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Introduction.
Recently, the notion of Fuchsian partial differenital equation of [BG] has been gen-

eralized to that of Fuchsian system of linear partial differential equations along a sub-
manifold of arbitrary codimension by Laurent and Monteiro Fernandes [LM]. (See also
[Osh2] for a little more restricted class of systems wi,th regular singularities and their
boundary value problem.) Especially, it has been proved in [LM] for Fuchsian systems
that any power series solution which converges with respect to the variables of $Y$ and
formal with respect to the variable(s) normal to $Y$ converges with respect to all the
variables. It is also known that the holonomic system with regular singularities in the
sense of Kashiwara and Kawai is Fuchsian along any submanifold (cf. [KK], [LM]).

Thus Hhchsian systems constitute a nice and substantially wide class of systems
containing many interesting examples (especially as holonomic systems). However, the
definition of Fuchsian system is rather abstract and it would be difficult to apply it
directly to a given system.

Suppose that a system of linear partial differential equations

ル$\mathcal{M}$ : $P_{1}u=\cdots=P_{s}u=0$

for an unkown function $u$ in an open subset of $\mathbb{C}^{n+1}$ and a non-singular complex
analytic hypersurface $Y$ are given. (For example, if $\mathcal{M}$ is holonomic, then we take
as $Y$ an irreducible component of the “loci of singularities” of $\mathcal{M}.$ ) Then, from the
computational point of view, we have the following basic problems about $\mathcal{M}$ :

A. Is $\mathcal{M}$ Hhchsian along $Y$?
B. If so, find the structure of the space of multi-valued analytic (or hyperfunction,

etc.) solutions of $\mathcal{M}$ around Y.
If the system $\mathcal{M}$ is Elichsian, we can define its characteristic exponents as in the

case of ordinary differential equations, and the “boundary values” of (multi-valued)
analytic solutions of $\mathcal{M}$ , which are analytic functions on Y. (Boundary values can be
also defined for hyperfunction solutions (cf. [KO],[Oshl],[Osh2],[Oa]). However, in the

Typeset by $A_{\mathcal{M}}S$-丁居 X

数理解析研究所講究録
第 894巻 1995年 76-95 76



present paper, we restrict ourselves to analytic solutions for the sake of simplicity.)
Then a somewhat vague problem $B$ reduces substantially to the more concrete one:

C. If $\mathcal{M}$ is Fuchsian along $Y$ , compute its characteristic exponents and the sys-
tem of equations which their boundary values $satis\theta$ (i.e. the induced, or the
tangential system of $\mathcal{M}$ along Y).

The porpose of the present paper is to present algorithmic methods as partiaJ but
effective answers to the problems A and C. More precisely, we first give an algorithmic
method, together with its theoretical foundation, that enables us to know whether
or not $\mathcal{M}$ is formally Fhchsian in our terminology. Then we describe procedures for
answering the problem $C$ with the aid of the first method.

For this porpose, we introduce a new notion of Gr\"obner basis for the ring of dif-
ferential operators with respect to a filtration of [K2] attached to the hypersurface
Y.

The method of Grobner basis was first introduced by Buchberger [Bul] for the
polynomial ring, and has been extended to various rings of differential operators by
several authors (e.g. [Ga],[C],[N],[Takl]). In particular, the singular loci and the rank
(i.e. the dimension of the solution space) of a holonomic system are efficiently computed
by using the Gr\"obner basis algorithm for the ring of differential operators of polynomial
or rational function coefficients (cf. [Takl], [Tak3]). The Gr\"obner basis for the ring of
differential operators with analytic coefficients, which is more directly related to the
analytic theory of systems of differential equations, was studied in [C],[OS].

In the present paper, we introduce Gr\"obner bases for rings of differential operators
with analytic or rational function coefficients. The analytic version, which we $caJl$ the
FD-Gr\"obner basis $(F$ for filtration, and $D$ for the ring of differential operators with
analytic coefficients), has a precise theoretical meaning concerning the local structure
of the system, but it would be difficult to carry out actual computation in case of more
than two variables. On the other hand, the rational version, which we call the FR-
Gr\"obner basis ($R$ for the ring of differential operators with rational coefficients), has an
algebraic and global nature and is more suitable for actual computation by computers.
Furthermore, it is shown that an FR-Gr\"obner basis supplies complete information on
the precise local structure at a generic point of Y. (At a non-generic point, however,
the FD-Gr\"obner basis is indispensable.) These Gr\"obner bases are defined by a new
total order among (exponents of) monomiak of differential operators, and the fact that
this order is not a well-order makes the situation slightly more complicated than in the
usual theory of Grobner basis.

Our methods are efficient enough for the computation (by using computer alge-
bra systems) of holonomic systems of two variables (possibly with additional several
parameters) such as those for Appell’s hypergeometric functions. We hope methods
presented here $wiU$ serve as new tools for the concrete computation of special systems
with regular singularities of $reaJ$ research interest.

After the main part of the present work had been completed the author was informed
that Takayama [Tak4] proposed a different method (a kind of Hensel construction)
for solving the problem $C$ with the porpose of finding connection formulas of speciaJ
functions of several variables.

1. Fuchsian system of partial differential equations along a hypersurface.
Let $(t,x)=(t,x_{1}, \ldots, x_{n})$ be a coordinate system of the $(n+1)$-dimensional complex
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Euclidean space $X=\mathbb{C}^{n+1}$ (with $n\geq 1$ ) and we use the notation $\partial_{t}=\partial/\partial t$ and
$\partial_{x}=(\partial_{1}, \ldots, \partial_{n})$ with $\partial_{i}=\partial/\partial x_{i}$ . We write $x^{\alpha}=x_{1}^{\alpha_{1}}\ldots x_{n}^{\alpha_{n}},$

$\partial_{x^{\beta}}=\partial_{1}^{\beta_{1}}\ldots\partial_{n^{n}}^{\beta}$ ,
$|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ for multi-indices $\alpha=(\alpha_{1}, \ldots, \alpha_{n}),$ $\beta=(\beta_{1}, \ldots,\beta_{n})\in N^{n}$ with
$N=\{0,1,2, \ldots\}$ .

1. 1. Single 1-勉chsian $par\cdot tial$ 畷が erential equations.
Let us recall the definition of Ehchsian partial differential operator (or equation)

following Baouendi and Goulaouic [BG] (in fact, the definition here is slightly more
general than that given in [BG] $)$ . Let $P=P(t,x, \partial_{t}, \partial_{x})$ be a linear partial differential
operator with holomorphic function coefficients defined on an neighborhood of $p=$
$(0, x_{0})$ . Then $P$ is said to be a Fuchsian parlial differential operator (and the equation
$Pu=0$ is said to be a 翫 chsian $pa$漉$al$ 頃が erentiaZ equation) with respect to the
hypersurface $Y=\{t=0\}$ at $p$ if there exist non-negative integers $k,$ $m$ such that $P$ is
written in the form

$P=a_{0}(t, x)t^{k} \partial_{t}^{m}+\sum_{j=1}^{m}A_{j}(t, x, \partial_{x})t^{\max\{k-j_{2}0\}}\partial_{t}^{m-j}$ ,

where $a_{0}(t, x)$ is a holomorphic function with $a_{0}(0, x_{0})\neq 0$ and $A_{j}(t, x,\partial_{x})$ is a differ-
ential operator of order at most $j$ free from $\partial_{t}satis\Psi ing$

$A_{j}(O,x, \partial_{x})=a_{j}(x)$ (a holomorphic function of x) for $1 \leq j\leq\min\{k, m\}$ .

Then we call $P$ a Ihchsian operator of type $(k,m)$ (or of weight $m-k$ following [BG]).
Ebchsian equation is also cffied equation with regular singularity in a weak sense by
Kashiwara and Oshima ([KO], [Oshl]).

The indicial polynomial of $P$ at $p$ is a polynomial

$\min\{k,m\}$

$a_{0}(0,$ $x_{0})\theta^{m}$ 十 $\sum$ $a_{j}(x_{0}$汐 一 1 $)$ . . . $(\theta-m+j+1)$
$j=1$

in $\theta$ . And its zeros are called the charactervshc $e\varphi onents$ of $P$ at $p$ . Note that if
$k<m$ , then there are $m-k$ trivial characteristic exponents $0,$

$\ldots,$ $m-k-1$ .
These definitions are generalized to general hypersurface instead of $t=0$ . Let $\varphi(t, x)$

be a holomorphic function defined on a neighborhood of $p=(t_{0}, x_{0})$ with $\varphi(p)=0$ and
$d\varphi(p)\neq 0$ . Then we can take a holomorphic local coordinate system $(t’,x’)$ around $p$

such that $t’=\varphi(t, x)$ . Then $P$ is said to be a Fuchsian operator with respect to the
hypersurface $\varphi=0$ if $P$ satisfies the conditions above with $(t, x)$ replaced by $(t’, x’)$ .
The charactenstic exponents of $P$ are $aJso$ defined in the same way. It is easy to see that
the definition of lfUchsian operator and the characteristic exponents are well-defined,
i.e., independent of the choice of the local coordinate system.

The structure of the multi-valued analytic solutions of a Ehchsian equation was
determined by Tahara [Tah].

1.2. filuchsian systems of parlial differential equations.
In the present paper we consider the system of linear partial differentiaJ equations

$\mathcal{M}$ : $P_{1}u=\cdots=P_{s}u=0$
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for an unknown function $u$ , where $P_{1},$
$\ldots,$

$P_{s}$ are linear partial differential operators
whose coefficients are holomorphic functions on an open subset $\Omega$ of $X=\mathbb{C}^{n+1}$ . (In
the sequel, we assume $0\in\Omega.$ )

To study systems of linear partial differential equations such as $\mathcal{M}$ , it is natural
to consider the ideal of differential operators generated by $P_{1},$

$\ldots,$
$P_{s}$ . For this por-

pose, let us denote by $\mathcal{D}$ the sheaf of rings of linear partial differential operators with
holomorphic coefficients on $X$ . Let $\mathcal{I}$ be the sheaf of left ideals of $\mathcal{D}$ generated by
$P_{1},$ $\ldots,P_{s}$ ; i.e.,

$\mathcal{I}=\mathcal{D}P_{1}+\cdots+\mathcal{D}P_{s}$ .
Moreover, we can regard the system $\mathcal{M}$ as a coherent sheaf of $\mathcal{D}$-modules $\mathcal{D}/\mathcal{I}$ (cf.
[Kl] $)$ . Let $Y$ be a non-singular complex analytic hypersurface in $\Omega$ and $p$ be a point
of Y. Then the system $\mathcal{M}$ is called a Fuchsian system along $Y$ at $p$ after [LM] if there
exists an element (section) $P$ of $\mathcal{I}$ which is a Ehchsian operator with respect to $Y$ at
$p$ . We call such $P$ a Fuchsian genemtor of the system $\mathcal{M}$ at $p$ .

1.3. $A$ filtration of $\mathcal{D}_{0}$ .and formally Fuchsian opemtors.
We denote by $\mathcal{D}_{0}$ the stalk of the sheaf $\mathcal{D}$ at the origin $0\in X$ . Put $Y=\{(t, x)\in$

$X|t=0\}$ . The following arguments apply likewise to the stalk $\mathcal{D}_{p}$ of $\mathcal{D}$ at $p\in Y$ . An
element of $\mathcal{D}_{0}$ is a linear partial differential operator whose coefficients are holomorphic
at $0$ ; i.e. convergent power series of $(t, x)$ . An operator $P\in \mathcal{D}_{0}$ is written in the form

(1.1)
$P= \sum_{\nu\geq 0,\beta\in N^{n}}a_{\nu,\beta}(t, x)\partial_{t}^{\nu}\partial_{x}^{\beta}=\sum_{\nu,\mu\geq 0,\beta,\alpha\in N^{n}}a_{\mu,\nu,\alpha,\beta}t^{\mu}x^{\alpha}\partial_{t^{\nu}}\partial_{x}^{\beta}$

,

where the sum is finite with respect to $\nu$ and $\beta$ . The order of $P$ ord$(P)$ is defined as
the maximum of $\nu+|\beta|$ such that $a_{\nu,\beta}(t, x)$ is non-zero as a power series.

We introduce a filtration $\{\mathcal{F}_{m}\}_{m\in Z}$ of $\mathcal{D}_{0}$ as follows: For each integer $m$ , put

$\mathcal{F}_{m}=\{P=\sum_{\mu,\nu,\alpha,\beta}a_{\mu,\nu,\alpha,\beta}t^{\mu}x^{\alpha}\partial_{t^{\nu}}\partial_{x}^{\beta}\in \mathcal{D}_{0}|a_{\mu,\nu,\alpha,\beta}=0 if \nu-\mu>m\}$
.

Then $\mathcal{F}_{m}$ is a $\mathbb{C}$-subspace of $\mathcal{D}_{0}$ and satisfies

... $\mathcal{F}_{-2}\subset \mathcal{F}_{-1}\subset \mathcal{F}_{0}\subset \mathcal{F}_{1}\subset \mathcal{F}_{2}\ldots$ ,
$\bigcup_{m\in Z}\mathcal{F}_{m}=\mathcal{D}_{0}$

.

For a nonzero $P\in \mathcal{D}_{0}$ , its $F$-order ord$F(P)$ is defined as the minimum integer $m$

$satis\theta ingP\in \mathcal{F}_{m}$ . If the F-order of the operator $P$ written as (1.1) is $m$, then we put

$\hat{\sigma}(P)=\hat{\sigma}_{m}(P)=\sum_{\nu-\mu=m}a_{\mu,\nu,\alpha_{2}\beta}t^{\mu}x^{\alpha}\partial_{t^{\nu}}\partial_{x}^{\beta}\in \mathcal{D}_{0}$

and call it the $for^{-}mal$ symbol of $P$ after [LS]. (We put $\hat{\sigma}(0)=0.$ )
The filtration defined above was introduced by Kashiwara [K2] and was used sys-

tematically with the formal symbol for the study of induced systems by Laurent and
Schapira [LS].

Lemma 1.1. For $P,$ $Q\in \mathcal{D}_{0}$ , we $b$ave $\hat{\sigma}(PQ)=\hat{\sigma}(P)\hat{\sigma}(Q)$ .
Note that in general, $\hat{\sigma}(Q)\hat{\sigma}(P)\neq\hat{\sigma}(P)\hat{\sigma}(Q)$ .
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Lemma 1.2. $P\in \mathcal{D}_{0}$ is a Fbcbsian operator with respect to $Y=\{t=0\}$ at $0$ if and
only if $P$ satisfies $tbe$ following two conditions $(FCl)$ and $(FC2)$ :
(FCl) There exist non-negative integers $k,$ $m$ and bolomorpbic functions $a_{j}(x)$ witb

$a_{0}(0)\neq 0$ such that

$\hat{\sigma}(P)=\sum_{j=0}^{\min\{k,m\}}a_{j}(x)t^{k-j}\partial_{t}^{m-j}$ .

(FC2) The order of $\hat{\sigma}(P)$ is $equaI$ to $t\Lambda e$ order of $P$ .

Deflnition 1.3. We call $P$ a formally Fuchsian operator with respect to $Y$ at $0$ if $P$

satisfies the condition (FCl). The system $\mathcal{M}$ is said to be formally Fuchsian along $Y$

at $0$ if there exists a formally Ehchsian operator $P\in \mathcal{I}$ with respect to $Y$ at $0$ .
The notion of formally Fuchsian system is a special case of that of “syst\‘eme elliptique

le long de $Y$” defined in [LS].

1.4. Chamcteristic exponents of a Fuchsian system.
Let $\overline{\mathcal{D}}_{0}$ be the graded ring associated with the filtration $\{\mathcal{F}_{m}\}$ ; i.e.,

$\overline{\mathcal{D}}_{0}=\bigoplus_{m\in Z}\mathcal{F}_{m}/\mathcal{F}_{m-1}$
.

Note that $\overline{\mathcal{D}}_{0}$ is a non-commutative ring. Then the formal symbol induces a map

$\hat{\sigma}=\hat{\sigma}_{m}:\mathcal{F}_{m}arrow \mathcal{F}_{m}/\mathcal{F}_{m-1}\subset\overline{\mathcal{D}}_{0}$

for any integer $m$ .
We shall define an injective ring homomorphism $\psi$ of $\overline{\mathcal{D}}_{0}$ .into the ring

$\mathcal{D}_{0}’[\theta, \tau,\tau^{-1}]:=\bigoplus_{m\in Z}\mathcal{D}_{0}’[\theta]\tau^{m}$
,

where $\tau$ and $\theta$ are indeterminates and D\’o $[\theta$ $]$ denotes the polynomial ring in $\theta$ with
coefficients in the ring $\mathcal{D}_{0}’=\mathbb{C}\{x\}\langle\partial_{x}\rangle$ of differential operators in $x$ with convergent
power series coefficients. We give a ring stmcture to $\mathcal{D}_{0}’[\theta, \tau, \tau^{-1}]$ by

$(P(\theta,x,\partial_{x})\tau^{j})\cdot(Q(\theta, x, \partial_{x})\tau^{k}):=P(\theta-k, x, \partial_{x})Q(\theta, x, \partial_{x})\tau^{j+k}$ .

Any element $P$ of $\mathcal{T}_{m}:=\mathcal{F}_{m}\backslash \mathcal{F}_{m-1}$ can be written uniquely in the form

$P=t^{-m}\hat{P}(t\partial_{t},x, \partial_{x})$ .

Then we put $\psi(P)=\hat{P}(\theta, x, \partial_{x})\tau^{m}$. This defines a map $\psi$ : $\mathcal{F}_{m}/\mathcal{F}_{m-1}arrow \mathcal{D}_{0}’[\theta]\tau^{m}$ for
each $m$ . Moreover, it is easy to see that this $\psi$ is injective for au $m$ and bijective for
$m\leq 0$ . Thus $\psi$ defines an injective map of $\overline{\mathcal{D}}_{0}$ into $\mathcal{D}_{0}’[\theta,\tau\tau^{-1}]\sim’$ .
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Lemma 1.4. $\psi$ : $\overline{D}_{0}arrow \mathcal{D}_{0}’[\theta,\tau, \tau^{-1}]$ is an injectire ring bomomorpbism.

Now assume the system $\mathcal{M}$ (as in Sect. 1.2) is Fuchsian along $Y=\{t=0\}$ at $0$ . (In
fact, it suffices to assume $\mathcal{M}$ is formaUy FUchsian for the following definitions.) Let $\mathcal{I}_{0}$

be the stalk at $0$ of the sheaf of left ideak $\mathcal{I}=\mathcal{D}P_{1}+\cdots+\mathcal{D}P_{s}$ . Let us define a left
ideal $\overline{\mathcal{I}}_{0}$ of $\mathcal{D}_{0}’[\theta,\tau, \tau^{-1}]$ by

$\overline{\mathcal{I}}_{0}=\oplus\hat{\sigma}_{m}(\mathcal{I}_{0}\cap \mathcal{F}_{m})$.
$m\in Z$

Put
$\mathcal{O}_{0}’[\theta, \tau, \tau^{-1}]=\bigoplus_{m\in Z}O_{0}’[\theta]\tau^{m}\subset \mathcal{D}_{0}’[\theta, \tau,\tau^{-1}]$

with $\mathcal{O}_{0}’=\mathbb{C}\{x\}$ (the ring of convergent power series in $x$). Let $\mathcal{J}$ be the smallest lefl
ideal of $\mathcal{O}_{0}’[\theta, \tau,\tau^{-1}]$ that contains $\psi(\overline{\mathcal{I}}_{0})\cap \mathcal{O}_{0}’[\theta, \tau,\tau^{-1}]$ and put $\mathcal{J}_{Y}(\mathcal{M}, 0)=\mathcal{J}\cap \mathcal{O}_{0}’[\theta]$,
which is an ideal of the commutative ring $\mathcal{O}_{0}’[\theta]$ . Then it is easy to see that $\mathcal{J}$ is
generated by $\mathcal{J}_{Y}(\mathcal{M},0)$ over $\mathcal{O}_{0}’[\theta,\tau, \tau^{-1}]$ . Moreover we can easily $veri\Psi$

Lemma 1.5.

JY $(\mathcal{M}, 0)=\{f(\theta,x)\in \mathcal{O}_{0}’[\theta]|f(\theta,x)\tau^{-m}\in\psi(\overline{\mathcal{I}}_{0})\cap \mathcal{O}_{0}’[\theta]\tau^{-m}$ for some $m\geq 0\}$ .
The ideal JY $(\mathcal{M},p)$ of $\mathcal{O}_{p}’[\theta]$ is defined likewise with $0$ replaced by a point $p$ of $Y$ ,

where $\mathcal{O}_{p}’$ denotes the ring of holomorphic functions in $x$ at $p$ .
Deflnition 1.6. For a point $p$ of $Y$ we call the set

$e_{Y}(\mathcal{M},p):=\{\theta\in \mathbb{C}|f(\theta,p)=0$ for any $f\in J_{Y}(\mathcal{M},p)\}$

the set of オん $e$ CharaCte惰$tic$ eXponentS of $\mathcal{M}$ along $Y$ at $p$ .
Deflnition 1.7. We define another ideal $\tilde{J}_{Y}(\mathcal{M},p)$ of $\mathcal{O}_{p}’[\theta]$ by

$\tilde{J}_{Y}(\mathcal{M},p)=\{f\in \mathcal{O}_{p}’[\theta]|af\in \mathcal{J}_{Y}(\mathcal{M},p)$ for some $a\in \mathcal{O}_{p}’\}$ .
Then we define the set of the strong chamctemstic exponents of $\mathcal{M}$ along $Y$ at $p\in Y$

by
$\tilde{e}_{Y}(\mathcal{M},p)=\{\theta\in \mathbb{C}|f(\theta,p)=0$ for any $f\in\tilde{J}_{Y}(\mathcal{M},p)\}$ .

Lemma 1.8. Suppose tbat the system $\mathcal{M}$ is formalIy Fuchsian at $0$ . Then the $ide\partial J$

$\tilde{J}_{Y}(\mathcal{M}, 0)$ is generated by a polynomial $f\in\tilde{J}_{Y}(\mathcal{M}, 0)$ monic in $\theta$ .
Example 1.9. Put $n=1,$ $x=x_{1}$ and let us consider the system

$\mathcal{N}$ : $(t\partial_{t}-a)(t\partial_{t}-b)u=x(t\partial_{t}-a)u=0$

with distinct constants $a,$ $b\in \mathbb{C}$. Then we have

$J_{Y}(\mathcal{N}, 0)=\mathcal{O}_{0}’[\theta](\theta-a)(\theta-b)+\mathcal{O}_{0}’[\theta]x(\theta-a)$ ,
$\tilde{J}_{Y}(\mathcal{N},0)=\mathcal{O}_{0}’[\theta](\theta-a)$

and hence
$e_{Y}(\mathcal{N}, 0)=\{a, b\}$ , $\tilde{e}_{Y}(\mathcal{N}, 0)=\{a\}$ .

Note that any multi-valued analytic solution of $\mathcal{N}$ is in the form $u=v(x)t^{a}$ with $v$

holomorphic, whereas, in the real domain $\mathcal{N}$ has a distribution solution $t_{+}^{a}+\delta(x)t_{+}^{b}$ .
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1.5. Boundary value problem for $Ih$chsian systems.
Here we recall some known facts on the structure of analytic solutions of a Fuchsian

system. First, let us recffi the notion of induced (tangential) system. Let $\mathcal{M}$ and $\mathcal{I}$ be
as in Sect. 1.2. Then the induced (tangential) system $\mathcal{M}_{Y}$ of $\mathcal{M}$ along $Y=\{t=0\}$ is
the sheaf of $\mathcal{D}’$-modules

$\mathcal{M}_{Y}:=\mathcal{M}/t\mathcal{M}=\mathcal{D}/(t\mathcal{D}+\mathcal{I})$ ,

where $\mathcal{D}’$ denotes the sheaf on $Y$ of the ring of linear differential operators with holo-
morphic functions in $x$ as coefficients. It is shown in [LM] that $\mathcal{M}_{Y}$ is a coherent
$\mathcal{D}’$-module if $\mathcal{M}$ is Fuchsian along Y.

Theorem 1.10 ([LM, Th\’eor\‘eme 3.2.2]). Assume that the system $\mathcal{M}$ is $Fuc\Lambda sian$

along Y. Tben there exists a canonicaI sbeaf isomorphism

$\prime rtom_{D}(\mathcal{M}, \mathcal{O})|_{Y}\simeq \mathcal{H}om_{D’}(\mathcal{M}_{Y}, \mathcal{O}’)$ ,

wbere $\mathcal{O}$ an$d\mathcal{O}’$ denote $t\Lambda es\Lambda eaves$ of $\Lambda olomorpbic$ functions in $(t, x)$ and in $x$ respec-
tively, and $\mathcal{H}om$ the $sbe\epsilon I$ of bomomorphisms.

Theorem 1.11. Assume that $t\Lambda e$ system $\mathcal{M}$ is Ri$cAsianaIongY$ at $0$ an$d$ tbere exists
$a$ Ebcbsian operator $P\in \mathcal{I}_{0}$ wbose characteristic exponents $\theta_{1},$

$\ldots,$
$\theta_{m}$ are ffi constant

with multiplicity one. Assume also tbat $\theta_{i}-\theta_{j}$ is not $\partial J1$ integer for any $i\neq j$ . Put
$S=\{i\in\{1, \ldots, m\}|\theta_{i}\in\tilde{e}_{Y}(\mathcal{M}, 0)\}.$ Then any (multi-vaIued) analytic solution $u$ of
ル《 on $U\backslash Y$ wi$tbU$ being $a$ nelg血borhood of $0\in X$ can be $wri$舘 en $in$ 坊 $e$ form

$u= \sum_{i\in S}v_{i}(t,x)t^{\theta;}$

witb $bolomorp\Lambda ic$ functions $v_{i}$ on a neigbborhood of $U\cap Y$ .
2. FD-Gr\"obner basis–precise and local algorithmic method.

In this section we develop the theory of FD-Gr\"obner bases for left ideals of the
ring $\mathcal{D}_{0}$ of differential operators with analytic coefficients. Instead of $\mathcal{D}_{0}$ , the following
arguments apply also to the stalk $\mathcal{D}_{p}$ of the sheaf $\mathcal{D}$ at $p\in Y=\{(t, x)|t=0\}$ .

Let $\prec$ be a lexicographic order of $N^{n}$ with $N$ $:=\{0,1,2, \ldots\}$ . We define a total
order $\prec pD$ of the set $N^{2n+2}$ , which we $caU$ the FD-order, as follows: For two indices
$(\mu, \nu, \alpha,\beta)$ and $(\mu’, \nu’, \alpha’,\beta’)\in Nx$ Nx $N^{n}xN^{n}$ ,

$(\mu, \nu, \alpha,\beta)\prec pD(\mu’, \nu’, \alpha’,\beta’)$ if and only if $(\nu-\mu<\nu’-\mu’)$

or $(\nu-\mu=\nu’-\mu’, |\beta|<|\beta’|)$

or $(\nu-\mu=\nu’-\mu’, |\beta|=|\beta’|, \nu<\nu’)$

or $(\nu=\nu’, \mu=\mu’, \beta\prec\beta’)$

or $(\nu=\nu’, \mu=\mu’, \beta=\beta’, |\alpha|>|\alpha’|)$

or $(\nu=\nu’, \mu=\mu’, \beta=\beta’, |\alpha|=|\alpha’|, \alpha\prec\alpha’)$ .

Let the $FR- order\prec pR$ be the order of $N^{n+2}$ induced by $\prec pD$ ; i.e., we define

$(\mu, \nu,\beta)\prec FR(\mu’, \nu’,\beta’)$ if and only if $(\mu, \nu, 0,\beta)\prec FD(\mu’, \nu’,0,\beta’)$ .
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It is easy to see that any subset of $\{(\mu, \nu, \alpha,\beta)\in N^{2n+2}|\nu+|\beta|\leq m\}$ has a maximum
element with respect to the FD-order, and any subset of $\{(\mu, \nu,\beta)\in N^{n+2}|\nu-\mu\geq m\}$

has a minimum element with respect to the FR-order for any $m$ . (This definition of
the FD-order can be generalized to some extent, but we do not discuss this problem
here.) For an element $P\in D_{0}$ of the form

$P= \sum_{\mu,\nu_{2}\alpha,\beta}a_{\mu,\nu_{2}\alpha,\beta}t^{\mu}x^{\alpha}\partial_{t}^{\nu}\partial_{x}^{\beta}$
,

we define the set of exponents, leading exponent, leading coefficient, leading term of $P$

with respect to the FD-order by

exps$FD(P)=\{(\mu, \nu, \alpha,\beta)|a_{\mu,\nu,\alpha_{2}\beta}\neq 0\}$ ,
lexp$FD(P)= \max_{FD}$ (exps$FD(P)$ ),
lcoef$FD(P)=a_{\mu,\nu,\alpha,\beta}$ with $(\mu, \nu, \alpha,\beta)$ $:=$ lexp$FD(P)$ ,

lterm$FD(P)=a_{\mu,\nu,\alpha,\beta}t^{\mu}x^{\alpha}\partial_{t^{\nu}}\partial_{x}^{\beta}$ with $(\mu, \nu, \alpha,\beta)$ $:=$ lexp$FD(P)$ ,

where $\max_{FD}$ denotes the maximum with respect to the FD-order. (If $P=0$,
then we put lexp$FD(P)=(\infty, 0,0,0)$ , and suppose $(\infty, 0,0,0)\prec FD(\mu, \nu, \alpha,\beta)$ for
any $(\mu, \nu, \alpha,\beta)\in N^{2n+2}.)$ Let $\pi$ : $N^{2n+2}arrow N^{n+2}$ be the projection defined by
$\pi(\mu, \nu, \alpha,\beta)=(\mu, \nu,\beta)$ . Then through this projection, we also define the leading $\exp o-$

nent, leading coefficient and leading term of $P$ with respect to the FR-order by

lexp$FR(P)=\pi$(lexp$FD(P)$ ),

lcoef
$FR(P)= \sum_{\alpha\in N^{n}}a_{\mu 0,\nu_{0},\alpha,\beta_{0}}x^{\alpha}$

with $(\mu 0, \nu_{0},\beta_{0})$ $:=$ lexp$FR(P)$ ,

lterm$FR(P)=$ lcoef$FR(P)t^{\mu 0}\partial_{t}^{\nu_{0}}\partial_{x}^{\beta_{0}}$ with $(\mu 0, \nu_{0},\beta_{0})$ $:=$ lexp$FR(P)$ .
Moreover, for an exponent $(\mu, \nu,\beta)\in N^{n+2}$ , we set

$coef_{FR}(P, (\mu, \nu,\beta))=\sum_{\alpha}a_{\mu,\nu,\alpha,\beta^{X^{\alpha}}}$ .

Recall that the principal symbol of $P$ (of order $m$ ) is defined by

$\sigma_{m}(P)=\sum_{\mu\in N,\alpha\in N^{\mathfrak{n}},\nu+|\beta|=m}a_{\mu,\nu,\alpha},\rho t^{\mu}\tau^{\nu}x^{\alpha}\xi^{\beta}$

regarded as an element of the ring of the convergent power series $\mathbb{C}\{t,\tau, x,\xi\}$ with $\xi=$

$(\xi_{1}, \ldots, \xi_{n})$ and $\xi^{\beta}=\xi_{1^{\beta_{1}}}\cdots\xi_{n}^{\beta_{n}}$ if $P$ is of order $\leq m$ . We ako write $\sigma(P)=\sigma_{m}(P)$

if $P$ is precisely of order $m$ .
Lemma 2.1. For $P,$ $Q\in \mathcal{D}_{0}$ we bave

lexp$FD(PQ)=$ lexp$FD(P)+$ lexp$FD(Q)$ ,
lcoef$FD(PQ)=$ lcoef$FD(P)1coef_{FD}(Q)$ ,
lexp$FR(PQ)=$ lexp$FR(P)+$ lexp$FR(Q)$ ,
lcoef$FR(PQ)=$ lcoef$FR(P)1coef_{FR}(Q)$ .
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Lemma 2.2. $P\in \mathcal{D}_{0}$ is formalIy Fbcbsian $aIongY$ at $0$ if and only if lexp$FD(P)=$
$(\mu, \nu,0,0)_{arrow}\in NxN\cross N^{n}\cross N^{n}$ witb some $\mu,$ $\nu\in N$ .
Lemma 2.3 (A division theorem). Let $P$ and $P_{1},$ $\ldots,P_{s}$ be elements $of\mathcal{D}_{0}$ . Tben
for any integer $m$, tbere exist elements $Q_{1},$

$\ldots,$
$Q_{\theta}$ an$dR$ of $\mathcal{D}_{0}$ such tbat

$P= \sum_{i=1}^{\epsilon}Q_{i}P_{i}+R$,

exps$FD(R) \cap\bigcup_{i=1}^{s}($lexp$FD(P_{i})+N^{2n+2})\subset \mathcal{F}_{m}$ ,

lexp$FD(Q_{i}P_{i})\preceq pD$ lexp$FD(P)$ , lexp$FD(R)\preceq pD$ lexp$FD(P)$ .

We denote such $R$, wbich is not $n$ecessarily uniq$ue$, by red$FD(P, \{P_{1}, \ldots, P_{s}\}, m)$ .
Deflnition 2.4. Let $\mathcal{I}_{0}$ be a left ideal of $\mathcal{D}_{0}$ . Then a finite subset $G=\{P_{1}, \ldots, P_{s}\}$

of $\mathcal{I}_{0}$ is called an FD-Grobner basis of $\mathcal{I}_{0}$ (along Y) if it satisfies the following two
conditions:

(1) $G$ generates $\mathcal{I}_{0}$ , i.e., $\mathcal{I}_{0}=D_{0}P_{1}+\cdots+\mathcal{D}_{0}P_{s}$.
(2) Put $E_{FD}(\mathcal{I}_{0})=\{$lexp$FD(P)|P\in \mathcal{I}_{0}\}$ . Then we have

$E_{FD}( \mathcal{I}_{0})=\bigcup_{P\in G}(1\exp FD(P)+N^{2n+2})$
.

Definition 2.5. For $P,$ $Q\in \mathcal{D}_{0}$ with

lexp$FD(P)=(\mu, \nu, \alpha,\beta)$ , $1\exp_{FD}(Q)=(\mu’, \nu’,\alpha’,\beta’)$ ,

the S-polynomial (or S-operator) of $P$ and $Q$ is defined by

sp$FD(P, Q)=$ lcoef$FD(Q)t^{\mu\vee\mu’-\mu}\partial_{\iota^{\nu\vee\nu’-\nu}}x^{\alpha\vee\alpha’-\alpha}\partial_{x^{\beta\vee\beta’-\beta}}P$

– lcoef$FD(P)t^{\mu\vee\mu’-\mu’}\partial_{t}^{\nu\vee\nu’-\nu’}x^{\alpha\vee\alpha’-\alpha’}\partial_{x}^{\beta\vee\beta’-\beta’}Q$ ,

where we use the notation

$\nu\vee\nu’:=\max\{\nu, \nu’\}$ , $\alpha\vee\alpha’:=(\max\{\alpha_{1}, \alpha_{1}’\}, \ldots,\max\{\alpha_{n}, \alpha_{n}’\})$

for $\nu,$
$\nu’\in N$ and $\alpha=(\alpha_{1}, \ldots, \alpha_{n}),$ $\alpha’=(\alpha_{1}, \ldots,\alpha_{n})\in N^{n}$ .

Theorem 2.6. Let $\mathcal{I}_{0}$ be a left ideaI $of\mathcal{D}_{0}$ and $G=\{P_{1}, \ldots, P_{s}\}$ be a set ofgenerators
of $\mathcal{I}_{0}$ . Then $t\Lambda e$ following two conditions for $G$ are $eq$uivaIent:

(1) $G$ is an FD-Grobner basis of $\mathcal{I}_{0}$ .
(2) For any $i,j$ wi$t\Lambda 1\leq i<j\leq s$ and for any $m\in \mathbb{Z}$ , there exist $Q_{ij1},$

$\ldots,$
$Q_{ijs}\in$

$D_{0}$ and $R_{ij}\in \mathcal{F}_{m}suc\Lambda tb$at

$sp$ $FD(P_{i}, P_{j})= \sum_{k=1}^{s}Q_{ijk}P_{k}+R_{j}$

with lexp$FD(Q_{ijk}P_{k})\prec FD$ lexp$FD(P_{i})\vee$ lexp$FD(P_{j})\backslash$ for any $k$ .
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Theorem 2.6 together with Lemma 2.3 enables us to give an algorithm to compute,
at least theoretically, an FD-Gr\"obner basis of a given left ideal of $D_{0}$ .
Algorithm 2.7 (FD-Grobner basis). Given a finite set $G$ of generators of a left ideal

$\mathcal{I}_{0}$ of $\mathcal{D}_{0}$ find an FD-Gr\"obner basis of $\mathcal{I}_{0}$ .
$m:= \min\{$ord$F(P)|P\in G\}$ ;
$G_{m}:=G$ ;
REPEAT

$G_{m-1}:=G_{m}$ ;
$m:=m-1$ ;
REPEAT

FOR each pair $(P, Q)$ of elements of $G_{m}$ DO {
$R:=$ red$FD(sp_{FD}(P, Q), G_{m},m)$ ;
IF $R\not\in \mathcal{F}_{m}$ THEN $G_{m}:=G_{m}\cup\{R\}$ ;

$\}$

UNTIL red$FD(sp_{FD}(P, Q), G_{m}, m)\in \mathcal{F}_{m}$ for any $P,$ $Q\in G_{m}$ ;
UNTIL $G_{m}$ becomes stationary, i.e. $G_{m}=G_{\mu}$ for any $\mu<m$ ;
RETURN $G_{m}$ ;

The output of this algorithm is indeed an FD-Gr\"obner basis by virtue of Theorem
2.6. The termination condition of this algorithm is fulfilled a priori in a finitely many
steps because of the Noetherian property of monoideaJs (or monomial ideals) generated
by the leading exponents of elements of $G_{m}$ (cf. [CLO, pp. 68-72]). However, at present,
we do not have a general criterion for the termination; i.e. we do not know when to
stop the algorithm. For a sufficient condition for the termination, see Proposition 3.8.

When $n=1$ , this computation can be actually performed by using a computer alge-
bra system if the given generators are operators with polynomial coefficients. However
for $n>1$ , the actual computation would be difficult because of the transcendental
nature of the so-called Weierstrass-Hironaka division employed in the proof of Lemma
2.3.

The FD-Gr\"obner basis solves partiffiy the problem $A$ :

Theorem 28 Leオル$\mathcal{M}$ and $\mathcal{I}$ be as in Sect 12 and let $\mathcal{I}_{0}$ be $tbe$ stalk of the $s\Lambda eaf$

$\mathcal{I}$ at $0$ . Assume $tb$at $G$ is an FD-Grobner basis of $t\Lambda e$ left ideaI $\mathcal{I}$ of $\mathcal{D}_{0}$ . Then $\mathcal{M}$ is
formdly Ebcbsian $aIongY=\{(t, x)|t=0\}$ at $0$ if and only if $t\Lambda ere$ exists $P\in G$ sucb
$tb$at lexp$FD(P)=(\mu, \nu, 0,0)$ with some $\mu,$ $\nu\in N$ .
3. FR-Gr\"obner basis–global algorithmic method.

In order to carry out actual computation, we introduce the ring $\mathcal{D}_{R}$ of differential
operators whose coefficients are formal power series of $t$ with rational functions of $x$ as
coefficients:

$\mathcal{D}_{R}:=\mathbb{C}(x)[[t]]\{\partial_{t},$ $\partial_{x}\rangle$

$=$ { $P= \sum_{\mu,\nu,\beta}a_{\mu,\nu,\beta}(x)t^{\mu}\partial_{t^{\nu}}\partial_{x}^{\beta}|a_{\mu,\nu_{2}\beta}(x)$
is a rational function of $x$},

where the sum is finite with respect to $\nu$ and $\beta$ .
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For theoretical porpose, it is also useful to consider the ring $\mathcal{D}_{M}$ of differential
operators whose coefficients are formaJ power series of $t$ with meromorphic functions
in $x$ as coefficients:

$\mathcal{D}_{At}:=\mathcal{K}_{0}’[[t]]\langle\partial_{t},$

$\partial_{x}\rangle=\{P=\sum_{\mu,\nu_{2}\beta}a_{\mu,\nu_{\gamma}\beta}(x)t^{\mu}\partial_{t}^{\nu}\partial_{x}^{\beta}|a_{\mu,\nu,\beta}(x)\in \mathcal{K}_{0}’\}$
,

where $\mathcal{K}_{0}’$ denotes the quotient field of the ring $\mathcal{O}_{0}’$ of germs of holomorphic functions
in $x$ at $0$ . More generally, we can take any intermediate field lying between $\mathbb{C}(x)$ and
$\mathcal{K}_{0}’$ . The following definitions and arguments apply also to such cases instead of $\mathcal{D}_{R}$ .

For an operator $P\in \mathcal{D}_{R}$ of the form

$P= \sum_{\mu,\nu_{2}\beta}a_{\mu,\nu,\beta}(x)t^{\mu}\partial_{t}^{\nu}\partial_{x}^{\beta}$
,

we define its leading exponent, leading term, leading coefficient (in the FR-order) by

lexp$FR(P)= \max_{FR}\{(\mu, \nu,\beta)|a_{\mu,\nu,\beta}(x)\neq 0\}$ ,
lcoef$FR(P)=a_{\mu,\nu_{2}\beta}(x)$ with $(\mu, \nu,\beta)$ $:=$ lexp$FR(P)$ ,

lterm$FR(P)=a_{\mu,\nu.\beta}(x)t^{\mu}\partial_{t}^{\nu}\partial_{x}^{\beta}$ with $(\mu, \nu,\beta)$ $:=$ lexp$FR(P)$ .
In the same way as Lemma 2.1 we get

Lemma 3.1. For $P,$ $Q\in \mathcal{D}_{R}$ we $b$ave

lexp$FR(PQ)=$ lexp$FR(P)+$ lexp$FR(Q)$ ,
lcoef$FR(PQ)=$ lcoef$FR(P)1coef_{FR}(Q)$ .

Deflnition 3.2. Let $I$ be a left ideal of $D_{R}$ . Then a finite subset $G=\{P_{1}, \ldots P_{s}\}$

of $\mathcal{D}_{R}$ is said to be an FR- Grobner basis of I $($along $Y=\{t=0\})$ if it satisfies the
following two conditions:

(1) $G$ generates $I$ , i.e., $I=\mathcal{D}_{R}P_{1}+\cdots+\mathcal{D}_{R}P_{S}$ .
(2) Put $E_{FR}(I)$ $:=$ $\{$lexp$FR(P)|P\in I\}$ . Then we have

$E_{FR}(I)=E_{FR}( G):=\bigcup_{P\in G}($
lexp$FR(P)+N^{n+2})$ .

Deflnition 3.3. For $P,$ $Q\in \mathcal{D}_{R}$ with

lexp$FR(P)=(\mu, \nu,\beta)$ , lexp$FR(Q)=(\mu’, \nu’,\beta’)$ ,

the S-polynomial (or the S-operator) of $P$ and $Q$ is defined by

sp$FR(P, Q)$ $:=$ lcoef$FR(Q)t^{\mu\vee\mu’-\mu}\partial_{t^{\nu\vee\nu’-\nu}}\partial_{x}^{\beta\vee\beta’-\beta}P$

-lcoef$FR(P)t^{\mu\vee\mu’-\mu’}\partial_{t}^{\nu\vee\nu’-\nu’}\partial_{x}^{\beta\vee\beta’-\beta’}Q$ .

As in the previous section, we define a filtration of $\mathcal{D}_{R}$ by

$\mathcal{F}_{m}=\{P=\sum_{\mu,\nu_{l}\beta}a_{\mu,\nu},\rho(x)t^{\mu}\partial_{t^{\nu}}\partial_{x}^{\beta}\in \mathcal{D}_{R}|a_{\mu,\nu},\rho(x)=0 if \nu-\mu>m\}$

for any integer $m$ (we use the same notation as for the filtration of $\mathcal{D}_{0}$ ).
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Deflnition 3.4. Let $G=\{P_{1}, \ldots , P_{s}\}$ be a finite subset of $\mathcal{D}_{R}$ and $m$ be an arbitrary
integer. For an element $P$ of $\mathcal{D}_{R}$ ,

(1) $P$ is said to be $\mathcal{F}_{m}$-reducible with respect to $G$ if and only if

lexp$FR(P) \in(\bigcup_{i=1}^{s}(1\exp_{FR}(P_{i})+N^{n+2}))\backslash \mathcal{F}_{m}$ .

$P$ is said to be $\mathcal{F}_{m}$-irreducible with respect to $G$ if it is not $\mathcal{F}_{m}$-reducible.
(2) Let $P$ be $\mathcal{F}_{m}$-reducible. Then an $\mathcal{F}_{m}$-reduction step for $P$ by $G$ is a procedure

to replace $P$ by

$P- \frac{1coef_{FR}(P)}{1coef_{FR}(P_{i})}t^{\mu-\mu;}\partial_{t}^{\nu-\nu i}\partial_{x}^{\beta-\beta}$ :瓦

with an arbitrary $i\in\{1, \ldots, s\}$ such that lexp$FR(P)\in$ lexp$FR(P_{i})+N^{n+2}$ ,
where $(\mu, \nu,\beta)=$ lexp$FR(P)$ and $(\mu i, \nu_{i}, \beta_{i})=$ lexp$FR(P_{i})$ .

(3) An $\mathcal{F}_{m}$-reduction procedure for $P$ by $G$ is a sequence of $\mathcal{F}_{m}$-reduction steps
so that its final output becomes $\mathcal{F}_{m}$-irreducible. We denote the output by
red$FR(P, G,m)$ although it is not uniquely determined by $P,G,m$.

Note that a sequence of $\mathcal{F}_{m}$-reduction steps always terminates in a finitely many
steps because the FR-order defines a well-order on $\{(\mu, \nu,\beta)\in N^{n+2}|\nu-\mu>m\}$ .

Definition 3.5. Let $I$ be a left ideal of $\mathcal{D}_{R}$ and $m$ be an integer. Then a finite subset
$G=\{P_{1}, \ldots P_{s}\}$ of $\mathcal{D}_{R}$ is said to be a set of $\mathcal{F}_{m}$ -genemtors of $I$ if it satisfies the
following two conditions:

(1) $G$ generates $I$ , i.e.,

$I=\mathcal{D}_{R}P_{1}+\cdots+\mathcal{D}_{R}P_{s}$ ,

(2) For any distinct $i,j\in\{1, \ldots, s\}$ , the output of some $\mathcal{F}_{m}$-reduction procedure
for sp$(P_{i}, P_{j})$ by $G$ belongs to $\mathcal{F}_{m}$ .

Theorem 3.6. Let I be a left ideaI of $\mathcal{D}_{R}$ and $G$ be $a$ 五$n$髭 $e$ Set of generatorS of $I$

Then the following three conditions are $eq$uivalent:

(1) $G$ is an FR-Grobner basis of $I$ .
(2) $G$ is a set of $\mathcal{F}_{m}$-generators of I for any integer $m$ .
(3) For any $P\in I$ and any integer $m,$ $tbe$ output of an arbitrary $\mathcal{F}_{m}$ -reduction

proced$ure$ for $P$ by $G$ belongs to $\mathcal{F}_{m}$ .

Algorithm 3.7 (FR-Grobner basis). Given a finite set $G$ of generators of a left ideal $I$
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of $\mathcal{D}_{R}$ find an FR-Gr\"obner basis of $I$ .

$m:= \min\{$ord$F(P)|P\in G\}$ ;
$G_{m}:=G$ ;
REPEAT

$G_{m-1}:=G_{m}$ ;
$m:=m-1$ ;
REPEAT

FOR each pair $(P, Q)$ of elements of $G_{m}$ DO {
$R:=$ red$FR(spFR(P, Q), G_{m}, m)$ ;
IF $R\not\in \mathcal{F}_{m}$ THEN $G_{m}:=G_{m}\cup\{R\}$ ;

$\}$

UNTIL red$FR(spFR(P, Q), G_{m},m)\in \mathcal{F}_{m}$ for any $P,$ $Q\in G_{m}$ ;
$UNT\mathbb{L}G_{m}$ becomes stationary, i.e. $G_{m}=G_{\mu}$ for any $\mu<m$ ;
RETURN $G_{m}$ ;

The termination condition of Algorithm 3.7 is satisfied for some $m$ , but we cannot
know when it is, in general. It is an open problem to obtain a general criterion for the
termination of this algorithm. A sufficient condition will be given in Proposition 3.8.

The output of Algorithm 3.7 is indeed an FR-Gr\"obner basis in view of Thoerem
3.6. The computation of $\mathcal{F}_{m}$-reduction procedure can be strictly carried out (e.g. by
a computer algebra system) with a general hypersurface $Y$ that can be brought into a
hyperplane by a birational transformation of $\mathbb{C}^{n+1}$ .

As will tum out in the next sections, it is often enough to find a (formally) EUch-
sian operator among the ideal. Hence, in practice, it would be a good policy to stop
Algorithm 3.7 when $G_{m}$ contains a (formally) Fuchsian operator. This makes much
wider the applicability of the algorithm.

I owe the following proposition to T. Shimoyama, which serves as a sufficient con-
dition to terminate the Algorithm 3.7.

Proposition 3.8. Let $G=\{P_{1}, \ldots,P_{s}\}$ be a finite subset of $\mathcal{D}_{R}$ and let $P$ be an
aibitrary element of $\mathcal{D}_{R}$ . $Su$ppose, for some $m_{0}\in \mathbb{Z}$ , the output ofsome $\mathcal{F}_{m_{0}}$ -reduction
procedure for $P$ by $G$ is equaI to $a(t, x)P$ with some $a(t,x)\in \mathbb{C}(x)[[t]]$ sucb that
$a(O,x)=0$ . Tben for $\partial Jiym\in \mathbb{Z}$, there exist $Q_{1},$

$\ldots,$
$Q_{S}\in \mathcal{D}_{R}$ and $R\in \mathcal{F}_{m}$ such $tb$at

$P=Q_{1}P_{1}+\cdots+Q_{s}P_{\theta}+R$

witA lexp$FR(Q_{k}P_{k})\preceq FR$ lexp$FR(P)$ for any $k=1,$ $\ldots,$
$s$ .

In the same way as was pointed out by Buchberger [Bu2] for the polynomial ring,
we can often save computation in Algorithm 3.7 by the following criterion:

PropoSition 3.9. Let $G$ be $a$ 伽 it$e$ subset of $\mathcal{D}_{R}$ and $P,$ $Q$ be two 曲 tinct elements
of G. Assume that tbere exists a sequence $\{P_{1}, , \ldots, P_{k}\}$ of elements of $G$ sucb that

(1) $P_{1}=P$, $P_{k}=Q$ ,
(2) lexp$FR(P_{1})\vee\cdots\vee$ lexp$FR(P_{k})=$ lexp$FR(P)\vee$ lexp$FR(Q)$ ,
(3) red$FR(spFR(P_{j}, P_{j+1}), G, m)$ belongs to $\mathcal{F}_{m}$ by an $\mathcal{F}_{m}$-reduction procedure for

any $m\in \mathbb{Z}$ and $j=0,$ $\ldots,$ $k-1$ .
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Tben, for any integer $m,$ $tbe$ output of some $\mathcal{F}_{m}$-reduction procedure for sp$FR(P,Q)$

by $G$ belongs to $\mathcal{F}_{m}$ .
Let us denote by $A_{n+1}=\mathbb{C}[t, x]\langle\partial_{t},$ $\partial_{x}\rangle$ the Weyl algebra, or the ring of differential

operators with polynomial coefficients (cf. Bj\"ork (1979)) and by $\tilde{A}_{n+1}=\mathbb{C}[x][[t]]\langle\partial_{t},$ $\partial_{x}\rangle$

the ring of differential operators whose coefficients are polynomiak in $x$ and formal
power series in $t$ .

For an operator $P\in \mathcal{D}_{R}$ , there exists a polynomial $b(x)$ of least total degree such
that $b(x)P\in A_{n+1}$ and we denote such $b(x)$ by den$(P)$ and $caU$ it the denommator of
$P$ . The numerator num$(P)$ of $P$ is defined as $b(x)P$.

An FR-Gr\"obner basis provides an FD-Gr\"obner basis at a generic point of $Y$ as
follows:

Theorem 3.10. Let $P_{1},$ $\ldots,P_{s}$ be elements of $A_{n+1}$ . Assume tbat $G$ $:=\{P_{1}, \ldots,P_{s}\}$

is an $FR- Gr\delta bner$ baeis of $tbe$ left ideaI

$I:=D_{R}P_{1}+\cdots+\mathcal{D}_{R}P_{s}$

of $\mathcal{D}_{R}$ . Put
$a(x)=$ lcoef$FR(P_{1})(x)\ldots 1coef_{FR}(P_{s})(x)$

and assume $a(x_{0})\neq 0$ . Put $p=(O, x_{0})$ . Tben $G$ is $aIso$ an FD-Grobner basis of $tAe$

left ideaI
$\mathcal{I}_{p}:=\mathcal{D}_{p}P_{1}+\cdots+\mathcal{D}_{p}P_{s}$

of $\mathcal{D}_{p}$ .
Corollary 3.11. Let $G=\{P_{1}, \ldots, P_{s}\}$ be a subset of $A_{n+1}$ an$d$ let

$G_{m}=\{P_{1}, \ldots,P_{s}, P_{s+1}, \ldots, P_{\sigma}\}$

be $tbe$ output ofAlgoritAm 3.7 $wit\Lambda tbe$ input G. Put lcoef$FR(P_{j})=a_{j}(x)/b_{j}(x)wit\Lambda$

polynomiaIs $a_{j}(x),b_{j}(x)$ relatively prime to eacb otber. If a point $(0,x_{0})$ of $Y$ satisfies
$a_{1}(x_{0})\ldots a_{\sigma}(x_{0})\neq 0,$ $tAenG$ constitutes an FD-Grobner basis of $t\Lambda e$ left ideaI

$\mathcal{I}_{p}=\mathcal{D}_{p}P_{1}+\cdots+\mathcal{D}_{p}P_{s}$

of $\mathcal{D}_{p}$ .
In the following application of FR-Gr\"obner bases, it is useful to introduce the notion

of minimal Gr\"obner basis as for the polynomial ideals (cf. [CLO]):

Deflnition 3.12. Let $G=\{P_{1}, \ldots, P_{s}\}$ be a finite subset of $\mathcal{D}_{R}$ and put $I=\mathcal{D}{}_{R}P_{1}+$

. $..+\mathcal{D}_{R}P_{S}$ . Then $G$ is called a minimal FR-Grobner basis of $I$ if $G$ is an FR-Gr\"obner
basis of $I$ and if, for any $i\in\{1, \ldots, s\}$ ,

lexp
$FR(P_{i}) \not\in\bigcup_{j\neq i}(1\exp_{FR}(P_{j})+N^{n+2})$

.

It is easy to constmct a minimal FR-Gr\"obner basis from the output of Algorithm
3.7 by $\mathcal{F}_{m}$-reduction procedures. Flrom the practical point of view, it would be more
efficient to add the $\mathcal{F}_{m}$-reduction procedure for each $P\in G_{m}$ by $G_{m}\backslash \{P\}$ in the inner
REPEAT-UNTIL loop of Algorithm 3.7.
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4. Computation of characteristic exponents.
We use the same notation as in Sect. 1. In particular, let $\mathcal{I}$ be a left ideal of $D_{0}$

associated with a IfUchsian system $\mathcal{M}$ as in Sect. 1.2. We assume $Y=\{(t, x)|t=0\}$ .
In fact, we can treat any non-singlular complex analytic hypersurface $Y$ for the (theo-
retical) coomputation of Algorithm 2.7. For the (practical) computation of Algorighm
3.6, we can treat any. hypersurface $Y$ that can be brought into the hyperplane $t=0$
by a birational transformation of $\mathbb{C}^{n+1}$ .
Theorem 4.1. Assume that $tbe$ system $\mathcal{M}$ is formally Fbchsian $aIongY$ at $0$ witb
$P_{1},$ $\ldots,P_{\epsilon}\in \mathcal{D}_{0}$ . Let $G$ be an FD-Grobner basis $of\mathcal{I}_{0}:=\mathcal{D}_{0}P_{1}+\cdots+\mathcal{D}_{0}P_{s}$ . Put

$G’=$ {$P\in G|$ lexp$FD(P)=(\mu,$ $\nu,$ $\alpha,$ $0)|$ for some $\mu,$
$\nu\in N_{\partial J}id$ some $\alpha\in N^{n}$ }

Tben th$e$ set of the characteristic exponents of $\mathcal{M}$ at $0$ is given by

(4.1) $e_{Y}(\mathcal{M}, 0)=\{\theta\in \mathbb{C}|\psi(\hat{\sigma}(P))(\theta,$ $0)=0$ for any $P\in G’\}$ .

Moreover, let $P$ be an element of $G’$ witb minimum order wi$tb$ respect to $\partial_{t}$ . Then
there exist a monic polynomiaI $f(\theta, x)\in$ $\mathcal{O}$ \’o $[\theta$ $]$ and $a(x)\in \mathcal{O}_{0}’suc\Lambda tb$ at $\psi(\hat{\sigma}(P))=$

$a(x)f(\theta, x)\tau^{k}wit\Lambda$ some $k\in \mathbb{Z}$ , and $tbe$ ideal $\tilde{J}_{Y}(\mathcal{M},$ $0)$ is generated by $f$ . In particular
we bare

$\tilde{e}_{Y}(\mathcal{M}, 0)=\{\theta\in \mathbb{C}|f(\theta,0)=0\}$ .

On generic points, we can compute the characteristic exponents from an FR-Gr\"obner
basis. In fact, the following is an immediate consequence of Corollary 3.11 and Theorem
4.1.

Corollary 4.2. Under $tbe$ same aesumptions as in Corollary 3.11, put

$S=$ {$i\in\{1,$
$\ldots,$

$\sigma\}|$ lexp$FR(P_{i})=(\mu\nu,$ $0)$ witb some $\mu i,$ $\nu:\in N$}.

Among the set $\{P_{i}|i\in S\}$ , let $P_{i_{0}}$ bave minimum degree witb respect to $\partial_{t}$ and set
$\psi(\hat{\sigma}(P_{i_{0}}))=f_{i_{0}}(\theta, x)\tau^{k}$ . Then we have

$JY$ $(\mathcal{M},p)=\tilde{J}_{Y}(\mathcal{M},p)=\mathcal{O}_{p}’[\theta]f_{i_{0}}(\theta,x)$ .

5. Computation of the induced system.
Here we use the same notation as above and assume the system $\mathcal{M}$ (as in Sect 1.2.)

is formally Fuchsian along $Y=\{(t, x)|t=0\}$ at $0$ . We study the structure of the
induced system $\mathcal{M}_{Y}=\mathcal{D}/(\mathcal{I}+tD)$ of $\mathcal{M}$ along Y. The induced system is a system
which the restriction to $Y$ of the holomorphic solutions of $\mathcal{M}satis\mathfrak{y}_{\Gamma}$. Our porpose
is to determine the structure of the stalk $\mathcal{M}_{Y,0}$ of $\mathcal{M}_{Y}$ at $0\in Y$ as a module over
$\mathcal{D}_{0}’=\mathbb{C}\{x\}\langle\partial_{x}\rangle$ . We denote by $u$ the modulo class of $1\in D$ in $\mathcal{M}=\mathcal{D}/\mathcal{I}$ , and for
$P\in \mathcal{D}$ , we denote by [Pu] the modulo class of $P\in \mathcal{D}$ in $\mathcal{M}_{Y}$ .

Let us begin with the following general result:
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Theorem 5.1. Assume $\mathcal{M}$ is fozmally Fuchsian along $Y$ at $0$ and
$\{k\in N|k\geq k_{0}\}\cap e_{Y}(\mathcal{M}, 0)=\emptyset$

for some $k_{0}\in N$ . Then $\mathcal{M}_{Y,0}$ is generated by $[\partial_{t^{j}}u]$ with $0\leq j\leq k_{0}-1$ as a $\mathcal{D}_{0}’$ -module.
In particular, we have $\mathcal{M}_{Y,0}=0$ if $k_{0}=0$ .

In view of this theorem, $\mathcal{M}_{Y}$ represents the relations among the ristrictions
$u(0,x),$ $\partial_{t}u(0, x),$ $\ldots,\partial_{t}^{k_{0}-1}u(0, x)$

of a holomorphic solution $u(t, x)$ of $\mathcal{M}$ on a neighborhood of Y.
Now let us describe a practical method to compute the induced system $\mathcal{M}_{Y,0}$ under

some moderate condition, which is always satisfied at a generic point of Y. (See [Tak2]
for a different general method not based on Theorem 5.1.)

Assume that the system $\mathcal{M}$ satisfies the same assumptions as in Theorem 5.1. Let
$G$ be a finite set of generators of the left ideal $\mathcal{I}_{0}$ of $\mathcal{D}_{0}$ . We assume that there exists an
element $P_{0}$ of $G$ such that $\psi(\hat{\sigma}(P_{0}))=f(\theta,x)\tau^{-j_{0}}$ and that $f(k, 0)\neq 0$ for any integer
$k\geq k_{0}$ . (We may assume $j_{0}\geq 0.$ ) In view of Corollary 4.2, this assumption is satisfied
if $G$ satisfies the conditioiis of Theorem 3.10 at $0$ ; i.e., if $G$ consists of elements of $A_{n+1}$

with lcoef$FR(P)(0)\neq 0$ for any $P\in G$ , and if $G$ is an FR-Gr\"obner basis of the ideal
which it generates over $\mathcal{D}_{R}$ .

We define a $\mathcal{D}_{0}’$-homomorphism $\rho$ : $D_{0}arrow \mathcal{D}_{0}’[\partial_{t}]$ as follows: Write $P\in \mathcal{D}_{0}$ explicitly
as (1.1). Then we put

$\rho(P)=\sum_{\nu,\alpha,\beta}a0_{\nu,\alpha},\rho x^{\alpha}\partial_{x}^{\beta}\partial_{t}^{\nu}\in \mathcal{D}_{0}’[\partial_{t}]$
.

For an element $P$ of $\mathcal{D}_{0}’[\partial_{t}]$ , its F-order $\nu=$ ord$F(P)$ denotes the order of $P$ with respect
to $\partial_{t}$ and its formal symbol is of the form $\hat{\sigma}(P)=A(x, \partial_{x})\partial_{t^{\nu}}$ with some $A\in D_{0}’$ . Let
us denote this $A$ by coef$(P, \partial_{t}, \nu)$ .

By the proof of Theorem 5.1, we have, for any $k\geq k_{0}$ ,
$\hat{\sigma}(\rho(\partial_{t^{j_{0}+k}}P_{0}))=pk(x)\partial_{t^{k}}$

with some $pk(x)\in \mathbb{C}\{x\}$ such that $p_{k}(0)\neq 0$ .
Now for an arbitrary element $P$ of $\mathcal{D}_{0}’[\partial_{t}]$ , let us define another element ind$(P,P_{0})$

of $\mathcal{D}_{0}’[\partial_{t}]$ by the following algorithm:
Algorritん$m5.2$.

INPUT $P\in \mathcal{D}_{0}’[\partial_{t}]$ ;
WHILE $\nu:=$ ord$F(P)\geq k_{0}$ DO

$P$ $:=P-$ $($coef$(P,$ $\partial_{t},$ $\nu)/p_{\nu})\rho(\partial_{t^{jo+\nu}}P_{0})$ ;
RETURN $P$ ;

Put
$\mathcal{D}_{0}^{\prime(k_{0})}=\bigoplus_{0\leq k\leq k_{0}-1}D_{0}’\partial_{t^{k}}\subset \mathcal{D}_{0}’[\partial_{t}]$

.

Then ind $(\cdot, P_{0})$ defines a $\mathcal{D}_{0}’$-homomorphism of $\mathcal{D}_{0}’[\partial_{t}]$ to $\mathcal{D}_{0^{(k_{0})}}’$ . For an element $Q=$

$\sum_{k=0}^{k_{0}-1}Q_{k}(x, \partial_{x})\partial_{t}^{k}$ of $\mathcal{D}_{0^{(k_{0})}}’$ , we write

$[Qu]= \sum_{k=0}^{k0-1}Q_{k}(x, \partial_{x})[\partial_{t^{k}}u]\in \mathcal{D}_{0}^{\prime(k_{0})}$ .
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Theorem 5.3. Under the assumptions above, tbere exists an integer $j_{0}\geq 0$ such $t\Lambda at$

the induced 司$ystem\mathcal{M}_{Y,0}$ is eゆ丑醐 y given by $tAe$ system of equations for unknowns
$[u],$

$\ldots,$

$[\partial_{t}^{\grave{k}_{O}-1}u]$

$[ind(\rho(\partial_{t^{j}}P),P_{0})u]=0$ for any $P\in Gand$ $anyj=0,1,$ $\ldots,j_{0}$ .

6. Examples of actual computation.
In the sequel we put $n=1$ and use the notation $\partial_{x}=\partial/\partial x,$ $\partial_{y}=\partial/\partial y$ with

$(x, y)\in \mathbb{C}^{2}$ as well as $(t,x)\in \mathbb{C}^{2}$ as in the preceding sections.
As examples, we treat the systems for Appell’s hypergeometric functions of two

variables. We can verify that these systems are in fact Ebchsian along $aU$ the irreducible
components of their singular loci and can compute their characteristic exponents and
induced systems completely by using Algorithms 2.7, 3.7, 5.2.

Let us describe briefly the computation for the systems for Appell’s $F_{3}$ and for $F_{4}$ .
Maybe such facts have been known (at lefist implicitly) by using concrete expression
of their solutions (see e.g., [Tak3] for the systems for $F_{1},$ $F_{2},$ $F_{3}$ ). Note that in the
following computation we do not use any information on the concrete expression of the
solutions (power series or integral representation) in advance.

The following computation was carried out by using our implementation of Algo-
rithms 2.7, 3.7, 5.2 on a computer algebra system $Risa/asir$ (cf. [NT]).

Example $\theta.1$ (System for Appell’s $F_{3}$). Let us consider the system $\mathcal{M}_{3}$ for Appell’s
hypergeometric function $F_{3}$ defined by

$\mathcal{M}_{3}$ : $P_{31}u=P_{32}u=0$ ,

where

$P_{31}$ $:=x(1-x)\partial_{x}^{2}+y\partial_{x}\partial_{y}+\{\gamma-(\alpha+\beta+1)x\}\partial_{x}-\alpha\beta$,
$P_{32}:=y(1-y)\partial_{y}^{2}+x\partial_{x}\partial_{y}+\{\gamma-(\alpha’+\beta’+1)y\}\partial_{y}-\alpha’\beta’$

with parameters $\alpha,$ $\alpha’,\beta,\beta’,\gamma\in \mathbb{C}$ . (We assume these parameters take generic values.)
By the Gr\"obner basis algorithm for the ring of differential operators with polynomial
(or rational function) coefficients, we know that $\mathcal{M}_{3}$ is a holonomic system of rank 4
and its singular loci are defined by $xy(x-1)(y-1)(xy-x-y-1)=0$ . (See [OS] for
the precise computation of the characteristic variety.)

Put $Y=\{(x,y)|x=0\}$ and $I=\mathcal{D}_{R}P_{31}+\mathcal{D}_{R}P_{41}$ . Then Algorithm 3.7 with the aid
of Propositions 3.8, 3.9 returns $G$ $:=\{P_{31}, P_{32}, P_{33}\}$ as a minimal FR-Gr\"obner basis
for $I_{3}$ along $Y$ ; here

$\ovalbox{\tt\small REJECT}_{3}=(1-x)yx^{2}\partial_{x}^{3}+(y-1)yx^{2}\partial_{y}\partial_{x}^{2}$

$+\{$ $(-\alpha+\alpha^{/}-\beta+\beta^{/}-$ ツー $3)x$ 十 $(-\alpha’-\beta^{/}+2\gamma+1)\}yx\partial_{x}^{2}$

$+(\alpha+\beta+1)(y-1)yx\partial_{y}\partial_{x}$

$+[\{$ $(\alpha’-\beta+\beta’$ 一ツー $1)\alpha+(\beta+1)\alpha’+(\beta^{/}-\gamma-1)\beta+\beta’$ 一ツー $1\}x$

$+(\beta’-\gamma)\alpha^{/}-\gamma\beta^{/}+\gamma^{2}]y\partial_{x}$

$+\alpha\beta(y-1)y\partial_{y}+\alpha\beta(\alpha’+\beta’-\gamma)y$ .
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Their leading terms are

lterm$FR(P_{31})=$ 忽 $\partial_{x}\partial_{y}$ , lterm$FR(P_{32})=$ 忽 $($ 1 – 忽 $)\partial_{y^{2}}$ , lterm$FR(P_{33})=yx^{2}\partial_{x}^{3}$

This implies that $\mathcal{M}_{3}$ iS Fuchsian along $Y$ on $\{(0,$ $y)\in Y|$ 忽 $\neq 0,1\}$ $($We can also
$veri\Psi$ that $\mathcal{M}_{3}$ is ako Fuchsian along $Y$ at $(0,0)$ and $(0,1)$ by Algorithm 2.7.) We get

$e_{Y}(\mathcal{M}_{3},p)=\tilde{e}_{Y}(\mathcal{M}_{3},p)=\{0, \alpha’-\gamma+1,\beta’-\gamma+1\}$

for any $p\in Y\backslash \{(0,0), (0,1)\}$ .
Any multi-valued analytic solution $u$ of $\mathcal{M}_{3}$ around $Y$ is written in the form

$u=v_{1}(x, y)+v_{2}(x,$ 忽$)x^{\alpha’-\gamma+1}+v_{3}(x,$ 忽 $)x^{\beta’-\gamma+1}$

with $v_{1},v_{2},$ $v_{3}$ holomorphic on a neighborhood of $Y\backslash \{(0,0), (0,1)\}$ . Moroever, the
computation of the induced systems shows that $v_{1}(0, y),$ $v_{2}(0, y),$ $v_{3}(0,$ 忽 $)satis\theta$ the
equations

$\{$忽 $(1$ -忽 $)\partial_{y^{2}}+(\gamma-(\alpha’+\beta’+1)y)\partial_{y}-\alpha’\beta’\}v_{1}(0,$忽$)=0$ ,
$(y\partial_{y}+\alpha’)v_{2}(0,y)=0$ , $(y\partial_{y}+\beta’)v_{3}(0,y)=0$.

We know that these systems coincide precisely with the induced systems because the
sum of the rank of these systems equak 4, which is the rank of the system $\mathcal{M}_{3}$ .
Example $\theta.2$ (System for Appell’s $F_{4}$). The system $\mathcal{M}_{4}$ for Appell’s $F_{4}$ is defined by

$P_{41}u=P_{42}u=0$ ,

where

$P_{41}:=x(1-x)\partial_{x}^{2}-2x$忽 $\partial_{x}\partial_{y}-y^{2}\partial_{y}^{2}+\{\gamma-(\alpha+\beta+1)x\}\partial_{x}-(\alpha+\beta+1)y\partial_{y}-\alpha\beta$ ,
$P_{42}$ $:=y(1-y)\partial_{y}^{2}-2xy\partial_{x}\partial_{y}-x^{2}\partial_{x}^{2}+\{\gamma’-(\alpha+\beta+1)y\}\partial_{y}-(\alpha+\beta+1)x\partial_{x}-\alpha\beta$

with parameters $\alpha,$
$\beta,$ $\gamma,\gamma’\in \mathbb{C}$ . This is a holonomic system of rank 4 with sigular loci

$xy(x^{2}+y^{2}-2xy-2x-2y+1)=0$ . Put $I=\mathcal{D}_{R}P_{41}+\mathcal{D}_{R}P_{42}$ and

$Y=\{(x,$ 忽$)|x^{2}+y^{2}-2x$忽 $-2x-2y+1=0\}$

We make a birational coordinate transformation

$t=x^{2}+y^{2}-$ 2」じ忽一 $2x-2$忽 $+1$ , $x=X$ 一夏

and rewrite $P_{41},$ $P_{42}$ in the new coordinate system $(t, x)$ .
Inputting $\{P_{41}, P_{42}\}$ to Algorithm 3.7, we get, as the output of the algorithm stopped

when $m=-1,$ $G=\{P_{41}, P_{42}, P_{43}, P_{44}\}$ with leading terms

lterm$FR(P_{41})=(x+1)(x-1)^{2}\partial_{t}\partial_{x}$ , lterm$FR(P_{42})=(x+1)^{2}(x-1)\partial_{t}\partial_{x}$,

$1term_{FR}(P_{43})=2(x+1)(x-1)t\partial_{t^{2}}$ , lterm$FR(P_{44})= \frac{1}{2}(x+1)^{3}(x-1)^{2}\partial_{x}^{3}$ .
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Moreover $P_{43}$ , and hence $\mathcal{M}_{4}$ , is Ebchsian along $Y$ on $Y\backslash \{(0,1), (0, -1)\}$ . (By using
Algorithm 2.7 we can verify that $\mathcal{M}_{4}$ is ako FUchsian along $Y$ at $(0, \pm 1))$ . We do not
know if $G$ is indeed an FR-Gr\"obner basis of $I$ along Y. In any case, we get from this
set of generators

$e_{Y}( \mathcal{M}_{4},p)\subset\{0, \gamma+\gamma’-\alpha-\beta-\frac{1}{2}\}$

for any $p\in Y\backslash \{(0,1), (0, -1)\}$ . Hence any multi-valued analytic solution $u$ of $\mathcal{M}_{4}$

around $Y$ is written in the form

$u=v_{1}(t, x)+v_{2}(t, x)t^{\gamma+\gamma’-\alpha-\beta-1/2}$

with $v_{1},$ $v_{2}$ holomorphic on a neighborhood of $Y\backslash \{(0,1), (0, -1)\}$ . Moroever, the
computation of the induced systems shows that $v_{1}(0,x),$ $v_{2}(0, x)$ satisfy the equations

$R_{1}v_{1}(0, x)=0$ , $R_{2}v_{2}(0, x)=0$

with

$R_{1}=(x-1)^{2}(x+1)^{2}\partial_{x}^{3}$

$+(x-1)(x+1)\{(2\alpha+2\beta+\gamma+\gamma’+2)x-3\gamma+3\gamma’\}\partial_{x}^{2}$

$+[\{(4\beta+2\gamma+2\gamma’)\alpha+(2\gamma+2\gamma’)\beta+\gamma+\gamma’\}x^{2}-2(\gamma-\gamma’)(2\alpha+2\beta+1)x$

$+(-4\beta+2\gamma+2\gamma’-4)\alpha+(2\gamma+2\gamma’-4)\beta+(-8\gamma’+5)\gamma+5\gamma’-4]\partial_{x}$

$+4\alpha\beta\{(\gamma+\gamma’-1)x-\gamma+\gamma’\}$ ,
$R_{2}=(x-1)(x+1)\partial_{x}+\{(3\gamma+3\gamma’-2\alpha-2\beta-2)x-\gamma+\gamma’\}$ .
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