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Abstract

We study the skeleton of several polytopes related to the n-cube, the halved
n-cube, and the folded n-cube. In particular, the Gale polytope of the n-cube,
its dual and the duals of the halved n-cube and the complete bipartite sub-
graphs polytope.

1 Introduction
The general references are [2, 6, 12] for polytopes, [4] for graphs and [5] for lattices.
We first recall some basic properties of the cube and the halved cube.

The vertices of the n-cube $\gamma_{n}=[0,1]^{n}$ are all the $2^{n}$ characteristic vectors $\chi^{s}$ for
$S\subset N=\{1,2, \ldots, n\}$ , that is, $\chi_{i}^{s}=1$ for $i\in S$ and $0$ otherwise. With $|S\triangle S’|$

denoting the size of the symmetric difference of the subsets $S$ and $S’$ , two vertices
$\chi^{s}$ and $\chi^{S’}$ are adjacent if and only if $|S\triangle S’|=1$ . The skeleton of $\gamma_{n}$ is denoted by
$H(n, 2)$ and the skeleton of its dual, the cross-polytope $\beta_{n}=\gamma_{n}^{*}$ , is $K_{2\cross n}$ , which is
also called the Cocktail-Party graph. The diameter of the n-cube and its dual are,
respectively, $n$ and 2.

The halved n-cube $h\gamma_{n}$ (see Section 8.6 of [6]) is obtained from the n-cube $\gamma_{n}$ by
selecting the vertex of even cardinality on each edge, that is, $h\gamma_{n}$ is the convex hull
of all the $2^{n-1}$ characteristic vectors $\chi^{s}$ for $S\subset N=\{1,2, \ldots, n\}$ and $|S|$ even. Two
vertices $\chi^{s}$ and $\chi^{S’}$ are adjacent if and only if $|S\triangle S’|=2$ . The skeleton of the halved
n-cube is denoted by -$H(n, 2)$ ; its diameter is $L\frac{n}{2}\rfloor$ .

数理解析研究所講究録
第 899巻 1995年 114-120 114



2Skeleton of the dual halved n-cube

The halved 3-cube is a regular tetrahedron $\alpha_{3}$ . The halved 4-cube is the simplicial
polytope $h\gamma_{4}=\beta_{4}$ . For $n>4$ , the facets of $h\gamma_{n}$-cube are partitioned into the following
two orbits of its symmetry group $2^{n-1}Sym(n)$ . The orbit $O_{1}^{n}$ consists of the $2n$ facets
belonging to the facets of the n-cube and defined by the inequalities:

$x_{i}\leq 1$ for $i\in N$ , (1)
$x_{i}\geq 0$ for $i\in N.$ (2)

The orbit $O_{2}^{n}$ consists of the $2^{n-1}$ facets cutting off the vertices of odd cardinality
from the n-cube and defined by the inequalities:

$\sum_{i=1}^{n}x_{i}(1-2\chi_{i}^{A})\leq|A|-1$ for $A\subset N$ and $|A|$ odd. (3)

The facets defined by the inequalities (1), (2) and (3) are respectively denoted by
$F_{1}^{i},$ $F_{0}^{i}$ and $F^{A}$ . Since the symmetries of a polytope preserve adjacency and linear
independence, we can describe the properties of its facets by simply considering a
representative facet of each orbit. The facets $F_{1}^{i}\simeq F_{0}^{i}\simeq h\gamma_{n-1}$ (here and in the
following $”\simeq$ “ denotes the affine equivalency) and each facet $F^{A}$ is the simplex
containing the $n$ vertices: $\chi^{A\cup\{i\}}$ for $i\in\overline{A}$ and $\chi^{A\backslash \{i\}}$ for $i\in A$ .

The skeleton of the dual halved n-cube, denoted by $h\gamma_{n}^{*}$ , is the graph whose nodes
are the facets of $h\gamma_{n}$ , two facets being adjacent if and only if their intersection is a
face of codimension 2. This skeleton is given below.

Lemma 2.1 The facets of $O_{1}^{n}$ and $O_{2}^{n}$ form, respectively, the coclique $\overline{K}_{2n}$ , and $ihe$

coclique $\overline{K}_{2^{n-1}}$ ; each facet $F^{A}$ is adjacent, either to $F_{1}^{i}$ if $i\in A$ , or to $F_{0}^{i}$ if $i\in\overline{A}$ for
each $i\in N$ .

Corollary 2.2 For $n\geq 4$ , the skeleton of the dual halved n-cube is a bipartite graph
of diameter 4.
PROOF. Since the valency of a facet belonging to $O_{1}^{n}$ , respectively to $O_{2}^{n}$ , is half
the size of $O_{2}^{n}$ , respectively of $O^{1}$ , we have $\delta(h\gamma_{n}^{*})\leq 4$ . On the other hand, the facets
$F_{1}^{i}$ and $F_{0}^{i}$ , having no common neighbour, we get $\delta(h\gamma_{n}^{*})>3$ . $\square$

Corollary 2.3 The halved n-cube has $n2^{n-2}$ faces of codimension 2 which are all
simplices, that is $h\gamma_{n}$ is quasi-simplicial. For $narrow\infty,$ $h\gamma_{n}$ is asymptotically simplicial.
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PROOF. Since the number of faces of codimension 2 of a polytope is half of the
total valency of the skeleton of its dual, the result is a straightforward calculation. All
faces of codimension 2 being incident to the simplex facets of $h\gamma_{n}$ , the halved n-cube
is a quasi-simplicial. $\square$

3 Gale transform of the n-cube

Let $A$ be a $(2^{n}-n-1)\cross 2^{n}$ matrix which rows form a basis for the space of all
the affine dependencies on the vertices of the n-cube. A Gale transform of $\gamma_{n}$ is the
collection of the $2^{n}$ points in $R^{2^{n}-n-1}$ which are the columns of $A$ .

We consider the matrix $A$ induced by the following $2^{n}-n-1$ affine dependencies
on the vertices of $\gamma_{n}$ :

$(1-|T|) \chi^{\emptyset}+\sum_{i\in T}\chi^{\{i\}}-\chi^{T}=0$ for $T\subset N$ and $|T|\geq 2$ . (4)

Since each column of $A$ corresponds to a vertex $\chi^{s}$ of $\gamma_{n}$ for $S\subset N$ , we simply
denote by $v^{s}$ the vector formed by this column of $A$ . For example, the first column
of $A$ corresponds to $\chi^{\emptyset}$ and forms the vector $v^{\emptyset}$ which $2^{n}-n-1$ coordinates are
$v_{T}^{\emptyset}=(1-|T|)$ , where $R^{2^{n}-n-1}$ is naturally indexed by $T\subset N,$ $|T|\geq 2$ .

A Gale polytope, Gale$(P)$ , of a polytope $P$ is the convex hull of a Gale transform
of $P$ . In the following we consider Gale $(\gamma_{n})$ associated to the affine dependencies (4).
The polytope Gale $(\gamma_{3})$ is a prism over a tetrahedron; see also Example 5.6 in [3] for
relation with Lawrence polytopes. For $n\geq 4$ , we introduce some edges and facets of
Gale $(\gamma_{n})$ in order to compute its diameter and the one of its dual.

Consider the following inequalities, where $x_{T}$ for $T\subset N$ and $|T|\geq 2$ are the
coordinates of a point $x$ in $R^{2^{n}-n}$ “1 indexed by $T\subset N,$ $|T|\geq 2$ .

$-x_{A}\leq 1$

$x_{A\backslash \{i\}}-x_{A}\leq 1$

$x_{A}\leq 1$

$x_{A\cup\{i\}}-x_{A}\leq 1$

for $|A|=2$ , $(e_{1})$

for $|A|\geq 3$ and $i\in A$ , $(e_{2})$

for $|A|=2$ , $(e_{3})$

for $|A|\geq 2$ and $i\not\in A$ , $(e_{4})$

$2 \sum_{j\in N}x_{\{j\}}-2x_{\{i\}}+(n-1)(x_{N}-1)\leq 0$
for $i\in N$ , $(e_{5})$

$\sum_{|T|\geq 2}x_{T}-2^{n}(x_{A}+x_{B})\leq 2^{n}-1$
for $|A|,$ $|B|\geq 2$ and $2(|A|+|B|)\leq n+3$ . $(e_{6})$
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One can easily check that each of those inequalities induces an edge of Gale $(\gamma_{n})$ . More
precisely, $(e_{1})$ and $(e_{2})$ induce the edges $[v^{\emptyset}, v^{A}]$ for $|A|\geq 2,$ $(e_{3}),$ $(e_{4})$ and $(e_{5})$ induce
the edges $[v^{i}, v^{A}]$ for $|A|\geq 1$ and $i\not\in A$ or $A=N$ and $(e_{6})$ induce the edges $[v^{A}, v^{B}]$

for $|A|,$ $|B|\geq 2$ and $2(|A|+|B|)\leq n+3$ .

Property 3.1 The diameter of Gale $(\gamma_{n})$ is at most 2. Moreover, $\delta(Gale(\gamma_{3}))=2$

and $\delta(Gale(\gamma_{4}))=1$ .
PROOF. The vertices $v^{\emptyset}$ and $v^{A}$ are respectively linked by the edges $[v^{\emptyset}, v^{N}]$ and
$[v^{N}, v^{A}]$ for $|A|=1$ and by the edge $[v^{\emptyset}, v^{A}]$ for $|A|\geq 2$ . The vertices $v^{i}$ and $v^{j}$

always form an edge, $v^{i}$ and $v^{A}$ are linked by $[v^{i}, v^{j}]$ and $[v^{j}, v^{A}]$ with $j\not\in A$ , for
$2\leq|A|\leq n-1$ , and $[v^{i}, v^{N}]$ form an edge. Finally, the vertices $v^{A}$ and $v^{B}$ are linked
by the edges $[v^{A}, v^{\emptyset}]$ and $[v^{\emptyset}, v^{B}]$ for $|A|,$ $|B|\geq 2$ . $\square$

We then consider the following $2^{n-1}$ inequalities.

$2^{n-1}x_{\overline{A}}- \sum_{|T|\geq 2}x_{T}\leq 1$

$2^{n-1}(x_{A}+x_{\overline{A}})- \sum_{|T|\geq 2}x_{T}\leq 1$

for $A\subset N$ and $|A|\leq 1$ ,

for $A\subset N$ and $2\leq|A|\leq n-1$ .

One can easily check that each of those inequalities induces a facet $G^{A}$ of Gale $(\gamma_{n})$

for $A\subset N$ and $|A|\leq n-1$ . Since each facet $G^{A}$ contains all vertices except the pair
$\{v^{S}, v^{\overline{s}}\}$ , we call them the huge facets.
Lemma 3.2 The huge facets form the clique $K_{2^{n-1}}$ in the skeleton of $Gale^{*}(\gamma_{n})$ .

PROOF. Let us first consider $g=G^{A}\cap G^{B}$ with $A,$ $B\subset N$ and $2\leq|A|,$ $|B|\leq n-1$ .
The face $g$ contains all the vertices of Gale $(\gamma_{n})$ except $\{v^{A}, v^{\overline{A}}, v^{B}, v^{B}\}$ . We show that
$g$ is of codimension 2 by exhibiting a family $V$ of $2^{n}-n-2$ affinely independent
vertices belonging to $g$ , this will imply that $G^{A}$ and $G^{B}$ are adjacent. Namely, $V$

is formed by the vertices $v^{S}$ with $S\not\in\{A,\overline{A}, B,\overline{B}\}$ and $|S|\geq 2$ and the vertices
$\{v^{i}, v^{j}\}$ with $1\leq i<j\leq n$ such that $v_{A}^{i}=d_{B}=1$ and $v_{B}^{i}=d_{A}=0$ . In the case
$0\leq|A|,$ $|B|\leq 1,$ $V$ is formed by the vertices $v^{S}$ with $S\not\in\{\overline{A},\overline{B}\}$ and $|S|\geq 2$ . Finally,
in the case $0\leq|A|\leq 1$ and $2\leq|B|\leq n-1,$ $V$ is formed by the vertices $v^{S}$ with
$S\not\in\{\overline{A}, B,\overline{B}\}$ and $|S|\geq 2$ and the vertex $v^{\emptyset}$ . $\square$

Property 3.3 The huge facets form a dominating clique in the skeleton of $Gale^{*}(\gamma_{n})$ .

PROOF. Since the pairs $\{v^{S}, v^{S}\}$ form a partition of all the vertices of Gale $(\gamma_{n})$ ,
for any facet $F$ , at least one huge facet $G^{A}$ satisfies $|G^{A}\cap F|=|F|-1$ . This implies
that $G^{A}$ is adjacent to $F$ ; in other words, the huge facets form a dominating clique.
$\square$
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Corollary 3.4 The diameter of $Gale^{*}(\gamma_{n})$ is at most 3. Moreover, it is 2 for $n=3,4$ .

Conjecture 3.5 For $n\geq 4$ , the diameters of the Gale polytope of the n-cube and of
its dual are 1 and 2, respectively.

4 Complete bipartite subgraphs polytope

We recall that the folded n-cube $\square _{n}$ is the graph whose vertices are the $2^{n-1}$ partitions
of $N=\{1, \ldots, n\}$ into two subsets, $S$ and $\overline{S}$ ; two partitions being adjacent when their
common refinement contains a singleton. In particular, $\square _{4}=K_{4,4}$ and $\square _{5}-=\frac{1}{2}H(5,2)$ ,
also called the Clebsch graph.

The complete bipartite subgraphs polytope $c_{n}$ , which is also called the cut polytope
of the complete graph, is a relative of the folded n-cube. More precisely, the vertices
of $c_{n}$ are the $2^{n-1}$ incidence vectors $\delta(S)$ in ffi$(n2)$ of the partitions of $N$ , that is,
$\delta(S)_{ij}=1$ if exactly one of $i,$ $j$ is in $S$ and $0$ otherwise for $1\leq i<j\leq n$ . It is easy to
check that the squared Euclidian distance between two partitions, seen as vertices of
$c_{n}$ , is $d(n-d)$ , where $d$ is their path distance, in the graph $\square _{n}$ . Now, $c_{3}=h\gamma_{3}=\alpha_{3}$

and $c_{4}$ is combinatorially equivalent to the simplicia16-dimensional cyclic polytope
with 8 vertices. The symmetry group of $c_{n}$ is isomorphic to the automorphism group
of $\square _{n}$ , see [10]. See [11] for a detailed treatment of $c_{n}$ .

The skeleton of $c_{n}$ is the clique $K_{2^{n-1}}$ , see $[1].The$ determination of all the facets
of $c_{n}$ for large $n$ seems to be hopeless, but a wide range of facets has been already
found (including all for $n\leq 7$). It seems that the huge majority of them are simplices
for large $n$ , that is, $c_{n}$ is asymptotically simplicial, as well as $h\gamma_{n},$ . In [7] it was
conjectured (and proved for $n\leq 7$ ) that $\delta(c_{n}^{*})\leq 4$ ; moreover, $\delta(c_{4}^{*})=\delta(c_{5}^{*})=2$ and
$\delta(c_{6}^{*})=3$ . Actually, the skeleton of $c_{4}^{*}$ is the line graph of the folded 4-cube.

Remark 4.1 Using the basis of the space of affine dependencies on $c_{5}$ given in [8],
we found by computer that Gale $(c_{5})\simeq h\gamma_{5}$ ; recall that $\square _{5}-=\frac{1}{2}H(5,2)$ . Clearly,
Gale $(h\gamma_{4})\simeq\alpha_{3}$ and Gale $(h\gamma_{5})\simeq c_{5}$ ; more generally, for $n$ odd, Gale $(h\gamma_{n})$ can be
obtained from the following basis of $2^{n-1}-n-1$ affine dependencies:

$(n-1) \sum_{i\in X}x_{N\backslash \{i\}}-|A|\sum_{i\in N}x_{N\backslash \{i\}}+(n-1)x_{A}=0$ for $|A|$ even, $2\leq|A|\leq n-2$ .
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Finally, we mention $cont_{m}$ , the contact polytope of the lattice $Z(V_{m})$ in $1B(2m)$

studied in [9], where $V_{m}$ denotes the set of vertices of $c_{m}$ , that is, $cont_{m}$ is the convex
hull of all vectors of this lattice having the minimal length $\mu=\min(4, m-1)$ . Clearly,
it comes from the construction $A$ given in Chapters 5, 7 of [5] with $V_{m}$ seen as a linear
binary code with $n=(\begin{array}{l}m2\end{array}),$ $M=2^{m-1}$ and $d=m-1$ . We have,

$\bullet$ $cont_{2}=conv\{\pm e_{1}\}=\beta_{1}$ and $\mathbb{Z}(V_{2})=Z=A_{1}$ ,

$\bullet$ $cont_{3}=conv\{\pm e_{i}\pm e_{j}:1\leq i\neq j\leq 3\}$ is the cubo-octahedron (the vertices of
this Archimedean solid are the midpoints of the edges of $\gamma_{3}$ ) and $\mathbb{Z}(V_{3})$ is the
face-centered cube lattice $A_{3}\cong D_{3}$ ,

$\bullet$ $cont_{4}=conv\{\pm\delta(i), \pm\delta(i)-2e_{ij}:1\leq i\neq j\leq 4\}\simeq h\gamma_{6}$,

$\bullet$ $cont_{5}$ is a 10-polytope with the following 100 vertices: $\{\pm 2e_{ij}:1\leq i\leq j\leq 5\}$

$\cup\{\delta(i)-2\Sigma_{\{jk\}\in X}e_{jk}:1\leq i\leq 5,$ $X\subset E(K_{i_{2}\{1,2,3_{\dagger}4,5\}-i})$ . So, $cont_{5}$ is the union
of $2\beta_{10}$ and five 4-cubes $\gamma_{4}$ , this polytope has 4624 facets divided into 4 orbits
of its symmetry group $2^{5}Sym(5)$ , moreover, the orbit formed by the 384 facets
equivalent to the one induced by the inequality $\sum_{\{ij\}\in C_{1,2,3,4,5}}x_{ij}\leq 2$ forms a
dominating set in the skeleton of $cont_{5}^{*}$ ,

$\bullet$ for $m\geq 6,$ $cont_{m}=conv\{\pm 2e_{ij}:1\leq i\leq j\leq m\}\simeq\beta_{()}m2^{\cdot}$

So, the kissing number of the lattice, that is the number of vertices of $cont_{m}$ , is
$\tau=2,12,32,100,$ $m(m-1)$ for $m=2,3,4,5,$ $\geq 6$ .

Figure 4.1: The contact polytope of $\mathbb{Z}(V_{3})$ is a cubo-octahedron
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