 9 is injective for all m and bijective for
m < 0. Thus 9 defines an injective map of Dy into Dj[0, 7,77 }].
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Lemma 1.4. v : Dy — D§[0, 7,77 }] is an injective ring homomorphism.

Now assume the system M (as in Sect. 1.2) is Fuchsian along Y = {t = 0} at 0. (In
fact, it suffices to assume M is formally Fuchsian for the following definitions.) Let Z
be the stalk at 0 of the sheaf of left ideals T = DP; + --- + DF;. Let us define a left
ideal Zy of Dy[d, 7,771] by

. Io = €D 6m(To N Fum).

meEZ
Put
o418, 7,77 = @ Oplblr™ C Dylb, T, 777
meZ

with O = C{z} (the ring of convergent power series in z). Let J be the smallest left
ideal of O}[8, 7, 771] that contains ¥(Zy) N O}[8, 7,771] and put Jy (M, 0) = T NO}|4],
which is an ideal of the commutative ring Oy[f]. Then it is easy to see that J is
generated by Jy (M, 0) over O)[6, 7,7!]. Moreover we can easily verify

Lemma 1.5.
Jy(M,0) = {f(8,z) € Oyl6] | £(8,z)7™™ € ¥(Tp) N OY[f}r~™ for some m > 0}.

The ideal Jy (M, p) of O,[f] is defined likewise with 0 replaced by a pomt pofY,
where (’)’ denotes the ring of holomorphic functions in z at p.

Definition 1.6. For a point p of Y we call the set

ey(M,p) := {6 € C| f(8,p) = 0 for any f € Jy(M,p)}
the set of the characteristic exponents of M along Y at p.
Definition 1.7. We define another ideal Jy (M, p) of O,[6] by

Fr(M,p)={f € O,l0] | af € Jy(M,p) for some a € O,}.

Then we define the set of the strong characteristic exponents of M alongY at p €Y
by
éy(M,p) = {0 € C| f(6,p) = 0 for any f € Jy(M,p)}.

Lemma 1.8. Suppose that the system M is formally Fuchsian at 0. Then the ideal
Jv (M, 0) is generated by a polynomial f € Jy(M,0) monic in 6.
Example 1.9. Put n =1, £ = z; and let us consider the system
| N:  (t0y — a)(td; — byu = z(td; — a)u = 0
with distinct constants a,b € C. Then we have
Fr(N,0) = O4[6](8 — a) (6 — b) + Oy [Bla(6 — a),
Fr(N,0) = O)[6](6 — a)

and hence

ey(N,0) = {a,b}, &y (N,0) = {a}.

Note that any multi-valued analytic solution of A is in the form u = v(z)t* with v
holomorphic, whereas, in the real domain N has a distribution solution t$ + &(x)t}..
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1.5. Boundary value problem for Fuchsian systems.

Here we recall some known facts on the structure of analytic solutions of a Fuchsian
system. First, let us recall the notion of induced (tangential) system. Let M and Z be
as in Sect. 1.2. Then the induced (tangential) system My of M along Y = {t =0} is
the sheaf of D’-modules

My = M[tM =D/(tD + ),

where D' denotes the sheaf on Y of the ring of linear differential operators with holo-
morphic functions in = as coefficients. It is shown in [LM] that My is a coherent
D’-module if M is Fuchsian along Y. '

Theorem 1.10 ([LM, Théoréme 3.2.2]). Assume that the system M is Fuchsian
along Y. Then there exists a canonical sheaf isomorphism

Homp(M, O)|y =~ Homp (My,0'),

where O and O’ denote the sheaves of holomorphic functions in (t,z) and in x respec-
tively, and Hom the sheaf of homomorphisms.

Theorem 1.11. Assume that the system M is Fuchsian alongY at 0 and there exists
a Fuchsian operator P € Ty whose characteristic exponents 04, ... ,0,, are all constant
with multiplicity one. Assume also that 0; — 0; is not an integer for any i # j. Put
S={ie{1,...,m}|6; € éy(M,0)}. Then any (multi-valued) analytic solution u of
M on U \Y with U being a neighborhood of 0 € X can be written in the form

u= Z v;(t, z)t%
i€S
with holomorphic functions v; on a neighborhood of UNY.

2. FD-Grobner basis—precise and local algorithmic method.

In this section we develop the theory of FD-Grobner bases for left ideals of the
ring Dy of differential operators with analytic coefficients. Instead of Dy, the following
arguments apply also to the stalk D, of the sheaf D at p € Y = {(¢,z) | t = 0}.

Let < be a lexicographic order of N® with N := {0,1,2,...}. We define a total
order <pp of the set N2**+2, which we call the FD-order, as follows: For two indices
(#,v,a,B) and (¢, v',a/,0') € Nx N x N* x N?,

(“a Vv, a, :3) <FD (/J", V,’a', :3/) if and Only if (V -—p< v — ”I)

or (v—p=v' -y, Bl <I|B))

or (v—u=v -y, |B=|0| v<V)

or (v=Vv,pu=y,pB=<p)

oo (v=v,pu=y,B=0, o>

or (v=v,pu=p, =0, lo=|]|, a<d).

Let the FR-order <rg be the order of N**2 induced by <Frp; i.e., we define

(u,v,B8) <rr (W',v',B') if and only if (u,v,0,8) <rp (¢,V',0,08').
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It is easy to see that any subset of {(u,v, @, 8) € N*"*2 | y +|8| < m} has a maximum
element with respect to the F'D-order, and any subset of {(y, v, 8) € N**2 | v—py > m}
has a minimum element with respect to the F R-order for any m. (This definition of
the F D-order can be generalized to some extent, but we do not discuss this problem
here.) For an element P € Dy of the form

P= 3" Gupasts®0/0.7,
[TRN-NE}

we define the set of exponents, leading exponent, leading coefficient, leading term of P
with respect to the F' D-order by

expSFD(P) = {(l’t’ ’/’ a’ ﬂ) I au,V,Ol,ﬂ # 0}’
lexppp(P) = max rp(expspp(P)),
lcoefpp(P) = appap With (g, v, a,pB) :=lexppp(P),
ltermpp(P) = a“,u,a,ﬁt"waat”axﬂ with (g, v, @, B) := lexppp(P),
where max pp denotes the maximum with respect to the FD-order. (If P = 0,
then we put lexppp(P) = (00,0,0,0), and suppose (00,0,0,0) <pp (u,v,a,B) for
any (u,v,a,8) € N?*+2) Let m : N?»+2 — N"t2 be the projection defined by

7(p,v,a, B) = (u,v,5). Then through this projection, we also define the leading expo-
nent, leading coefficient and leading term of P with respect to the F R-order by

lexppr(P) = n(lexpgrp(P)),

lcoefFR(P_) = Z a’tlo,Vo,a,ﬁoma with (/1'0; VO&:BO) = 1eprR(P)’
aEN" '

ltermpr(P) = lcoef pr(P)tH°8,°0,”  with (uo, v, B0) := lexppg(P).

Moreover, for an exponent (u,v,) € N**+2 we set

CoefFR(-P,‘ (iu’7 V’ ﬂ)) = Z al‘i”iaiﬂxa'
a

Recall that the principal symbol of P (of order m) is defined by

om(P) = E Ay p,a,ptP TV TP
pEN,a€N" v+ |Bl=m

regarded as an element of the ring of the cohvergent power series C{t,7,z,£} with { =
(€1,...,&) and €P = &P ... £,P if P is of order < m. We also write o(P) = 0,,(P)
if P is precisely of order m. :

Lemma 2.1. For P, € Dy we have

lexppp(PQ) = lexppp(P) + lexprp(Q),
lcoefFD(PQ) = lcoefFD(P)lcoefFD(Q)>
lexppr(PQ) = lexppr(P) + lexprp(Q),
lcoef pr(PQ) = lcoef pr(P)lcoef pr(Q).
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Lemma 2.2. P € D, is formally Fuchsian along Y at 0 if and only if lexppp(P) =
(1,v,0,0) € Nx N x N* x N* with some u,v € N.

Lemma 2.3 (A division theorem). Let P and Py,..., P, be elements of Dy. Then
for any integer m, there exist elements Q1,...,Q, and R of Dy such that

L}
P=3 QPi+R,
=1
S
expspp(R) N U(IGXPFD(P ;) + N2 42) € Fo,
=1

lexppp(QiF;) XFD lexPFD(P )s leXPFD(R) =FD leXPFD(P )-

We denote such R, which is not necessarily unique, by redpp(P,{P1, ..., Ps},m).

Definition 2.4. Let Zy be a left ideal of Dy. Then a finite subset G = {P,..., Ps}
of Ty is called an FD-Grébner basis of Iy (along Y) if it satisfies the following two
conditions:

(1) G generates Iy, ie., Zgp = DoP1 + - - - + Do Ps.
(2) Put Erp(Zy) = {lexppp(P) | P € Zp}. Then we have

Erp(To) = | (lexppp(P) + N*"*2).
PEG :

Definition 2.5. For P,Q € Dy with

leprD(P) = (,‘l" Vaaaﬂ)a leXpFD(Q) = (/"’71’,’0",:3,))

the S-polynomial (or S-operator) of P and @ is defined by

sprp(P, Q) = lcoefF D(Q)tw"'_“at"v"""xaval__aazﬂvﬁ’—pp

—lcoefpp (P)t“v"'_“'ﬁt” V' = gava'—a' g BVB =B 'Q,
where we use the notation
vV :=max{y,V'}, aVa :=(max{o,ai},...,max{an,0y})

for v,v' e Nand a = (ay,...,05), & = (1,...,05) € N™.
Theorem 2.6. Let Iy be a left ideal of Dy and G = { P, ..., Ps} be a set of generators
of Iy. Then the following two conditions for G are equivalent:

(1) G is an FD-Grébner basis of 1.
(2) For anyi,j with1 <i < j < s and for any m € Z, there exist Q;j1,. .-, Qijs €
Dy and R;; € F,, such that

sprp(Pi Pj) =) QijiPe + Rij
k=1

with lexppp(Qijx Prx) <Fp lexppp(F;) Vlexppp(P;) for any k.
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Theorem 2.6 together with Lemma 2.3 enables us to give an algorithm to compute,
at least theoretically, an F' D-Grobner basis of a given left ideal of Dg.

Algorithm 2.7 (FD-Grébner basis). Given a finite set G of generators of a left ideal
Zo of Dy find an F D-Grobner basis of Zj.

m := min{ordp(P) | P € G};

m = G
REPEAT
Gm-1 = Gu;
m:=m—1;
REPEAT

FOR each pair (P, Q) of elements of G,, DO {
R :=redrp(sppp(P, Q), Gm,m);
IF R ¢ F,, THEN G,, := G,, U{R};
}
UNTIL redrp(sprp(P, Q), G, m) € Fyy, for any P,Q € Gp;
UNTIL G, becomes stationary, i.e. G, = G, for any u < m;
RETURN G,;

The output of this algorithm is indeed an F D-Grdbner basis by virtue of Theorem
2.6. The termination condition of this algorithm is fulfilled a priori in a finitely many
steps because of the Noetherian property of monoideals (or monomial ideals) generated
by the leading exponents of elements of Gy, (cf. [CLO, pp. 68-72]). However, at present,
we do not have a general criterion for the termination; i.e. we do not know when to
stop the algorithm. For a sufficient condition for the termination, see Proposition 3.8.

When n = 1, this computation can be actually performed by using a computer alge-
bra system if the given generators are operators with polynomial coefficients. However
for n > 1, the actual computation would be difficult because of the transcendental
nature of the so-called Weierstrass-Hironaka division employed in the proof of Lemma
2.3.

The F D-Grébner basis solves partially the problem A:

Theorem 2.8. Let M and I be as in Sect. 1.2 and let Iy be the stalk of the sheaf
Z at 0. Assume that G is an F D-Grobner basis of the left ideal T of Dy. Then M is
formally Fuchsian alongY = {(t,z) | t = 0} at 0 if and only if there exists P € G such
that lexppp(P) = (@, v,0,0) with some pu,v € N.

3. FR-Grobner basis—global algorithmic method.

In order to carry out actual computation, we introduce the ring Dp of differential
operators whose coefficients are formal power series of ¢ with rational functions of = as
coefficients: :

Dg := C(2)[[¢]|(8:, 82)

={P= Z p,0,8(2)t*0:" 85" | ay,p(z) is a rational function of z},
BB : '

where the sum is finite with respect to » and 8.
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For theoretical porpose, it is also useful to consider the ring Djs of differential
operators whose coefficients are formal power series of ¢ with meromorphic functions
in z as coefficients:

Das = K§[[t]](84,8) = {P = Y u,8(2)t"0:" 0. | api,0(2) € K},
uv,B

where Kj, denotes the quotient field of the ring O; of germs of holomorphic functions

in z at 0. More generally, we can take any intermediate field lying between C(z) and

K§. The following definitions and arguments apply also to such cases instead of Dg.
For an operator P € Dg of the form '

P=" a,.p(x)t"8"8,”,
BB
we define its leading exponent, leading term, leading coefficient (in the F'R-order) by
lexppg(P) = max pr{(k, v, B) | apup(z) # 0},
Icoefpr(P) = a,,p(xz) with (p,v,B) = lexppgr(P),
ltermpr(P) = a,,5(z)t*0:;“0;° with (u,v,B) = lexppp(P).
In the same way as Lemma, 2.1 we get

Lemma 3.1. For P,QQ € Dg we have

lexppr(PQ) = lexppg(P) +lexprp(Q),
lcoefFR(PQ) = lcoefFR(P)lcoefFR(Q).

Definition 3.2. Let I be a left ideal of Dg. Then a finite subset G = {P,...P,}
of Dp is said to be an FR-Grobner basis of I (along Y = {t = 0}) if it satisfies the
following two conditions:

(1) G generates I, i.e., I = DgrP; +---+ DgP,.
(2) Put Epg(l) := {lexppg(P) | P € I}. Then we have

Err(I) = Erg(G) := | (lexppr(P) + N"*2).
PEG

Definition 3.3. For P,Q € Dg with
lexppp(P) = (1,1, 8), lexppg(Q) = (¥',V',H'),
the S-polynomial (or the S-operator) of P and Q is defined by
SbFR(P , Q) := leoef pr(Q)tHVH —# 3t"v"l""j3zﬂ vE-Bp
— lcoef pp(P)tHVE —# gV = 9, AVF'=F' .

As in the previous section, we define a filtration of Dy by
Fmn={P = a,,p5(z)t"8:"8," € Dr| appp(z) =0if v — p>m}
TR

for any integer m (we use the same notation as for the filtration of Dy).
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Definition 3.4. Let G = {P,..., P,} be a finite subset of D and m be an arbitrary
integer. For an element P of Dp,

(1) P is said to be F,-reducible with respect to G if and only if

=1

lexprp(P) € (D(IexPFR(P‘i) + N"+2)) \ Fm.

P is said to be F,,-trreducible with respect to G if it is not F,,-reducible.
(2) Let P be F,,-reducible. Then an F,,-reduction step for P by G is a procedure
to replace P by

lCOefFR(P) —_ —vi o B—0;

— R T s v—vig B-Bi p.

lcoef FR (P,') at 9 P

with an arbitrary i € {1,...,s} such that lexppp(P) € lexppgr(P;) + N*+2,
where (u,v, 8) = lexppp(P) and (s, vi, B;) = lexppg(Fi).

(3) An F,,-reduction procedure for P by G is a sequence of F,,-reduction steps

so that its final output becomes F,,-irreducible.. We denote the output by

redrr(P, G, m) although it is not uniquely determined by P,G,m.

Note that a sequence of Fp,-reduction steps always terminates in a finitely many
steps because the F R-order defines a well-order on {(g,v,8) € N**2 | v — u > m}.

Definition 3.5. Let I be a left ideal of Dy and m be an integer. Then a finite subset
G = {P,... P,} of Dp is said to be a set of Fp,-generators of I if it satisfies the
following two conditions:

(1) G generates I, i.e.,
I=DgrP +---+DrF;,

(2) For any distinct ¢,j € {1,...,s}, the output of some Fp,-reduction procedure
for sp(P;, P;) by G belongs to Fp,.

‘Theorem 3.6. Let I be a left ideal of Dgr and G be a finite set of generators of 1.
Then the following three conditions are equivalent:

(1) G is an FR-Grébner basis of I.

(2) G is a set of Fp,-generators of I for any mteger m.

(3) For any P € I and any integer m, the output of an arbitrary F,,-reduction
procedure for P by G belongs to Fy,.

Algorithm 8.7 (F R-Grébner basis). Given a finite set G of generators of a left ideal I
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of Dg find an F R-Grobner basis of 1.

"m := min{ordr(P) | P € G};

G, = G;

REPEAT
Gp-1:= G
m:=m—1;
REPEAT

FOR each pair (P, Q) of elements of G,, DO {

R:= redFR(SpFR(P, Q), Gm,m)§
IF R ¢ F,, THEN G,, := G,, U {R};

UNTIL redpr(sprr(P, Q) Gm,m) € Fp, for any P,Q € Gp;
UNTIL G, becomes stationary, i.e. G,, = G, for any p < m;
RETURN G,;

The termination condition of Algorithm 3.7 is satisfied for some m, but we cannot
know when it is, in general. It is an open problem to obtain a general criterion for the
termination of this algorithm. A sufficient condition will be given in Proposition 3.8.

The output of Algorithm 3.7 is indeed an F R-Grobner basis in view of Thoerem
3.6. The computation of F,,-reduction procedure can be strictly carried out (e.g. by
a computer algebra system) with a general hypersurface Y that can be brought into a
hyperplane by a birational transformation of C*+1,

As will turn out in the next sections, it is often enough to find a (formally) Fuch-
sian operator among the ideal. Hence, in practice, it would be a good policy to stop
Algorithm 3.7 when G,, contains a (formally) Fuchsian operator. This makes much
wider the applicability of the algorithm.

I owe the following proposition to T. Shimoyama, which serves as a sufficient con-
dition to terminate the Algorithm 3.7.

Proposition 3.8. Let G = {P,...,P,} be a finite subset of Dp and let P be an
arbitrary element of Dg. Suppose, for some mg € Z, the output of some F,,-reduction
procedure for P by G is equal to a(t,z)P with some a(t,z) € C(z)[[t]] such that
a(0,z) = 0. Then for any m € Z, there exist Q1,...,Qs € Dgr and R € F,, such that

P=Q1Pi+"'+'QsPs+R

with lexppr(QrPx) 2Fr lexppg(P) for any k=1,...,s.

In the same way as was pointed out by Buchberger [Bu2] for the polynomial ring,
we can often save computation in Algorithm 3.7 by the following criterion:

Proposition 3.9. Let G be a finite subset of Dr and P, () be two distinct elements
of G. Assume that there exists a sequence {P,,,..., Py} of elements of G such that
(1) P1=Pa szQ:
(2) lexppgp(P1)V - Viexppp(Px) =lexppr(P) V lexprr(Q),
(3) redrr(sprr(Pj, Pj+1), G, m) belongs to Fy, by an Fy,-reduction procedure for
anymé€Zandj=0,...,k—1.
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Then, for any integet m, the output of some F,,-reduction procedure for sppr(P,Q) -
by G belongs to F,,.

Let us denote by A,41 = C[t, z](8;, 0,) the Weyl algebra, or the ring of differential
operators with polynomial coefficients (cf. Bjork (1979)) and by A,4+1 = C[z}[[t]}(8:, 8z)
the ring of differential operators whose coefficients are polynomials in x and formal
power series in .

For an operator P € Dpg, there exists a polynomial b(z) of least total degree such
that b(z)P € Ap+1 and we denote such b(z) by den(P) and call it the denominator of
P. The numerator num(P) of P is defined as b(z)P.

An FR-Grobner basis provides an FD-Grobner basis at a generic point of Y as
follows:

Theorem 3.10. Let Py,..., P, be elements of Ap41. Assume that G := {P,..., P}
is an F R-Grébner basis of the left ideal

I:=DgrPy+:--+ DgrP,
of Dp. Put
a(z) = lcoefpr(P1)(z) .. . lcoef pr(Ps)(z)

and assume a(zg) # 0. Put p = (0,z9). Then G is also an F D-Grébner basis of the
left ideal '
Zp:=DpPy + -+ DpPs
of Dy
Corollary 3.11. Let G = {P,,...,P,} be a subset of Ap41 and let

Gm={P1""’P.9’Ps+19'°')Pa'}

be the output of Algorithm 3.7 with the input G. Put lcoef pr(P;) = a;(z)/b;(x) with
polynomials a;(x),b;(x) relatively prime to each other. If a point (0,x¢) of Y satisfies
a1(zo) . ..as(zo) # 0, then G constitutes an F D-Grébner basis of the left ideal

I, =DpPi+ - -+ DyPs
of D,.

In the following application of F'R-Grobner bases, it is useful to introduce the notion
of minimal Grébner basis as for the polynomial ideals (cf. [CLO]):

Definition 3.12. Let G = {Py,..., Ps} be a finite subset of Dy and put I = DgP; +
«+++DprP,. Then G is called a minimal F R-Grébner basis of I if G is an F R-Grobner
basis of I and if, for any i € {1,..., s}, :

lexppp(F;) ¢ U(lexPF'R(P j) + Nt2),
J#i

It is easy to construct a minimal F'R-Grobner basis from the output of Algorithm
3.7 by Fp-reduction procedures. From the practical point of view, it would be more
efficient to add the F,,-reduction procedure for each P € G,, by G,, \ {P} in the inner
REPEAT-UNTIL loop of Algorithm 3.7.
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4. Computation of characteristic exponents.

We use the same notation as in Sect. 1. In particular, let Z be a left ideal of Dy
associated with a Fuchsian system M as in Sect. 1.2. We assume Y = {(t,z) | t = 0}.
In fact, we can treat any non-singlular complex analytic hypersurface Y for the (theo-
retical) coomputation of Algorithm 2.7. For the (practical) computation of Algorighm
3.6, we can treat any hypersurface Y that can be brought into the hyperplane ¢ = 0
by a birational transformation of C™+1.

Theorem 4.1. Assume that the system M is formally Fuchsian along Y at 0 with
P,...,P; € Dy. Let G be an F D-Grébner basis of Iy := Do Py + - - - + Do Ps. Put

G' ={P € G |lexppp(P) = (u,v,,0) | for some p,v € N and some o € N*}
Then the set of the characteristic exponents of M at 0 is given by
(4.1) ey(M,0) = {6 € C| ¥(6(P))(9,0) =0 for any P € G'}.

Moreover, let P be an element of G’ with minimum order with respect to 8;. Then
there exist a monic polynomial f(8,z) € Og[f] and a(z) € Op such that ¥(6(P)) =
a(z) f(6, z)7* with some k € Z, and the ideal Jy (M, 0) is generated by f. In particular
we have

év(M,0) = {0 € C| 1(6,0) = 0}.

On generic points, we can compute the characteristic exponents from an F'R-Grobner

basis. In fact, the following is an immediate consequence of Corollary 3.11 and Theorem
4.1.

Corollary 4.2. Under the same assumptions as in Corollary 3.11, put
S={ie{l,...,0}|lexppgr(P;) = (pi, vi,0) with some p;,v; € N}.

Among the set {P; | i € S}, let P;, have minimum degree with respect to 0; and set
¥(6(P;,)) = fip(0,2)7*. Then we have

JY(M,?) = jY(Map) = 01,3[0]f10 (0, (B)

5. Computation of the induced system.

Here we use the same notation as above and assume the system M (as in Sect 1.2.)
is formally Fuchsian along Y = {(t,z) | t = 0} at 0. We study the structure of the
induced system My = D/(Z + tD) of M along Y. The induced system is a system
which the restriction to Y of the holomorphic solutions of M satisfy. Our porpose
is to determine the structure of the stalk My of My at 0 € Y as a module over

i = C{z}(d;). We denote by u the modulo class of 1 € D in M = D/Z, and for
P € D, we denote by [Pu] the modulo class of P € D in My.
Let us begin with the following general result:
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Theorem 5.1. Assume M is formally Fuchsian along Y at 0 and
{keN|k>ky}Ney(M,0)=0

for some ko € N. Then My is generated by [Btj u] with 0 < j < ko—1 as a Dj-module.
In particular, we have My, =0 if kg = 0.

In view of this theorem, My represents the relations among the ristrictions
u(0, z), Byu(0, z), . .., 8% 1u(0, z)

of a holomorphic solution u(t,z) of M on a neighborhood of Y.

Now let us describe a practical method to compute the induced system My under
some moderate condition, which is always satisfied at a generic point of Y. (See [Tak2]
for a different general method not based on Theorem 5.1.)

Assume that the system M satisfies the same assumptions as in Theorem 5.1. Let
G be a finite set of generators of the left ideal Zy of Dy. We assume that there exists an
element Py of G such that ¥(6(P)) = f(8,z)777° and that f(k,0) # 0 for any integer
k > ko. (We may assume jo > 0.) In view of Corollary 4.2, this assumption is satisfied
if G satisfies the conditions of Theorem 3.10 at 0; i.e., if G consists of elements of A, 1
with lcoef mr(P)(0) # 0 for any P € G, and if G is an F R-Grobner basis of the ideal
which it generates over Dpg.

We define a Dj-homomorphism p : Dy — Dj[8;] as follows: Write P € Dy explicitly
as (1.1). Then we put |

p(P) =" 00.,a,p8°0:"8," € D}[0].
v,a,B -
For an element P of Dj[9;], its F-order v'= ord z(P) denotes the order of P with respect
to 0y and its formal symbol is of the form &(P) = A(z, 8,)0;” with some A € Dj. Let
us denote this A by coef(P,d;, v). '
By the proof of Theorem 5.1, we have, for any k > ko,

5(p(07* Ry)) = pr()d,*
with some pg(z) € C{z} such that p;(0) # 0.
Now for an arbitrary element P of Dg[0;], let us define another element ind(P, Pp)
of Dy[9;] by the following algorithm:
Algorithm 5.2.
INPUT P € Dy[d:);
WHILE v := ordp(P) > ko DO
P := P — (coef(P, 8;,v)/p,) p(8:7°F" Py);
RETURN P;
Put '
D)™ = @ Do’ c Dyl
0<k<ko—1
Then ind(:, Py) defines a Dj-homomorphism of Dj[8;] to D{,(k"). For an element QQ =
25l Qu(, 85)8:% of D)*) | we write
ko—1

[Qul =" Qu(z,8:)[0:*4] € D™

k=0
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Theorem 5.3. Under the assumptions above, there exists an integer jo > 0 such that
the induced system Myo is explicitly given by the system of equations for unknowns

[],. .., [0 u]

[ind(p(8¢’ P), Py)u] =0 for any P € G and any j =0,1,...,5

6. Examples of actual computation.

In the sequel we put n = 1 and use the notation 9, = 9/0z, 8, = 8/8y with
(z,y) € C? as well as (t,z) € C? as in the preceding sections.

As examples, we treat the systems for Appell’s hypergeometric functions of two
variables. We can verify that these systems are in fact Fuchsian along all the irreducible
components of their singular loci and can compute their characteristic exponents and
induced systems completely by using Algorithms 2.7, 3.7, 5.2.

Let us describe briefly the computation for the systems for Appell’s F3 and for Fy.
Maybe such facts have been known (at least implicitly) by using concrete expression
of their solutions (see e.g., [Tak3] for the systems for F;, Fz, F3). Note that in the
following computation we do not use any information on the concrete expression of the
solutions (power series or integral representation) in advance.

The following computation was carried out by using our implementation of Algo-
rithms 2.7, 3.7, 5.2 on a computer algebra system Risa/asir (cf. [NT}).

Ezample 6.1 (System for Appell’s F3). Let us consider the system Mj for Appell’
hypergeometric function F3 defined by
M3 . P31u = P32u = 0,

where

Py :=2(1 — 2)82 + y8:0, + {7 — (e + B + 1)z}8, — ap,
Py :=y(1 - y)aj + 10,0y + {r- (al + ﬂ' + 1)?/}33/ —-dp

with parameters a, o/, 8, ', € C. (We assume these parameters take generic values.)
By the Grobner basis algorithm for the ring of differential operators with polynomial
(or rational function) coefficients, we know that M3 is a holonomic system of rank 4
and its singular loci are defined by zy(z — 1)(y — 1)(zy — —y — 1) = 0. (See [OS] for
the precise computation of the characteristic variety.)

PutY = {(z,y) | z = 0} and I = DgPs; + DrPy;. Then Algorithm 3.7 with the aid
of Propositions 3.8, 3.9 returns G := {Pj1, P32, P33} as a minimal FR-Grobner basis
for I3 along Y; here

P33 = (1 - z)y2?8,° + (y — 1)y=z?8,0,°
+{(—a+d =B+p —7-3)z+(—a - '+ 2y +1)}yzd,’
+ (a4 6+ 1)(y — 1)yz6,8,
+[{(@-B+f —v-Na+B+1)d' + (B -7-1)+p —7-1}z
+ (8" =)’ =8 +7*1yds
+ af(y — D)ydy + af(' + ' — 4)y.
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Their leading terms are
ltermpp(Ps1) = 0,0y, ltermpp(Ps2) =y(1 —y)d,%, ltermrgr(P33) = yz2d,>.

This implies that M3 is Fuchsian along Y on {(0,y) € Y |y # 0, 1}. (We can also
verify that M3 is also Fuchsian along Y at (0,0) and (0,1) by Algorithm 2.7.) We get

eY(MSap) = éY(M3ap) = {O’QI -7 + 1’:5’ - + 1}

for any p € Y \ {(0,0),(0,1)}. ,
Any multi-valued analytic solution u of M3 around Y is written in the form

o' —r+1 B —r+1

uUu=n (:I}, y) + ’Uz((l), y)w + '03(3:, y)m

with vy,vs,vs holomorphic on a neighborhood of Y \ {(0,0),(0,1)}. Moroever, the
computation of the induced systems shows that v1(0,y),v2(0,y),v3(0,y) satisfy the
equations

{y(1 -8, + (v — (¢/ + B + 1)y)d, — o/ B'}v1(0,y) =0,
(¥8y + )2 (0,9) =0, (8, + f')v3(0,y) = 0.

We know that these systems coincide precisely with the induced systems because the
sum of the rank of these systems equals 4, which is the rank of the system M3.

Ezample 6.2 (System for Appell’s Fy). The system My for Appell’s Fy is defined by
Pyu = Pgu =0,
where

Py = x(1 - 2)82 — 220,08y — 4?02 + {7 — (a + B+ 1)z}0; — (+ B+ 1)y8, — af,
Py :=y(1 - y)&i — 22y8,0, — 2?02 + (v — (@ + B+ 1)y}8, — (@ + B+ 1)28, — of

with parameters a, 8,4,7’ € C. This is a holonomic system of rank 4 with sigular loci
zy(z? +y? — 22y — 22 — 2y +1) = 0. Put I = DpPy + DrPy and

Y ={(z,y) | ® + 4* — 22y — 2z — 2y + 1 = 0}.
We make a birational coordinate transformation
t=x?+y% -2y — 20— 2y +1, rT=z—y

and rewrite Pyq, Pys in the new coordinate system (¢, z).
Inputting {Py;, P42} to Algorithm 3.7, we get, as the output of the algorithm stopped
when m = -1, G = { Py, Py3, P43, Py} with leading terms

ltermFR(P41) = (:L’ + 1)(.’8 - 1)28t8w, | ltermFR(P42) = (.’L‘ + 1)2(.'17 - 1)8t8$,
ltermpr(Pys) = 2(z + 1)(z — 1)t8t2, ltermpp(Pys) = -;—(:r: +1)3(zx - 1)2_3$3.
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Moreover P,3, and hence My, is Fuchsian along Y on Y\ {(0,1), (0,—1)}. (By using
Algorithm 2.7 we can verify that M, is also Fuchsian along Y at (0,+1)). We do not
know if G is indeed an F R-Grobner basis of I along Y. In any case, we get from this
set of generators

1
ey(Mg,p) C{0,7+7 —a-p - 5}

for any p € Y\ {(0, 1), (0,—1)}. Hence any multi-valued analytic solution u of My
around Y is written in the form

u = vy(t, ) + v(t, )tV HY —o—P=1/2

with vy, v; holomorphic on a neighborhood of Y \ {(0,1),(0,—1)}. Moroever, the
computation of the induced systems shows that v;(0, ), v5(0, z) satisfy the equations

R1v1 (0, :l:) = 0, szg(O,w) =0
with
Ry = (z - 1)*(z +1)%8,°
+(z - 1)(z + D{(2a+28+7+9 +2)z - 37+ 37}8,°
+{(4B8+27+27)a+ (27 +27)B+ 7+ 7} —2(v =) R+ 28+ 1)z
+(-48+27+ 2y —4)a+ (27 + 27 —4)B+ (—8Y +5)y + 57 — 4]8.

+4af{(y+7' -z —v+1'},
Ry=(z-1)(z+1)0: +{(37+37y - 20 -28-2)z—v+7'}.
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