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Nonlinéa,r Ergodic Theorems for Semigroups of
Nonexpansive Mappings and Lett Ideals |

Anthony T. M. Lau? Koji Nishiura and Wataru Takahashi
(Tl #ik) (&l )

1 Introduction

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff topology
such that for each s € S the mappings s — a-s and s — s-a from S to S are continuous.
Let E be a uniformly convex Banach space and let $ = {7, : s € S} be a continuous
representation of S as nonexpansive mappings on a closed convex subset C of £ into C,
Le., Typx = T,Tpz for every a,b € S and z € C and the mapping (s,z) — T,(z) from
S x C into C is continuous when S x C has the product topology. Let F'(S) denote the
set {x € C : T,z = z for all s € S} of common fixed points of S in C. Then as well
known, F(S) (possibly empty) is a closed convex subset of C (see [5]).
In this paper, we shall study the distance between left ideal orbits and elements in the
fixed point set F(S). We shall prove (Theorem 3.11) among other things that if F has
a Fréchet differentiable norm, then for any semitopological semigroup S and z € C, the
set Q(z) = Neo{Tiz : t € L}, with the intersection taking over all closed left ideals L of
S, contains at most one common fixed point of S (where ¢6A denotes the closed convex
- hull of A). This result is then applied to show (Theorem 4.1) that if F(S) N Q(z) # 0 for
any z € C, then there exists a retraction P from C onto F(S) such that T,P = PT, = P
for every t € S and P(z) € co{Tiz : t € S} for every z € C. Both Theorem 3.11 and
Theorem 4.1 were established by Lau and Takahashi in [18] when § has finite intersection
property for closed left ideals.
The first nonlinear ergodic theorem for nonexpansive mappings was established in 1975 by
Baillon [1]: Let C be a closed convex subset of a Hilbert space and let T be a nonexpansive
mapping of C into itself. If the set F(T) of fixed points of T is nonempty, then for each
zeC, the Cesaro means

n-1
z) = — Z Tk
n k=0

converge weakly to some y € F(T). In this case, putting y = Pz for each 2z € C, P is
a nonexpansive retraction of C onto I'(T) such that PT = TP = P and Pz € co{T"z

n=1,2,...} for each € C. In [24], Takahashi proved the existence of such a retraction
for an amenable semigroup. This result is further extended to certain Banach spaces by
Hirano and Takahashi in [12]. ‘
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Our paper is organized as follows : In section 2 we define some terminologies that we use
; in section 3 we study the distance between ideals determined by left orbits and the fixed
point set ; in section 4 we apply our results in section 3 to establish our main nonlinear
ergodic theorems ; finally in section 5 we study an almost fixed point property determined
by the minimal left ideals in the enveloping semigroup of a semigroup of nonexpansive
mappings on a weak compact convex set and obtain a generalization of De Marr’s fixed
point theorem [6].

2 Preliminaries

Throughout this paper, we assume that a Banach (or Hilbert) space is real.
Let E be a Banach space and let E* be its dual. Then, the value of f € E* at z € E
will be denoted by (z, f) or f(z). The duality mapping J of F is a multivalued operator
J: E — E* where J(z) = {f € E* : (z, f) = ||z||* = || f||*} (which is nonempty by simple
application of the Hahn-Banach theorern) Let B = {z € E : ||z|| = 1} be the unit sphere
of E. Then the norm of E is said to be Fréchet differentiable if for each z € B, the limit
g () el
A—=0 . A .
is attained uniformly for y € B. In this case, J is a single-valued and norm to norm
continuous mapping from E into E* (see [5] or [8] for more details).
Let S be a nonempty set and let X be a subspace of [°(S) (bounded real-valued functions
on S) containing constants. By a submean on X we shall mean a real-valued function g
on X satisfying the following properties:

(1) u(f +9) < u(f) + u(g) for every f,g € X;
(2) p(af) = au(f) for every f € X and a > 0;
(3) For f,g € X, f < g implies u(f) < p(g);

(4) p(c) = c for every constant function c.

A semitopological semigroup S is called left reversible (resp. right reversible) if S has
finite intersection property for right (resp. left) ideals. S is called reversible if S is both
left and right reversible.

Let S be a semitopological semigroup and let C(.S) denote the closed subalgebra of [%°(.S)
consisting of bounded continuous functions. For each f € C(S) and a € S, let ({,f)(t) =
f(at) and (r,f)(t) = f(ta). Let RUC(S) denote all f € C(S) such that the mapping
S — C(S) defined by s — r,f is continuous when C(S) has the norm topology. Then
.RUC(S) is a translation invariant subalgebra of C(S) containing constants. Further,
RUC(S) is precisely the space of bounded left uniformly continuous functions on S when
S is a group (see [11]).

A submean g on RUC(S) is called invariant if p(l,f) = p(r.f) = p(f) for every f €
RUC(S) and a € S. If S is a discrete semigroup, then RUC(S) has an invariant submean
if and only if S is reversible. Also if S is normal and C(S) has an invariant submean, then
S is reversible. However S need not be reversible when C(S) has an invariant submean
in general (see [19] for details).
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3 Left \ideal orbits and the fixed point set

Unless otherwise specified, S denotes a semitopological semigroup and § = {T,: s € S} a
~ continuous representation of S as nonexpansive mappings from a nonempty closed convex
subset C of a Banach space E into C.

Let £(S) denote the collection of closed left ideals in S. Assume that F(S) # 0. For each
z € C and L € L(S), define the real-valued function ¢, 1 on F(S) by

gep(f) = inf{|Tix — f|? : t € L}

and let
=(f) = sup{gzr : L € L(S)}.
Then
¢:(f) = supinf | Tyoz — f|*

as readily checked.

LEMMA 3.1 Let C be a nonempty closed convez subset of a Banach space E. If F(S) # 0,
then for eachz € C, q, is a continuous real-valued function on F(S) such that 0 < ¢.(f) <
|z — f||* for each f € F(S) and ¢(f») — o0 if || fal| = oo. Further, if F(S) is convez,
then g, is a convez function on F(S).

Proof. Since 0 < ||Tyz — f||? = || Tz ~ Tif||* < ||z — f||? for every f € F(S) and
t € S, it follows readily that 0 < ¢,(f) < ||z — f||>. Alsoif f € F(S) and t € S,
then [Tz — fI| < ||z — f|l. Hence [Tall < T~ £+ Il < 1z — £ + Ifll, e
M = sup{||Tiz| : t € S} < oco. Let {f.} be a sequence in F(S) such that ||f.|| — oo.
Then we have for each t € S, :

ITee = fall* 2 (T2l = I fal))?
= |fall® = 2Tl full + I Te|f?
”fn”2 - 2M”fn”

15 (1~ 227)

2 _2M\ |
aon(f) = 1ol (1 : fn“) .

v

and hence for each L € L(S),

So we have ¢,(f,) — oo.

To see that ¢, is continuous, let { f,} be a sequence in F(S) converging to some f € F(S)
and

M' = sup{||Tiz — full + ||ITex - fll : n=1,2,--- and t € S}.

Then since

ITie = full = WTia = fIF < (12 = full + Tz — ) || Tew — full = Tz = £

<
S A/[,”fn - f”a
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we have for each L € L(S),

%o,L(fn) < @oL(f) + M'|| fa = fI.

Similarly, we have :
@er(f) < @zi(fn) + M'|| fu = flI-
So we obtain

lae(f) — 2=(£)] < M| f — £l

This implies that qr is continuous on F(S).
If F(S) is convex, for each f,g € F(S) and o, > 0 with a + 8 = 1,af + Bg € F(S).
Let € > 0. Then there exists Ly € £(.S) such that

sup inf(al|Tiz — fII* + B|| iz — gII") < jnf (el Tez — fI + BIITiz — gI*) + 2
Lec(s)teL

Let u € Lyg. Then Su C Ly and hence

sup mf(aHTta: — {2+ B||Tiz — g|| ) < 1nf(a||me — fII? + Bl Teuz — g||%) + 552-
LeL(s)t€

Moreover, there exist v, w € S such that
2 _ . o2y &
[Tz = FIP < nf Tz = 1"+ 5
and .
. 2 . 2 <
”vau? - .f” < %Ielg “Tﬂmx - f“ + 2'

Therefore we obtain

a(af +Bg) = sup inf||Tz — (af +Bg)|”
LeL(S) teL
< sup mf(aHTt:c - fH2 + BTz — g||*)
LeL(s) t€
< inf(elTuz — FIF + BTz — o) + £

9
S aHvauaz - f”2 + lBHvaum - g”2 + 5
£
< o Tz — fI + Bl Tuwuz — gl + 5
) ) Be €
< C!lIlf ”Ttux - f“ +ﬂ1nf ”Ttuux —g“ + o + —2— + 5

a;&fl Tz ~ fII* + ﬁ}é’Lf? |Tex —gll* + ¢
( where L, =3’Z and L, = Svu)
< ag(f) + Be(9) +e

Since € > 0 is arbitrary, we have

g(of + Bg) < ag:(f) + Pfe=(g).0
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THEOREM 3.2 Let C be a nonempty closed convex subset of a uniformly convexr Banach
space E. Assume that F(S) # 0. Then for any ¢ € C, there exists a unique element
h € F(S) such that ’

¢=(h) = inf{g=(f) : f € F(5)}.

Proof. Since E is uniformly convex, the fixed point set F'(S) in C is closed and convex
~(see [5]). Hence it follows from Lemma 3.1 and [2] that there exists h € F/(S) such that

¢z(h) = inf{q.(f) : f € F(S)}.

To see that h is unique, let £ € F(S). Then by [27], there exists a strictly increasing and
convex function (depending on A and k) g : [0,00) — [0, 00) such that g(0) = 0 and

ITex — (Ah+ (1= NE)* = IMTez — k) + (1 = A)(Tew ~ k)|I?
| < MTex = Al + (1= A Tez — k[I* — M1 = A)g(ll~ — Ell)

foreacht € S and A with 0 < X < 1 So we have for each A with 0 < A <1,

w(h) < @b+ (1-Nk)
< Agulh) + (1= Ngalk) = AL — g(llt = kI
and hence
%(h) < (k) — Ag(|[h — El)).
It follows that
gz(h) < gz(k) — g(llh — Kl|) as A — 1.
Since g is strictly increasing, it follows that if ¢.(h) = ¢,(k), then h = k.0

We call the unique element A € F(S) in Theorem 3.2 the minimizer of ¢, in F(S).
For each z € C, let

Qz)= () w{Tiz:te L} (=[)o{Tisz :t €S}).

LeL(Ss) sES

THEOREM 3.3 Let C be a nonempty closed convexr subset of a Hilbert space H. Let
S ={T : s € S} be a continuous representation of S as nonexpansive mappings from C
into C. Then for any z € C, any element in Q(z) N F(S) is the unique minimizer of ¢,
in F(S). In particular, Q(z) N F(S) contains at most one point.

Proof. Let z € F(S) be the minimizer of ¢, in F(S) and y € Q(z) N F(S). Then for
some ¢ > 0, there exists u € § such that

supinf (|| Tz — 2|1 + 2Tz — 2,2 — y) + ||z = y||?)
s t
. €
< inf(|Tiuz — 2l +2(Touz — 2,2~ 3) + 12 = ) + <.
Moreover there exist v,w € S such that

1Tz = 2||* < inf||Tuz — 2| + .Z
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and
(vaul‘ — 2,z — y) < iItlf(Tnm.’B — 2,2 — y) +

IR

Therefore we obtain

2(y) = gp§Wﬂw—yW
= supinf (| Tz — z||? + 2(Tez — 2,2 — y) + ||z — y||*)
s t :

< inf(| Tz = 2|* + 2Tuz — 7,2~ ) + 12 =9I + 3
< N Towaz = 2l + 2Tz = 5,2 = y) + Iz = P + 7
< |Touz — 2l + 2Tz — 7,2 ) + 12 = yll* + 5

< il%f | Tz — 2||* + 2irt1f(Tth —2z,2—Y)

g4
Hlz=yl"+7+35+7

sup inf ||Tt,z — z||? + 2supinf (Tisz — 2,2 — y)
s t s t

IA

+llz—yl*+e
= g(2)+2supinf (Tysz — 2,2 —y) + ||z — y||® +e.
s t

This implies
QSlzpiItif (Twz —z,2—y) > ¢:(y)—g(z)—llz—yl*~¢
> —flz =yl e
So, there exists a € S such that
2Tz — 2,2 —y) > —|lz—yl* —¢
for every t € S. From y € ©0{Ti,z : t € S}, we have
Ay —zz-y) 2 -z -yl -«

This inequality implies ||z — y||* < €. Since € > 0 is arbitrary, we have z = y. O

REMARK 3.4 From Theorem 3.3, it is natural to ask the following:

Problem 1. If E is a uniformly convex Banach space; z € C and y € Q(z) N F(S), isy
always the minimizer of ¢, in F(S) ? '

Problem 2. If E is a uniformly convexr Banach space, does Q(z) N F(S) contain at most
one point for eachz € C ?

Clearly, by Theorem 3.2, an affirmative answer for Problem 1 gives an affirmative answer

to Problem 2. We now proceed to give an affirmative answer for Problem 2 when E has
a Fréchet differentiable norm.
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LEMMA 3.5 Let C be a nonempty closed conver subset of a Banach space E. Let z € C
and f € F(S). Then
inf || Tyz — f|| = inf sup ||Tisz — f]-
s s t

Proof. Let r = inf, || T,z — f|| and € > 0. Then there exists a € S such that

|Toz — fll <7 +e.

So, for each t € S, we have
[Tz — fl| S | Tazx — fll < T +e
and hence _
inf sup Tz — fl| < sup | Tz — £l

< r+e
Since € > 0 is arbitrary, we have

inf sup ||z — fl| <.
s t

It is clear that inf, sup, ||Ttsz — f|| > 7. So we have

inf sup ||Tisz — f|| = r.O
s t

LEMMA 3.6 Let C be a nonempty closed convezx subset of a uniformly convex Banach
space E. Letz € C,f € F(S) and 0 < a« < 8 < 1. Then for any € > 0, there ezists a
closed left ideal L of S such that

IT:(A\Tex + (1 = A)f) = OLTiz + (1 - M)f)|l <e )
foreveryse S;t€ L and a < A< B.

Proof. Let r = inf, ||Tsz — f||. By Lemma 3.5, for any d > 0, there exists t, € S such
that

sup [[Teez — fl| < 7+ d.

Apply now Lemma 1 in [18] and let L = St,.0

Let E be a Banach space and let S be a semigroup. Let {z, : « € S} be a subset of
and z,y € E. Then we write z, — z (o — oop) if for any € > 0, there exists ap € S
such that ||2.q, — z|| < € for every @ € S (see [23]). We also denote by [z,y] the set
{Az+(1=-ANy:0< A< 1) ' .

LEMMA 3.7 Let C be a nonempty closed convex subset of a Banach space E with a Fréchet
differentiable norm and let S be a semigroup. Let {z, : a € S} be a bounded subset of C.
Let z € Ngco{zas : @ € S}, y € C and {yo : @ € S} be a subset of C with y, € [y, Ta)
and

[9e = 2|l = min{[ju - z|| : u € [y, za]}.
If yo = y(a — copR), theny = z.
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Proof. Since the duality mapping J of E is single-valued, for each a € S, it follows
from [7] that o

(¥ = Yo (¥ — 2)) 2 0
for every u € [y, z,]. Putting u = z,, we have

,<$a'—'ya)‘](ya"z)> 20

for every a € S. Since {z, : @ € S} is bounded, there exists K > 0 such that ||z,—y|| < K
and ||lyo — 2|| £ K for every a € S. Let € > 0 and choose § > 0 so small that 26K < e.
- Then since the norm of E is Fréchet differentiable, there exists 6, > 0 such that §, < §
and

[J(u) = J(y — 2| < &
for every u € E with ||u — (y — 2)|| < é. Since yo, — y(a — oogr), there exists ag € S
such that
|¥aco — yll < b0

for every a € S. So, for each a € S, we have

I(waqo — Yaaor I (Yaae = 2)) = (Taco — ¥, J (¥ — 2))]
< Zaco = Yaaos I (Yaae = 2)) = (Taco = Y S (Yaoo — 2))|
A+ {Zaso = U5 J(Yaco — 2)) = (Taao — ¥, J (¥ — 2))
= I(y — Yaaos J(yaao - z))l + I(waao - y,'](yaao - z) - '](y - z))l
< Y = Yoaollllyaas = 21l + lIZaco = Yllll I (Yaeo — 2) — J(y = 2)l]
< 6K +6K <e ‘ ‘

and hence :
(xaao - y7'](y - 2,’)) > (zaao — Yoaoos J(yaao - Z)) —£& 2 —E.

From z € €0{zaq, : @ € S}, we have

(z—y,J(y - 2)) > —,

that is
ly — 2||* <e.

Since € > 0 is arbitrary, we have y = z. O

LEMMA 3.8 Let C be a nonempty closed convex subset of a uniformly convex Banach
space E with a Fréchet differentiable norm. Let z € C. Assume that F(S) # 0. Then for
y € F(S) and y ¢ Q(z),
| ~ . k= inf || Tyz -y > 0.

Proof. Supposing that kK = 0, by Lemma 3.5,

inf sup ||Ty,z —y|| = k=0.
s t



151

Let z € Q(z). For each t e S, let y; be the unique element in [y, T;z| such that
lye = 2|l = min{lju — 2[| : u € [y, Te]}.

So, for any € > 0, there exists sq € S such that
€
sup [|Tesez — 9l < 5
t
and hence we have

”ytso - Tt‘Sox” + ”Ttsox - y”

lyeso — yll <
< 2Tz —yll <€

for every t € S, that is, y; — y (t — oogr). So by Lemma 3.7, we have y = z. This is a
contradiction. So we have k > 0. O

LEMMA 3.9 Let C be a nbnempty closed convez subset of a uniformly convezr Banach
space E with a Fréchet differentiable norm. Let x € C. Then for any y € F(S) and
z € Q(z), there exists a closed left ideal L of S such that

(Tix —y,J(y—2)) <0
for everyt € L.

Proof. If ¢ = y or y = z, Lemma 3.9 is obvious. So, let z # y and y # z. For any
t € S, define a unique element y; such that y; € [y, T;z] and

lye = 2ll = min{|lu — 2| : u € [y, Tez]}-

Then since y # z, by Lemma 3.7 we have y y (! — cog). So we obtain ¢ > 0 such that
for any t € S, there exists t’ € S with ||y — y|| > ¢. Setting

Yorr = Qg Ty T + (1 - aut)y, ayy € [O, 1]7
we also obtain ¢y > 0 so small that ay, > - In fact, since Ty; is nonexpansive and
y € F(S), we have
¢ < lyee — yll = avel| Toez — yl| < apellz — yl-

So, put ¢g = ¢/||lz — y||. Let k = inf, ||Tsz — y||. By Lemma 3.5 and y,+ y (t — oog), we
have k > 0.
Now, choose € > 0 so small that

(R+¢) (1—5(;‘1::)) <R,

where 6 is the modulus of convexity of £ and R = HZ — y||- Then by Lemma 3.6, there
exists tg € S such that

ITs(coTieom + (1 = co)y) = (coTaTupz + (1 — co)y)l| <€ (*)



for every s,t € S. Fix t; € S with ||yy,¢ — y]l = ¢. Then since a4y > ¢, we have

Co B
coTyz + (1 —co)y = (1 - > Y+ ——(aty00 Tryto T + (1 — Gty10)Y)

Ayt iy to
Co Co

= (1 - ) Y+ —Yut € [yaytlto]
Qi1 Q110

and hence

leoTutoz + (1 — co)y — 2l < max{lly — zI|, |yeaso — 2}

ly — =l = &.
By using (), we obtain

lleoTsTiyp + (1 — co)y — 2| | Ts(coTereoz + (1 — co)y) — 2| + €

<
< leoTytz 4+ (1 —co)y — 2| +¢
< R+c¢

for every s € S. On the other hand, since ||y — z|| = R < R+ ¢ and
”COTsTtltom + (1 - Cﬂ)y - y” = chlTStltox - y” 2 cok

for every s € S, we have,'by uniform convexity,

H% ((coTsTratox + (1 = o)y — 2) + (y — 2))

<(R+e) (1—5(Rc°f6)) <R,

Co Co
|[37Tz + (1= 3) -

that is
<R

for every s € S. Putting

o co
4= 2T e + (1-2),

we have

lus + oy —us) — 2| = |la(y — 2) — (o = 1)(u, — 2)]|
ally — 2|l = (& = Dljus — 2|

ally =zl = (@ = Dlly — 2l = |ly — 2|l

AVARAVARN|

for every s € S and a > 1. So, by Theorem 2.5 in [7], we have
(us +aly —u,) —y, J(y —2)) 20
for every s € S and a > 1 and hence

('LL_, - ya‘](y - Z)) S 0

152
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for every s € S. Therefore we obtain

0 .
<T3Tt1tox -y, J(y - Z)) = - <£9'T3Tt1tox - %%J(y - Z)>

Co 2

2 ‘
= _<us - y;'](y - Z)) S 0

Co

for every s € S. Let L = St t,. O

LEMMA 3.10 Let C be a nonempty closed convex subset of a uniformly co_nbex Banach
space E. Let z € C. If for any y,z € Q(z) N F(S),

inf f Tix —
125y ol sup(Tie =y, 9) <

then Q(z) N F(S) has at most one point.

Proof. Let y,z € Q(z)N F(S). Then by convexity of Q(z)NF(S), we have (y+2)/2 €
Q(z) N F(S). Let € > 0. By assumption, there exist L € £(S) and ¢ € J ((y + 2)/2 — 2)

such that :
<]1tx - ——7 ¢>

for every t € L. Since y € co{Tiz : t € L}, it follows
+
<y - y—a ¢>

1
Sw—58)=sly— 2P <e.

Since € > 0 is arbitrary, we have y = z. O
Combining Lemma 3.9 and Lemma’3.10, we have the following result.

and hence

THEOREM 3.11 Let C be a nonempty closed convez subset of a uniformly convex Banach
space E with a Fréchet differentiable norm. Let z € C. Then Q(z) N F(S) contains at
most one point.

4 FErgodic theorems
We are now ready to prove our main nonlinear ergodic theorems.

THEOREM 4.1 Let C be a nonempty closed convex subset of a uniformly conver Banach
space E with a Fréchet differentiable norm. Let S = {T, : s € S} be a continuous
representation of a semitopological semigroup S as nonerpansive mappings from C into
C. Assume that F(S) # 0. Then the following are equivalent:

(1) For each z € C, the set Q(z) N F(S) is nonempty.
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(2) There exists a retraction P of C onto F(S) such that PT, = T,P = P for every
teS and Pr €to{Tix :t € S} for everyz € C.

Proof. (1) = (2). If for each & € C, the set Q(x) N F(S) # 0, then by Theorem 3.11,
Q(z) N F(S) contains exactly one point Pz. Then clearly P is a retraction of C' onto
F(S) and Pz € co{Tz : t € S} for every z € C. Clearly T;P = P for every t € S. Also
ifu €S and z € C, we have

ﬂ co{T,x:t€ S} C ﬂ ©o{Tisuz 't € S}

SES SES
and hence ' ' ‘

Q(z) N F(S) = Q(Tuz) N F(S).
This implies PT; = P for every t € S.
(2) = (1). Let z € C. Then it is obvious that Pz € F(S). Since
Pz = PTxz e co{T\ T,z :t € S} =co{Tss : t € S}
for every s € S, we have |
Pz e ((eo{Ty,z:te€ S} =Q(z).0
sES

THEOREM 4.2 Let C be a nonempty closed conver subset of a Hilbert space H and let
S = {T, : s € S} be a continuous representation of a semitopological semigroup S as
nonezpansive mappings from C into C. If for eachz € C, the set Q(z)NF(S) is nonempty,
then there exists a nonezpansive retraction P of C onto F(S) such that PT, = T,P = P
for everyt € S and Pz € co{Tyz : t € S} for everyz € C.

Proof. For each z € C, let Pz be the unique element in Q(z) N F(S). Then, as
in the proof of Theorem 4.1 (1) = (2), P is a retraction of C onto F(S) such that
PT, =T;P = P for every t € S and Pz € co{T;z : t € S} for every z € C. It remains to

show that P is nonexpansive. Let y € C and 0 < A < 1. Then as in the proof of Theorem
3.3 we have for any ¢ > 0,

¢z((1 = A\)Pz + APy)
= supinf ||T},z — ((1 = A) Pz + APy)||?
s t

= supinf ||T};z — Pz + A(Pz — Py))|?
s t : .
= supinf (||Ttsz — Pz||* + 2\(Tisz — Pz, Pz — Py) + \*||Pz — Py||?)
st
< ¢.(Pz)+ 2Asupinf (T},x — Pz, Pz — Py) + \*||Pz — Py||* + ¢.
3 t

Since Pz is the minimizer of q,, we have
2\ supinf (T,,z — Pz, Pz — Py) + A\?||Pz — Py||® + ¢
3 t
> ¢.((1 = A)Pz + APy) — ¢.(Pz) > 0.
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Since € > 0 is arbitrary, we have
2\ supinf (T},z — Pz, Pz — Py) + M*||Pz — Py||* > 0
st
and hence ‘
2supinf (T, — Pz, Px — Py) > —\||Pz — Py||.
3 t

Now, if A — 0, then _ o
‘ sup inf (T, — Pz, Pz — Py) > 0.
s t

Let € > 0. Then there exists u € S such that
(Ttwz — Pz, Pz — Py) > —¢
for every t € S. For such an element u € S, we also have

sup inf (T3, T,y — PTuy, PT,y — Pz) >0
s t

and hence there exists v € S such that
<Ttvuy - PTuya PTuy - PCL‘) > —€
for every t € S. Then, from PT,y = Py, we have ‘
(Tiyuy — Py, Py — Pz) > —¢
for every t € S. Therefore we have
—2¢ < {(Tywuz — Pz, Pz — Py) + (Tyouy — Py, Py — Px)
<Tuvu$ - Tuvuy —(P.’L‘ - Py)) Pz — Py)
(TuuuaC — Twwuy, Pz — Py) - ”P:E - Py”2

I Twwu = Tuwuyllll Pz — Pyl| - ||Pz — Py|®
le — yllllPz ~ Pyl| — || Pz ~ Py|*.

<
<

Since € > 0 is arbitrary, this implies ||Pz — Py|| < ||z —y|. O
We now proceed to find conditions on' S and £ such that Q(z) N F(S) # 0 for every
zeC.

LEMMA 4.3 [20] Let C be a nonempty closed convez subset of a Hilbert space H, let S be
an inder set, and let {z, : t € S} be a bounded set of H. Let X be a subspace of I°(5)
containing constants, and let p be a submean on X. Suppose that for each x € C, the
real-valued function f on S defined by

f@t) =||z; — z|* for allt € S

belongs to X. If

r(z) = )|z, — z||? for allz € C
and r = inf{r(z) : £ € C}, then there exists a unique element z € C such that r(z) = r.
Further the following inequality holds : o

r+llz — 2| < r(z) for every z € C.
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THEOREM 4.4 Let C be a nonempty closed conver subset of a Hilbert space H and let
S be a semitopological semigroup such that RUC(S) has an invariant submean. Let S =

{T, : s € S} be a continuous representation of S as nonexpansive mappings from C into
C. Suppose that {Tsz : s € S} is bounded for some z € C. Then the set Q(z) N F(S) is

‘nonempty.

Proof.. First we observe that for any y € H, the function f(t) = ||Tyz — y||* is in

RUC(S) (see [16]). Let u be an invariant submean and define a real-valued function g on
H by
9(y) = wi||Tez — y||? for each y € H.

If r = inf{g(y) : y € H}, then by Lemma 4.3 there exists a unique element z € H such
that g(z) = r. Further, we know that

r+ ||z — y||* < g(y) for every y € H.

For each s € S, let @, be the metric projection of H onto €0{T},xz : t € S}. Then by
Phelps [22], @, is nonexpansive and for each t € 3,

ITesz ~ Qszl” = |QsTisz — Qozl|* < || Tioz — 2|1

So, we have

pllTez — Quz|* = Tz — Q2|2 |
< | Tz — 2|

pe| Tz — 2|*

il

and thus @,z = z. This implies

z€c{Tiysx:t€S}forallse S

and hence

z € ﬂ‘c’b‘{'l’tsx:tES}.

s€S
On the other hand, by Lemma. 4.3

lz = yll* < pel| Tex — yl|* — pel| Tow — 2||? for every y € H.
So, putting y = T,z for each s € S, we have

|z — Tzl < wllTiz — Toz|? — ]| Tiz — 2|
pel| Torzx — TsZ||2 - ﬂt“thL' - 2“2
< will Tz — 2|” — pel| Tex — 2|f* = 0.

Therefore, we have T,z = z for every s € S. O
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PROPOSITION 4.5 Let S be a discrete reversible semigroup and let C' be a nonempty
weakly compact conver subset of a Banach space E. Let S = {Ts : s € S} be a represen-
tation of S as affine nonerpansive mappings from C into C. Then for each x € C, the
set Q(z) N F(S) is nonempty.

Proof. Let z € C. Clearly Q(z) = N,esc0{Tisz : t € S} is compact and convex. Also
Q(z) is nonempty. Indeed, for each s € S, let K, =eo{Ti,z :t € S}. Then {K, :s € S}
are weakly closed subsets of C' with finite intersection property: If s;,...,s, € S, choose
to € N, Ss;. Then Ty,z € N K,,. Consequently ,cs K, = Q(z) is nonempty. Let
a,s € S,y € Q(z) and let {yx} be a sequence in K, such that ||yx — y|| — 0. Then
T.yx € K, (by affiness and continuity of T,) and ||Toyx — Toy|| < ||lyx — y|| — 0. Hence
T,y € K,. Consequently T,y € N,es Ks = Q(z). Hence Q(z) is S-invariant.

Now since S is left reversible, by [14] the space WAP(S) of weakly almost periodic
functions on S has a left invariant mean (see also [17]). Hence by [15], there exists a

common fixed point in Q(z), i.e.,, Qz)NF(S) #0. O

5 Minimal left ideals

~ Let (X,0) be a compact right topological semigroup, i.e., a smigroup and a compact
Hausdorff topological space such that for each 7 € ¥ the mapping v — yo 7 from ¥ into
Y. is continuous. In this case, ¥ must contain minimal left ideals. Any minimal left ideal
in ¥ is closed and any two minimal left ideals of £ are homeomorphic and algebraically
isomorphic (see [3]). ‘

LEMMA 5.1 Let X be a nonempty weakly compact conver subset of a Banach space E.
Let S = {T, : s € S} be a representation of a semigroup S as nonezpansive and weak-
weak continuous mappings from X into X. Let ¥ be the closure of S in the product space
(X, weak)®. Then T is a compact right topological semigroup consisting of nonezpansive
mappings from X into X. Further, for any T € X, there exists a sequence {T,,} of convex
combination of operators from S such that ||T,z — Tz|| — 0 for every z € X.

Proof. It is easy to see that ¥ is a compact right topological semigroup. We now

prove the last statement (which implies that each 7" € ¥ is nonexpansive). Consider
S C (E,|||N* with the product topology. Let ® = coS. Then each T' € ® is nonexpansive.
Hence each T € ® is also nonexpansive. Since the weak topology of the locally convex
space (E, || - |)* is the product space (E,weak)X, it follows that & C _<I_>W€ak =@, and
hence the last statement holds. O.
¥ is called the enveloping semigroup of S.
A subset X of a Banach space E is said to have normal structure if for any bounded
(closed) convex subset W of X which contains more than one point, there exists z € W
such that sup{|lz — y|| : y € W} < diam(W), where diam(W) = sup{||z — y|| : =,y € W}
(see [10] for more details).

THEOREM 5.2 Let X be a nonempty weakly compact convez subset of a Banach space E
and X has normal structure. Let S = {T, : s € S} be a representation of a semigroup
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as norm-nonezxpansive and weakly continuous mappings from X into X and let ¥ be the
enveloping of S. Let I be a minimal left ideal of ¥ and let Y be a minimal S-invariant
closed convex subset of X. Then there exists a nonempty weakly closed subset C of Y
such that I is constant on C.

Proof. Since I is a minimal left ideal of ¥ and ¥ is a compact right topological
semigroup (Lemma 5.1), I = e for a minimal idempotent e of ¥ and G =-eXe is a
maximal subgroup contained in I (see [3]). Since each T € G is a nonexpansive mapping
from Y into Y (Lemma 5.1), by Broskii-Milman Theorem [4], there exists z € ¥ such that
Tz = z for every T € G. Now put C = Iz. Then C is weakly closed and S-invariant.
Also if yy,y, € C,yy, = Trex,y, = Thex, Ty, T, € I, then, since eTye € G, we have

(Te)y, = Te(Tyex) =Tx

for every T' € ¥ and similarly
(Te)y, =Tz

for every T € . The assertion is proved. O
The following improves the main theorem in [13] for Banach spaces (see also [21]).

COROLLARY 5.3 Let X and X be as in Theorem 5.2. Then there exist To € ¥ andxz € X
such that ToTz = Tox for every T € X.

Proof. Pick z € C and T, € I of the above theorem. O

REMARK 5.4 If S is commutative, then for any T € £ and s € S, T, 0T =T o T, i.e.,
z = Toz is in fact a common fized point for ¥ (and hence for S). Note that if X is norm
compact, the weak and norm topology agree on X. Hence every nonexpansive mapping
from X into X must be weakly continuous. Therefore Corollary 5.3 improves the well
known fired point theorem of De Marr [6] for commuting semigroups of nonezpansive
mappings on compact conver sets.
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