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Hausdorff Dimensions of Almostv Periodic
Attractors
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1. Introduction and notations

Landau proposed, as a possible mechanism for the onset of tur-
bulance, the successive bifurcations along with increasing of a stress
parameters of the system; the infinitely many bifurcated frequen-
cies yield the destabilization of the fluid modes. Ruelle and Takens
challanged Landau’s conjecture in [4] by showing that there exist ar-
bitrarily small changes of the system which convert the flow from a
quasiperiodic three-frequency flow to chaotic one. They proved that
only a few bifurcations can create a chaotic flow. After their sce-
nario, on the problem of characterizing possible routes to chaos in
nonlinear dynamical systems there have been reported several ways;
infinite period-doubling cascades [3], intermittency and crises. On
the other hand, R-T results have been questioned by Yorke et al.,
since the small perturbations necessary to make the flow chaotic may
have to be very delicately chosen and hence may be unlikely to occur
in practice. In [7] they showed numerically that one can typically
observe three-frequency quasiperiodicity in experiments.

Anyway, since the specific mechanism from quasiperiodicity to
chaos remains in doubt, one can admit some posibilities of finding
an open or an outstanding route to chaos by detecting or analyzing
properties of quasiperiodic states. In this paper we estimate fractal
dimensions of equi-almost periodic attractors by using the order of
¢-almost period and the coefficient of Holder’s continuity. Further-
more, we estimate the e-almost period of quasiperiodic functions by
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using Diophantine approximations. In n-frequency case we can show
that the fractal dimension of its orbit is majorized by the value n/é
where 6,0 < § < 1, is the coefficient of Holder’s continuity. As a
result we can conjecture that the dimension of the orbit becomes di-
vergent (chaotic?)if the constant § | 0.

Definitions and notations. Let S(¢), ¢ > 0, be a semigroup of
continuous (generally nonlinear) operators on a Banach space (X, |-|).
A subset A is called invariant for the semigroup S(t) if

S(t)A=A  for every t > 0. (1.1)

Furthermore, when the operators S(t) are one-to-one on A and its
inverse is continuous, S(t) can be defined for all ¢ € R by S(—1t) :=
S(t)~! and

| S(t)A=A foreveryte R, (1.2)

then A is called strongly invariant.
The orbits through € X are denoted by

7 (z) = Uer+S(t)z,  7(2) = UierS(t)z
and the w-limit set of z is defined by
w(z)={y€ X :y = lim S(t,)z witht, — 0o asn — oco}.
A subset A is called minimal under S(t) if

vt(y) = A for every y € A.

A subset A is callled equi-almost periodic under S(t) if it is strongly
invariant and, for each ¢ > 0 there exists an ¢-almost period (abr.
g-a.p.) I, > 0 such that every interval of its length [/, in R contains a
point a with the property

|S(t+ o)y — S(t)y|<e forall teR, ye A (1.3)

Furthermore, under the same notations as above we say a function
f(t): R — X is almost periodic if

|ft+a)— f(t)| <e forall teR. (1.4)



An attractor is a set A C X that enjoys the following properties:
(i) A is invariant, which satisefies (1.1).

(ii) A possesses an open neighborhood. U such that, for every uo € U,
S(t)up converges to A as t — oo:

d(S(t)ug,A) >0 as t— o0
where d(z, A) = inf{|z — y| : y € A}.

In [2] Dafermos and Slemrod proved the following information on

w-limit sets:

Let S(t) be a continuous semigroup of contractions on a
closed subset C of X. (The definitions of orbits and w-limit
sets are considered in the closed set C.) If for some z € C
w(z) is nonempty, then it is minimal and strongly invariant.
For each t € R, S(t) is an isometry on w(z). Furthermore,
if w(x) is compact, then it is equi-almost periodic.

Note that
w(A) = ﬂszoutZsS(t)A.

If A C X is an attractor, w(A) = w(U) = A, since (i) implies w(A4) =
A and (i) gives w(U) C A. On the contrary, under some suitable
compact conditions on S(t), it is known (cf. [6]) that the w limit set
of some absorbing set becomes an attractor.

Our plan of this paper is as follows: In section 2 we estimate
fractal dimensions of equi-almost periodic sets by the order of e-
almost period and the constant § and in section 3 we calculate the
¢-almost period of the 2-frequency quasiperiodic orbits and in section
4 we treat the n-frequency case (n > 3).
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2. Hausdorff and fractal dimensions

The purpose of this section is to estimate fractal dimensions of
some equi-almost periodic subsets in X.

Let A be a subset of X, then the d—dJmenswnal Hausdorﬂ measure
M(A) is defined by -

My(A) = 1iﬁ)1 inf{}" ré: ACUiB;, 1 =radi(B;)<c¢}

where the infimum is for all covering of A by a family {B;} of balls
of X with radii r; < ¢.
The Hausdorff dimension of A, denoted by Dg(A), is defined by

Dg(A) =sup{d > 0: My(A) = oo}.

Let Na(¢), ¢ > 0, denote the minimum number of balls of X radius
¢ which is necessary to cover a subset A of X. The fractal dimension
of A, which is also called the capacity of A, is the number

Dr(A) = ‘1iI£lj(l)1p %?.
The following alternative expr’ession} for Dp(A) can be given by
Dr(A) = inf{d > 0: p4(A) = 0}
where

pa(A) = limsup e Ny (¢).
e—0

The difference between the Hausdorff and the fractal dimensions lies
in the fact that we consider, in one case, the covering of A by balls of
radius < ¢ and in the other case the covering of A by balls of radius

e. It is clear that M4(A) < p4(A) and so that Du(A) < Dr(A).

First we consider the dimension of the orbit of an almost periodic
function.



Theorem 1. Let f(t) : R — X be an almost periodic function,
which satisfies a Holder condition: there exists a constant 6 : 0 < § <

1 such that
F(®) — £(s)] = ¢g < 00. (2.1)

su
t,seRg;és [t — s|?

If the e-almost period of the function f(t) satisfies the following esti-

mate
l.< Ke™® | (2.2)

for some K > 0 and ¥ > 0, then the fractal dimension of its orbit
Y = User f(t) satisfies ’

Dp(¥X) <d+ —;— (2.3)

proof. Denote
F:=uU{f(t):0<t <L},

then we have
YCF+BA(0)=U{B.(f(t): 0<t <} (2.4)

where B.(z) = {:c € X : |z — 2| < ¢}. In fact, for every t € R there
exists 7 € [t — I, t] with the property |

sup |[f(o+7) — f(o) < ¢
g€R
and it follows that

f@) = G- <If(E-7)+7)-ft—7)| <e.
Since f(t — 7) € F, the above estimate implies (2.4).
Take a small number p := (¢/c;)'/® and consider a partition of the
interval [0,[]:
0=to<t1<t2<f"<tn<l5,
lti - ti—ll = P,Z = ]-7 "°an7k le — 1 < P
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where n = [l./p]. Since for each t € [0,l,] there exists a number
i1 :t; <t<t;y1, which satisfies

1£(t) — F(t:)] < colt — ti]° < cop® =,

we have

F C UL B.(f(t:)). (2.5)

From (2.4) and (2.5) we can estimate
le
Ha(Z) < (4 1)(20)* < K'(e777% + 1),

Thus, taking the limit ¢ | 0, we have
pa(X) < oo

if d > 9+ 1/6. It follows that

Remark.1l In Theorem 1 it may be possible that uniform 4-Holder
condition (2.1) is substituted by the following local §-Hélder condi-
tion; each ¢y € R has a neighborhood I := (ty — €, ty + €¢) such that
f(¢t) is uniformly Hélder continuous on I, that is,

|f(t) = F(s)] = ¢plty) < 00

sup

toeliigs |t — s°
where ¢y depends on ¢, € R. For instance, if we assume that c¢g is
increasing as |to| T ;co(|tol) =~ |to|”, ¥ > 0, then ¢y has the order
of €77 in the interval [0,l.]. Following the argument of the proof (
putting p := ¢(1+19/8) we obtain

1
Dr(2) <91 +9) + 7.



Here, we should note that almost periodic functions must be uni-
formly continuous (cf. [1]). While we have not yet found the proof
for the assertion that the local Holder continuity of an a.p. function
yields the uniform Holder continuity, the assumption of the uniform
Holder continuity may be considerable in the almost periodic case.

105

Next theorem is easily obtained by applying Theorem 1 to Dafermos-

Slemrod results.

Theorem 2. Let S(t) be a semigroup of cotractions on a Banach
space X and assume that for some ¢ € X w(x) is nonempty and
compact. If for some y € w(z), S(-)y : R — X is uniformly é-Hélder
continuous and furthermore, if the e-almost period of the equi-almost
periodic set w(z) satisfies

l. < Ke™® (2.6)

for some K > 0 and ¥ > 0, then we have

Dr(w(z)) <9+ % B (2.7)

3. ¢-a.p. of 2-frequency quasiperiodic functions

Let g(t,s) : RX R — X be a piecewise periodic function such that
gt+1,8) =g(t,s), g(t,s+1)=g(ts), t,seR

and consider a quasiperiodic function f(t) = g(wt,t) where we take
an irrational real number w : w > 1, which is a technical condition,
and put 7 = 1/w. We assume Hoélder conditions of the function g(-, -)
for constants §; : 0 < 6; < 1,0 =1,2:

lg(t,s)—g( ,8)

|
l9(t,8) — g(t,s")]

[t — 2",
|s

<
<l|s—4%, tt,s,8d€R (3.1)
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where, for simple terminology, we consider the case ¢y = 1 without
' losing its generality. In this section, applying Diophantine approxi-
mation (cf. [5]), we estimate the ¢-almost period of the quasiperiodic
function f(¢).

Consider the following continued fraction of the number 7:

;= L (a; € N) (3.2)

a1+

as +

as + .

and take the rational approximation as follows: Let my = 1,ng =
0,m_; = 0,n_; = 1 and define the pair of sequences of natural num-
bers '

m; = a;m;_; + m;_o,
n; = a;Ni—1 + ni_g, i > 1,

then the élementary number theory gives the Diophantine approxi-

mation ] 1
n;
T — —| < < —. (3.3)

m; m;m;41 m;

On the other hand, 7 is called badly approximable if there exists
a positive constant c:

p C\9y _1_ |
|T—E|>(§), 0<ec<—=) (3.4)

V5

hold for infintely many rationals p/q. It is also known (cf. [5]) that
7 is badly approximable if and only if the sequence {a,}, which is
obtained by the continued fraction of 7, is bounded.

Theorem 3. Under the notations introduced above, assume that
there exists a constant Ky > 1 such that

m; > Kom,'_l, 1= 1,2,' Tty (35)



then the c-almost period of f(t) satisfies
| . <Kew, K>0 (3.6)
where o := max{61,83} and for the fractal dimension of the orbit X
of f(t) we can estimate | |
| | 1 1 -
Dr(X) < St , (3.7)

where o' := min{é1, 62}

proof. We will prove the following two inequalities; [, < K 5_517,1' =
1,2. First, we consider the case 1 = 2, but, for simplicity of terminol-
- ogy, we use 0 := d, : '

By taking a sufficiently large number k£ we define a small constant

e = 1 R

S 1-— Kd_g Mgy ’

then our main subject of the proof is to show that we can take I, =
mi417. Then (3.6) with € = ¢4 holds and, by defining

=1, for ery1<e<Leg

we can obtain
1

l. =1, < Ke;® < Ke%.
Thus, for an interval [a — my417, a] with an arbitrarily real number
a, it is sufficient to find an element in the interval with the property
(1.4).

First we consider the case where a > myy417. Hereafter in the
proof, for simplicity of terminology, we reset the numbering of suffix
and the notation as follows:

Miy; — My, Ay — g, ,‘ and Ep — &.

Fix the number ¢ : m;7 < a < m;y 17, then, by considering the
estimate
m; < (a; +1)m;_1,
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we can take a sequence of nonnegative integers {k;}, 1 < j < ¢, which
satisfies
0<kj<aq; for 1<3<i—-1, 1<k;<aq
and
km;,m+ ki_ym;_7+ -+ kimyT
<a < kmiT+ kioymi T+ - + kemat + (k1 + 1)my 7.

Define

m(k) == k;m; + kioymi_y + - + kimy,

n(k) := kini + ki-ini—y + -+ + king
and note that m(k)T € [a — m;7,a], then by Holder continuity of g

and Diophantine approximation we can obtain the following sequence
of estimates:

|f(t+m(k)T) — f(2)] -

lg(w(t + m(k)T),t+ m(k)T) — g(wt, t)|

|g(wt + m(k),t + m(k)T) — g(wt,t)|

lg(wt + m(k),t + m(k)T) — g(wt + m(k),t + n(k))|
+|g(wt + m(k),t + n(k)) — g(wt, t)]

lg(wt + m(k),t + m(k)T) — g(wt + m(k),t + n(k))|

Im(k)r — n(k)|’

n; n
(kimi)’|T — EP + oo+ (koma)? | — m—11|5

IA 1 IA

Il

VAN VAN

IN

n; n
miplr = o il —
?

IN

(ot ()

where we use an elementary inequality (z +y)® < 28 +¢%, z,y > 0.
Thus Hypothesis (3.5) yields

S+ mEn) = SO < GO+ K+ Kb )

< (2y—2

m; l—K(-)—a:

)
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for every t € R. Therefore, we can find the point m(k)r with the
required property in any interval [a,a + ] for a > 0.

For the interval [a—., a], a < 0, we can take the element —m(k)r,
since

|ft+m(k)T) — f(t)| <e forevery teR
yields
|If(")— f(' —=m(k)T)| <e forevery t' =t+m(k)Tr € R

and m(k)r € [d',a' + 1], a' > 0, is equivalent to —m(k)T € [—a' —
le, —d']. Finally, for the interval [a,a + ], —l. < a < 0, the null
point plays its role for the property (1.4).

Next we treat the case ¢ = 1, substituting the role of m(k)7 by that
of n(k). We use ¢ := §; and the resetting notations for simplicity.
Let '

w’ 1
¢ 1-K;°® .(m1)5
and consider the interval [a — m7T — €1, a + ¢;] where
1
RN O

then n(k) is in this interval, since |m(k)T — n(k)| < €; (cf. the
estimation above) and m(k)T € [a — mi7,a]. We can show that
the element n(k) satisfies the property (1.4) by using the argument
in the previous case ¢ = 2 and applying the following sequence of
inequalities.

7+ (k) - £(2)
= lg(w(t +n(k)),t +n(k)) — g(wt,)
< |g(wt + wn(k),t + n(k)) — g(wt + wm(k)7,t + n(k))|
+|g(wt + m(k),t + n(k)) — g(wt, t)]
lg(wt + wn(k),t + n(k)) — g(wt + wm(k)T,t 4+ n(k))|
w’m (k)T — n(k)[’ |
W) ek ) <

?

IA

IA
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Thus we can get the estimate -
.1 Ll 1
l. < Kmin{e 5,6 %} =Ke™», o0 =maxé;.
?

To complete the proof by applying Theorem 1, it is sufficient to check
the following Holder condition.

|£(2) = f(s)l

lg(U)t, t) - g(ws,s)l
lg(wt, ) — g(wt, s)| + |g(wt, s) — g(ws, s)]
[t — 3|52 + w‘sllt — s|’51

(1+wh)|t—s”, o :=miné;

IAIA A

where we consider the case |t — s| << 1, which is sufficient to apply
the proof of Theorem 1. O ‘

Remark 2. The assumption (3.5) is not so restrictive. For instance,
it is satisfied if the irrational number 7 is badly approximable. In fact,
sup; a; < K implies that

mj = My + M,

1
> (a;+——

> (a; + ymi_ > (1+

1 1
K+1 - K+1

The following is the typical example of inappropriate cases.

0 = 1 J=2m
77 agmer 00 J=2m+1 — co.

)m;-1.

4. c¢-a.p. of n-frequency quasiperiodic functions (n > 3)

Next we estimate the ¢-almost period of n-frequency (n > 3)
quasiperiodic functions by using the simultaneous approximation (cf.

[51):
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Suppose that at least one of ay, s, - - -, ay is irrational. Then there
are infinitely many n-tuples of rational numbers

) ; 1 : |
&... 'p_: |az_zil<— (z:]_,"',n). (4.].)

Y

q ’ q » q q1+1/n

Consider piecewisely Holder continuous and 1-periodic function
g(-,+++,-) : R* - X and, for simplicity, we assume that there exists
a common constant 0 < § <1 such that -

lg(ti, ta, - t)—g(t, tay - ta)| < [t1—84|°, t1,8,,t,i=2,---,nER

and the same estimate holds for each of the other varlables with the
same constant 4. For per10d1c1ty we assume

g(tl + 1at27 e 7tn) - g(tl,t2‘+ 1at37' : )
== g(t17t23” '7tn + ]-) = g(tla"_')tn)-

For a given {n — 1} tuples of irrational numbers w;, ws,- -+, Wy_1,
which are rationally independent and greater than 1, we define a
quasiperiodic function by

f@) =glwt, -, wy,_1t,t) : R — X.

Our subject in this section is to estimate the ¢-a.p. of f(t).

It follows from the simultaneous approximation (4.1)(case n :=
n — 1) that there exist sequences l;,7x; € N,i = 1,2,---, and k =
1,---,n — 1, which satisfy

Thyi 1

L < ey k= Len oL

|wk —
Let 7, = 1/wy < 1, then we have

! .
ITkrk,i — lzl < (;)1/(n—1)’ k= 1,° e ,n — 1,
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and it follows that
n—1 1
| Z reiTe — (n — 1)l < (n - 1)(—)1/("_1), (4.2)
_1 |
|_—§ Z TkiTk — TJ,ZTJ‘ < 2(l )1/(71, 1)7 J = la e,n— 1(43)

k#; :

Theorem 4. Under the notations introduced above, assume that
there exist constants K1, Ky > 0:

Kllj—l < lJ < Kglj_l fOT'j = ].,2, ey (44)
then the e-almost period of f(t) satisfies |
I < K'e™*% (4.5)

for some constant K' > 0 and consequently, for the orbit ¥ of f( )
we can estimate

Dr(S) < 5. (46)

proof. For a sufﬁc1ent1y large 19, define a small constant
-§/(n-1
e 1= Kol 0"
where
K6

Ke= " K -TD

{Z(n-2)°(wi +- - +wp_g) + (n = 1)}, (47)

then by proving Il ~ l;,+; We can obtain (4.5).
Hereafter in the proof we reset the numbering and define the no-
tations as follows: |

lig+j = lj, kig4; — kj and so on,

L; :=(n-1)L,

e(ly) = 1( K_l)/(n 1)( )
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then we take a real number a > L;+¢(l;). Following the argument in

the proof of Theorem 3 and considering an interval [a — Ly —¢(l;),a+

£(1)], we aim to search a point in this interval with the property (1.4).
We can find a number ¢ > 1:

L;<a< L, (,which means L; 4; < a < Ljj4it1).
By Hypothesis we can find a sequence {k;},1 < j <
0<ki<K; for 1<3<:-1, 1<k<K,
with the following property
kyLy+ -+ kiL; <a< (ky+ 1)L+ koLy + -+ + k; L.

Put

s(i) = i:gn: TeTk,jKj s

n(i) = ki + - +kL;

then from (4.2) we have

n-1

|s(i) — n(i)] < le > Tirk; — Lilk;
]:

k=1
1
< 2ln-— 1)(1—_)1/(n—1)K2
J

j=1
(n - 1)K2 1.

< 1 K-1/(n.1)(a)"_'T =¢e(lh)-
1

It follows that

s(¢) € [a— Ly —e(ly), a +(l)],

since n(i) € [a — L1, a]. By using Holder continuity and periodicity of
¢ and applying approximation (4.3) we obtain the following sequence
of estimates.
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1£(+ () = F@OI. .
< lg(wi(t +5(8); s wama(t 4 5(2)), 2+ 5(2) — g(wit, -+ -, waat, B)|

n—1

= lg(wit+wi D2 mern ks, wat + w2 Y0 Y Tirnky, -+, + 5(i))

7 k=2 7 k#£2
_g(wlta T wn—lta t)l

n—1

< lglwit + w1 Y Y Tar ks, wat +wy » Y Ttk ik, e et + 8(3))
7 k=2 7 k#2

—g(wit + (n = 2wim Y ryikj, wat +we 3 Y Tern ks, oyt + 5(1))]
j=1 7 k#2
+g(wit, wat + wy Y D Thr ks, ot + (i)
7 k#2
eg‘(wlt, 'U)zt + (n - 2)’(1)2’7'2 z szjkj, e ,t + S(Z))l
=1
+|g(w1t, wyt, wst + ws Z Z Tkrk,jkj, RIS A S(Z))
7 k#3 -

—g(wit, wat, wat + (n — 2)wsms Y _ 1r35k;, -+, 1 + 5(1))]
. =1

+|g(w;t, Wat, ++ W1t t + (1)) — g(wit, -+, wp_1t,t)|
< wf Z | Z Tk — (N — 2)'7'1”1,j|6kf + wés Z | Z Tk, — (n— 2)727‘2,j|6kf
j=1 k#1 | _ j=1 k#2
+- -+ |s(8) = n(3)°

< {Ew2(n— 2P (DT 4

oot {Kywn2(n — 2)}6 Z(%)M(n—l) + E(l1)6

{2K;(n - 2)¥
1— k8=
{K:(n-1)¥ (l)a/(n—n
(1 _ Kl—l/(n-l))cs L
< Kéll—5/("—1) .

< (Wit tw,)

1. 6/(ne
(7)6/( 1)
1




for every ¢ € R where Kj is given by (4.7) and we use an elementary inequality
1 1
( 1

< —— O0<z<1l 0<a<l.
1—2z°
Thus we can admit the length of the interval [a - L1 —e(lh),a+ e(ll)] as e-almost
period:

— T

lE = ll(— l,0+1) < K E_T

for some constant K' > 0. Since we can apply the same argument
as that in Theorem 3 for any interval with its length I., we complete
the proof a

Remark 3. If the function g(:,---,-) has various orders in Hélder

conditions, say, 61, 0s, - -+, then the conclusion of Theorem 4 holds by
putting

6 := min{dy, -, 6, }.
In fact, since the above argument gives

_'52_ _5&_

M]_lln 1 +M2l1 -t +Mll - =E£,
we have ¢ < Ki7%/*D,
Remark 4. Hypothesis (4.4) corresponds to the assertion in the
2-frequency case that the irrational number 7 is badly approximable,

but we have not yet found the corresponding property in the simul-
taneous approximations.

References

[1] L.Amerio and G.Prouse, Almost-Periodic Functions and Func-
tional Equations, Van Nostrand Reinhold, 1971.

[2] C.M.Dafermos and M.Slemrod, Asymptotic behavior of nonlinear
contraction semigroups, J. Funct. Anal. 13 (1973) 97-106.

[3] M.J.Feigenbaum, Qualitative universality for a class of nonlinear
transformations, J. Statist. Phys., 19 (1978) 25-52.

115



116

[4] D.Ruelle and F.Takens, On the hature of turbulence, Comm.
‘Math. Phys. 30 (1971) 167-192.

[5] W.M.Schmidt, Diophantine Approximation, Springer Lecture
Notes in Math. 785, 1980.

[6] R.Temam, Infinite-Dimensional Dynamical Systems in Mechan-
ics and Physics, Springer Appl. Math. Sci. 68, 1988.

[7] C.Grebogi, E.Ott, J.A.Yorke, Are three-frequency quasiperiodic

orbits to be expected in typical nonlinear dynamical systems ?,
Phys. Rev. Let. 51 (1983) 339-342.



