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Dynamic Fuzzy Systems with Time Average Rewards
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Abstract

In this paper, using a fuzzy relation we define a dynamic fuzzy system with a bounded
convex fuzzy reward on the positive orthant R} of an n-dimensional Euclidean space. As
a measure of the system’s performance we introduce the time average fuzzy reward, which
is characterized by the limiting fuzzy state under the contractive properties of the fuzzy
relation. In one-dimensional case, the average fuzzy reward is expressed explicitly by the
functional equations concerning the extreme points of its a-cuts. Also, a numerical example
is given to illustrate the theoretical results.

Keywords : dynamic fuzzy system, time average fuzzy reward, contractive prop-
erties, fuzzy relational equation.

1. Introduction and notations

In the previous paper [3, 8, 9], we defined a dynamic fuzzy system using a fuzzy relation
and gave limit theorems for the transition of fuzzy states of the system under the contractive
and nonexpansive properties of the fuzzy relation. Here, the dynamic fuzzy system defined
in [3, 8] will be extended to the one with a bounded fuzzy reward on the positive orthant

% of an n-dimensional Euclidean space and the time average fuzzy reward is introduced as
a measure of the system’s performance and characterized by the limiting fuzzy state or by
various fuzzy relational equations.

Let X and Y be convex compact subsets of some Banach space or the positive orthants
R} . We denote by C(X) the collection of all closed convex compact subsets of X. Let p be
the Hausdorff metric on C(X).

Throughout this paper we define a fuzzy set on X by its membership function §: X
[0,1] and its a-cut by

5o :={z€X|5z)>a} (@>0) and 3% :=cl{z € X |3(z)> 0},

where ¢l means the closure of a set. For the details, we we refer to Novak [6} and Zadeh [11].
A fuzzy set §on X is called convex if

Az +(1-X)y) > 3(z)A 3(y) forany z,y € X and A € [0,1],

where a A b = min{a,b} for real numbers a and b. Also, a fuzzy relation § defined on X xY
is called convex if

p(Azy + (1 = N)zo, Ays + (1= Ny2) 2 p(21,01) A B(22, ¥2)

for any z1,22 € X,%,y2 €Y, and A € [0,1].

Let F(X) be the set of all convex fuzzy sets § on X, which are upper semi-continuous.
Clearly 5 € F(X) implies 5, € C(X) for all a € [0, 1].

The addition and the multiplicative operation of fuzzy sets are defined as follows (see [4])
: For any §, 7€ F(X) and A € Ry = [0, 00),

5+ 3)(z) = sup {yAiz)} zeX (1.1)
y.2€X

y+z=zx



and

oo ={ 1B 120 eex 12

where I4(-) is the classical indicator function of a subset A of X.
It is easily seen that, for « € [0, 1],
(34 Da=38 +70, and (A3)y = A5a,

where A+ B:={z+y|z € A,y € B} and AA := {Az | z € A} for any subsets A, B of X.
The following results have appeared in Chen-wei Xu [1].

Lemma 1.1. ([1}).
(1) For any 5,7 € F(X) and A € [0, 00),
§+ %€ F(X) and Aie F(X).
(i1) Let p be any lower semi-continuous convex fuzzy relation on X x Y. Then

sup §(z) A p(z,') € F(Y) for all $€ F(X).
z€eX

Here, we give the notion of convergency for a sequence of fuzzy sets, which is used in
Section 2.

Definition 1.1 ([3, 5]). Let {#%}52, be a sequence fuzzy sets in F(S). Then we write
% — € F(S)ast—o0if

. lim sup p(¥,a,%) =0, ) (1.3)
t—00 06[0.1]

where % , and 7, are a-cuts of % and ¥ respectively.

Note that for a sequence of sets {A;}52, C C(X) and A € C(X), tlir{)lo A; = A means that

lim A; = lim 4, = A,
t—oo  t—o00
where
lim Ay := {2z € X | lim d(z, A;) = 0},
t—o0 t— 00

lim A, :={z€ X | tTiE d(z, Ay) = 0},
—00

t—o00

d(z,D) := min d(z,7') DeC(X)

and d is a metric on X. It is known ([2]) that lim;— o p(A:, 4) = 0 iff lim;— o A = A, so
that % converges to ¥ as t — oo in the sense of (1.3) means that lim %, = ¥, uniformly for
a €[0,1].

Now, extending a discrete dynamic fuzzy system in [3], we consider the one with a fuzzy
reward, which is characterized with the elements (S, §, 7, §) as follows :

(i) The state space S is a convex compact subset of some Banach space. In general, the
system is fuzzy, so that the state of the system is called a fuzzy state denoted as an
element of F(S).

(ii) The law of the motion and the fuzzy reward for the system are denoted by the time
invariant fuzzy relations §: S x S+ [0,1] and 7: S x R} ~ [0,1] respectively. We
restrict the convex fuzzy number # € F(R}) has the finite support contained in the
interval [0, M]* C R}, that is, F([0, M]") := {i € F(R}) | i C [0, M]"}. We also
assume that §: S x S~ [0,1] and #: S x [0, M]" — [0,1] are convex and continuous.
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If the system is in a fuzzy state § € F(S), a fuzzy reward R(§) is incurred and we move
to a new fuzzy state Q(3), where Q : F(S) — F(S) and R : F(S) — F([0, M]") are defined
by

R(3)(z) :=sup §(z) A {z,2) z€[0,M]" (1.4)
€S

and
Q) (y) = sup (=) A i(z,y) y€S. (1.5)

Note that by Lemma 1.1(ii) the maps R and @ are well-defined.
(iii) The initial fuzzy state § € F(S) is arbitrary.

For the dynamic fuzzy system (S, §, 7, 5), we can define a sequence of fuzzy rewards on
[0, M]*, {R(3)}524, where

%:=38§ and &4 :=Q(%) (t>0). (1.6)

In Section 2, we define the time average fuzzy reward, which is characterized by the
limiting fuzzy state under the contractive properties of of the fuzzy relation §.

In Section 3, the one-dimensional case is treated and by introducing relative value func-
tions the average fuzzy reward is expressed by the functional equations concerning the ex-
treme points of its a-cuts.

Also, a numerical example is given to illustrate the theoretical results in this paper.

2. The average fuzzy reward

In this paper we specify the time average reward as a measure of the system’s performance
and discuss its characterization under the contractive assumption given in [3].
We define the total T-time fuzzy reward Ry (3) by

T-1
Rr(5:=)_ R(&) T2x1, (2.1)
t=0

where {53 }:2, is given in (1.6).

Associated with the fuzzy relation § and fuzzy reward 7, are the corresponding maps
Qo : C(S) — C(S) (a € [0,1]) and Rq : C(S) — C([0,M]*) (a € [0,1]) defined as follows :
For D € C(S),

_ [ {yeS|i=z,y)>aforsomeze D} a>0
Qa(D) := { c{y e S| qz,y) >0 for some z € D} a =0, (2.2)
- {z [0, M]" | z,2) > af D} a>0
_ z€[0,M]" | {z,z) > o for some z € a >
Ro(D) = { c{z € [0, M]" | (z,z) > 0 for some z € D} «a=0. (2.3)

The iterates Q*, (¢ > 0) are defined by setting Q2 := I (identity) and iteratively,

QL =Q.Q"  t>1.

We have the following lemma, which is easily verified by the ideas in the proof of [3, Lemma
1] and the property (1.1).

Lemma 2.1.

(i) Rr(3) € F([0,TM]*) forT > 1.

(i) 8o = QL{(34) fort >0, where § o = (5t)a-
(ill) (Rr(8))a = Liso Ra(da) for T > 1.
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From Lemma 2.1(ii),(iii), (&(3))a is dependent only on a, 3,-and T, so that we put
Br o(32) = (Br(8))a for T>0and a€|0,1].
From this ET,Q(EG) we try to estimate the increasing amount of fuzzy reward per unit time.

For K > 0 and a € [0, 1], we define

GK,a = {r €RY| 21 € Froa(5) and |lzr — rT) < K for all T > 1

. 00
there exists {z7}3°, such that } ’ (2.4)

where R} is the positive orthant of a n-dimensional Euclidean space and ||z|| = (37, 7 )3
for z = (21,2, -,z,) € R}. The following properties of Gk  are formulated in a lemma.

Lemma 2.2. Let K > 0. Then :

(i) {Gk,alx€[0,1)} C C(RY).

(ii) Gk,a CGKk,a for0< ¢’ <a < 1. ‘
(iii) limgta Gk,ot = Gk o for a € (0,1], ie, limgi1q 8(Gk o', GK,a) = 0.

Proof. (ii) From Lemma 2.1(i), we have
Br.o(32) C Rro(5a) for T>0,0<a <a<l.

Therefore we obtain (ii) from the definition (2.4).

(i) Let a € [0,1]. We prove that Gk q is closed and convex. Let {r;}$2, be a sequence
such that r¢ € Gk,o (k > 1) and ry — r (k — 00). From (2.4), there exists a sequence {z%}
such that '

2% € Rr o(3s) and |25 — i T|| < K forall T> 1, k> 1. (2.5)

Since Rr,a(3.) is compact, there exist a convergent subsequence of {z£}$2, and its limit
zr € Ry o(54). From (2.5), we obtain

lep = 7T|| < K forall T> 1.

Therefore we get r € Gk o and Gk o is closed.
Next let r,r; € Gk o. From (2.4), there exists z}., 23 € Rr o(34) such that

lzz = MT|| < K, || —mT|| <K forall T > 1. (2.6)
Let T > 1. Since Rr o(34) is convex, we have
Azp 4 (1= M)z} € Rra(3a) forall A€ [0,1]. (2.7)
From (2.6), we have

Az + (1= A)z3) — (A + (1 = A)r)T|
< Alzp = 1Tl + (1= A)||23 — o T|
< M+ (1=MNK=K foralXe0,1].

From (2.7) and this inequality, we obtain Ar; + (1 — A)r; € Gk o for all A € [0,1]. Therefore
Gk o is convex. Thus we get (i).

(iii) Let « € (0, 1]. It is sufficient to prove Tﬁ,,_.,,GK,,,: C Gk,a Letre ﬁrr_xal...aGK,a:.
From (ii), there exist sequences {a}32, and {r;}$2, such that

ar Ta(k— o), r€Gkalk=12---), and rp—r(k— 00).
From (2.4), there exists a sequence {2%}£2, such that

2k € Rr o, (30, ) and |2k — T < K forallT>1, k=1,2,---.



From the compactness, there exists a convergent subsequence of {z%}2, and its limit z7.
Then we obtain
lzr = rT|| < K forallT > 1. (2.8)

Further, from Lemma 2.1(i), we have
llim RT,a'(ga’) = ET,Q(ga).
Therefore we also obtain zp € ﬁT,a(i,). Together with (2.8), we get r € Gk o. We obtain

li—ma/_aGK,al C GK,a- g.e.d.

From [3, Lemma 3], we can define a fuzzy number

§(3)(r) == sup {aAlg, . (r)} re[0,M]* for 5€ F(S). (2.9)
a€f0,1]

Then, §(3) € F([0, M]*) and (§(3))a = Gk,q for all a € [0,1].

We call §(5) an average fuzzy reward for the dynamic fuzzy systems, which depends on
the initial fuzzy state § € F(S) with suppression of K. In the remainder of this section,
we will investigate the average fuzzy reward from the limiting behaviour of the fuzzy states.
The following lemma is useful in the sequel.

Lemma 2.3. Let {D,}2, C C(S) and D € C(S) such that lim;_., D; = D. Let o € (0, 1].
For any ¢ (a > € > 0), there exists T > 1 such that

Ro_e(D)D Ro(Dy) forallt >T.

Proof. Suppose that for some € (a > ¢ > 0), there exist sequences {tz}$2; and {zx}52,
such that

ty — oo (k—o00), and 2zp € Ro(Dy,)\ Ro—e(D) (k=1,2,---).

Then we have

Hz,zt) <a—¢ foralze D k=1,2,---, (2.10)
and there exists a sequence {zx}32, such that
zy € D, and Hzp,zp)>a fork=1,2,---. (2.11)

From the compactness, we may assume that the sequences {z;}§2, and {zx}§2, are conver-
gent. We put the limits 2* = limy_, o 2 and 2* = limg_ « z¢. Then we have z* € D since
limy_o Dy = D. From (2.10),(2.11), we obtain

Hz*,2*)>a and WHz,2")<a—¢ foralzeD.
It is a contradiction. Thus we get this lemma. g-e.d.

In order to characterizing the average fuzzy reward §(38), we need the following two as-
sumptions, the first one is a contractive property concerning the fuzzy relation § which
guarantee the existence of the limiting fuzzy state and the second is a Lipschitz condition
related with the fuzzy reward 7.

Assumption A (Contraction and ergodic property).
There exists to > 1 and 8 (0 < 3 < 1) satisfying that

Q¥ (D1), Q2 (D2)) < Bp(Dy,Dy) for all Dy, D, € C(S), « €10,1].

Assumption B (Lipschitz conditions).
There exists a constant C > 0 such that

5(RQ(D1), Ra(Dz)) < Cp(Dl, D2) for all Dy, D, € C(S), a € [0, 1], (212) ]

where § is the Hausdorff metric on C([0, M]™).

Lemma 2.4 (3, Theorem 1]
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(i) There exists a unique fuzzy state p € F(S), which is independently of the initial fuzzy
state §, satisfying
B(y) = max{§(z) A §(z,y)} forally€S. (2.13)

(i1) Fo; a € [0,1], the a-cut §, is a unique set of C(S) such that
Qa(Pa) = Pa-
(iii) Let o € [0,1]. It holds that
p(Q4(D), 5a) < A/ *IKo(D, §,) for all DEC(S), t 21,

where Ko(D, 5,) := Y125" o(Q' (D), $,) and, for a real number c, [c] is the largest

=0
integer equal to or less than c.

Recently, Yoshida [10] has given the notion of a-recurrent set for the fuzzy relation
and shown that the a-cut of the limiting fuzzy set  in Lemma 2.4 is characterized as the
maximum a-recurrent set.

Now, we can state one of main results, which shows that §(3) is represented using the
limiting fuzzy state p.

Theorem 2.1. Suppose that Assumptions A and B hold. For sufficient large all K, it holds

that .
(3) = R(p), (2.14)

where p is the limiting fuzzy state given in Leman 2.3. Further this is independent of the
initial fuzzy state §. ’

Proof. Let « € [0,1]. First we show that
(9(8))a = Gk ,a C Ra(Ba) = (R(F))a- (2.15)

By (2.9) and Lemma 2.1(iii), the two equality in (2.15) hold obviously. We prove Gk o C
R,(P,)- Suppose that there exists r € Gk, \ Ra(P,). Then

Az,r)<a foralze€jp,.
From the continuity of 7 and the compactness of f,, there exists € > 0 such that
Hz,r)<e<a forallze€p,.

Therefore
r & Rage(F,)- (2.16)

Since R&F(ﬁa) is closed and convex, there exists a unique zg € Roye (P4) such that
0<y:=|lzoo—rll <llz=r|l forall z € Rage(Fy)- (2.17)
From Lemma 2.1(ii) and Lemma 2.4(iii), we have
Sa = Bo (t —00).
By Lemma 2.3, there exists T* > 0 such that
Ra_}e_(iia) D Ral(5t,a) forallt>T". (2.18)

On the other hand, from r € Gk ,qa, there exists {rr}F_; such that
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rr € Rro(3,) and ||rp — rT|| < K forall T > 1. (2.19) -



From Lemma 2.1(iii), there exists a sequence {rr,:} such that

T-1
rrt € Ra(810) (1 =0,1,2,--, T~ 1) and rp = Y rp; forall T>1. (2.20)

t=0

Noting the supporting hyperplane of Ra4(f,) at 2o, from (2.17),(2.18),(2.20) we have
2

(zo —ryrre —7) > |20 — T'H2 =~2 forallt,T (T >t>T").

So :
T-1
<zo —r, Z (res — r)> >(T =T*)y? forall T >T",
t=T*
where (-,-) is an inner product on R} : (a,b) = >.i_, a;b; for @ = (ay,as2,---,a,),b =

(b1,b2,---,b,) € R}. By Cauchy-Schwartz inequality, we obtain

T-1
E (reg—r)| 2 (T =T")y forallT>T". (2.21)
t=T*
Since
T-1 T -1
lire =T 2 | D (rre =) = || D (rr — T)II
t=0 t=0
T -1
Z (rrp—7)|| <20T*M forall T >T",
t=0
we have
T-1
”rT —_ rT” = Z(TT,I? — 'r') — 00 (T — OO)
t=0

This contradicts (2.19). Thus we obtain (2.15).
Next we prove
Ro(p,) C Gk,o for sufficient large all K. (2.22)

From Assumption B, we have
8(Ra(8t0), Ra(Ba)) < Cp(81,a, B,) for ¢ > 0. (2.23)
From Lemmas 2.1(ii) énd 2.4(iii), we also have
(3,0, Ba) < B Ko (50, f,) fort>0. (2.24)
From (2.23),(2.24) and the compactness of E, there exists a constant C* > 0 such that |
8(Ra(5t,a), Ra(fa)) < C*B° for t > 0.

Therefore, for any r € Rq(p,), there exists {r:}52, such that

re € Ra(81,0) and |lry — 7| < C*B* for ¢t > 0. (2.25)
Then
T-1 T-1 T-1 T-1 c
— * ot
Z;T't—TT = ;(r,—r) S;HW——rHS;CﬁSI_'B for all T > 1.

Thus we get r € Gk o for all K > C*/(1—f). Therefore (2.22) holds for all K 2 c/(1-p).
Together with (2.15), we get (2.14) for sufficient large all K. It is trivial that (2.14) is
independent of the initial fuzzy state § from Lemma 2.4(i). g.e.d.
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From now on we take K > C*/(1 — ). The following corollary shows that §(3) is given
as the limit of {R(5)}2, by the method of Cesaro averaging.

Corollary 2.1. Under the same condition as Theorem 2.1, it holds that

Jim LR a(5) = (i(3)a for allae [0,1] (2.26)

Proof. Let a €[0,1]. Let r € (§(3))a = Gk,o- Then there exists {rr}§_, such that
rr € Rr o(3a) and “rT -rT||< K forT=0,1,2,---

Then
TT 1
T T

Letting T' — o0, we obtain

RTo,(sa) and "——r S% forT=12,---

r € lim -—RTO,(SO,)

T—»oo

Therefore 1
(§(8))a C lim TRT,Q(E},).
T—o0

Conversely we let r € imr_ oo %RT,Q(EO,). Then there exists a subsequence {rr; };‘;1 such

that . rr;
rr; € By o) (j=1,2,---) and lim > =r. (2.27)
j—o0 T

Let j = 1,2,---. From Lemma 2.1(iii), there exists {rr;:}52, such that

T;-1

1731 € Ra(B1,0) (6=0,1,2,---, T — 1) and rr; = D 71,4
t=0

In similar way to (2.25), from Lemma 2.4(iii) and Assumption B, there exist a constant
C* > 0 and {z1;,:}$2, such that

2151 € Ro(Py) and ||27; 1 — 71y 4| < Cc*pt fort=1,2,-- T — 1

. R . ;-1
Since Rq(p,) is convex, putting zr; := ) ,2;" z7;,:, we have

Zr. zZr
=< € Ru(p,) and c* Bt < for j > 1. 2.28
7, € Relt) wd |7t = | < 7 Zﬂ T 228)
From (2.27) and (2.28), we obtain
2T; 2T rT, rT;
il < |1 L Ll -0 —
P I Et 7 B it I el

Since Rq(p,) is closed, we obtain r € Ro(F,) = (§(3))a from Theorem 2.1. Thus we get
(2.26). g.e.d.

3. One-Dimensional Case

In this section we consider the case of n = 1, i.e. ¥€ F(S x [0, M]), and characterize an
average fuzzy reward §(3) by the functional equations concerning with the extremal points
of its a-cuts. Throughout this section it is assumed that Assumptions A and B hold.

Since C([0, M]) is the set of all closed intervals, we can write the map Ry : C(S) —
C([0, M]) by the following notation :

Ry (D) := [min Ro(D),max Ro(D)] for all D € C(S). (3.1)
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Let
T-1

Rro(D) =) Ra(QL(D)) for D € C(S).

t=0
Then, by Lemma 2.1(iii), it holds that

T-1
min Br (D) = ) min Ra(Q%(D)) (3.2)
t=0 i
and
. T-1
max Rr,o(D) = ) max Rs(Q4(D)), (3.3)
t=0
where

ﬁ/["a(D) = [min Ry (D), max ﬁT,a(D)].

From Lemma 2.4(iii) and Assumption B we observe that Rq(Q%(D)) converges to Ry (7,)
exponentially first as ¢ — co. Thus, by (3.2) and (3.2),

hy(D) := lim (min Rr,o(D) — T x min Ra(5,)) (3.4)
and _ _
ho(D) = q}LrI;O(max Ry o (D) = T x max Ry (5,)) (3.5)

converge for all D € C(S). The function h, (hy resp.) is called a lower (upper) relative
value function, whose basic ideas are appearing in the theory of Markov decision processes
(c.f. [7]). By Theorem 2.1, we have ‘

§(ﬁ)a = [min Ro(py), max Ra(ia)]y . (36)
where the extremal points are characterized in the following theorem.

Theorem 3.1. Let a € [0,1]. Then the following (i) and (ii) hold.
(i) Let h, and h, be defined by (3.4) and (3.5). Then, the following equations hold:

o (D) + min Ro(F,) = min Ra(D) + by (Qa(D)) (3.7
and

ho(D) + max Ro(f,) = max Re(D) + ha(Qq(D)) (3.8)
for all D € C(S).

(ii) Conversely, if there exist bounded functions h, and ke on C(S) and constants K, and
K, satisfying that

ha(D) +Ka = min RO’(D) +ha(QOI(D)) (39)

and
Fa(D) + o = max Ra(D) + a(Qa(D)) (3.10)

for all D € C(S), then §(8)q = [K,, K-

Proof. (i) (3.4) implies

ho(D) = limp_,co 2o (min Ry (Q%(D)) — min Ra(5,))
= min Ro(D) — min Ro(f,)
+ 3002, (min Ra(Q41(Qa(D))) — min Ra(f,))
= min Ra(D) — min Ra(f,) + he(Qa(D)),

which leads to (3.7). Also, (3.8) can be shown analogously to (3.7).
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(i) Let h,(D) and K (D) be as in (3.9). Then, it holds that for each t (¢ > 0),
h,(Q4(D)) + K, = min Ro(Q4(D)) + by (Q5H (D)) (3.11)
By summing (3.11) for t =0,1,---,T — 1, we get

T-1

ho(D) +T x Ko = ) min Re(Q4(D)) + ha(Q7 (D))
t=0

So
T_1

— . 1 . t
K,=lim = ; min Ro(Q4(D)) for D € C(S).
Thus, from Theorem 2.1 and Corollary 2.1,
| K, =min Ry(p,).

We also obtain Ko = max Re(5,) similarly. Therefore we get §(3)a = [K,,Kaq] by (3.6).
g.e.d.
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