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Abstract

The distance (the A-distance) which is determined by given orientations is proposed
by P.Widmayer, Y.F.Wu and C.K.Wong[10]. In this article, we consider a single facility
location problem under the A-distance with respect to minisum criterion, study properties
of the optimal solution for the problem, and propose “The Iterative Algorithm” to find $aU$

optimal solutions. In $R^{2}$ , we consider the problem $\min_{X\in R^{2}}F(x)=\sum_{i=1}^{n}w_{i}d_{A}(x,y_{i})$ ,
where $d_{A}$ is the A-distance.

For each demand point and each given orientation, we draw a oriented line which passes
the point. Then a plane is divided into regions. We call a point passing some lines an
intersectio $npo$ int. It is shown that there exists an optimal solution in the set of intersection
$po$ ints. Let $P$ be the smallest convex polygon including ffi demand points, which all boundary
lines are given orientated lines. It is shown that any optimaJ solution is in $P$ .

We propose “The Iterative Algorithm”, where the solution in each step is an interseciion
$po$ int. This algorithm is as follow$s$ : We choose any demand point as an initial solution. The
solution in the next step is determined as the adjacent intersection $po$ int in the steepest
orientation among orientations according to lines which passes the present solution. We also
propose the method to determine the adjacent intersectio $n$ point easily by sorting lines.

Keywords : Location problem, Minisum criterion, A-metric, A-distance

1 Introduction

When we consider wheie a facility should be located on a plane, the problem will be a single
facihty location problem. In this paper, we assume that the facihty can be located almost
everywhere on a plane. Such a model is called a continuous model. We use minisum criterion.
For example, minisum criteiion is used when the facihty is the public one. In this article,
we consider a single facihty location problem of a continuous model with respect to minisum
criterion.

On the other hand, the location problem is different accoiding to the distance used in it.
So various distances are used [1,2,6,7,8,9]. The distance (the A-distance) which is determined
by given orientations is proposed by P.Widmayer, Y.F.Wu and C.K.Wong[10]. We consider the
above location problem under the A-distance.

In section 2, we give some definitions and iesults for the A-distance. In section 3, we formulate
a single facihty minisum location problem under the A-distance, and give some properties of
the optimal solution, and propose an iterative algorithm for that problem.
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2 The A-Metric

In $R^{2}$ , let
$A=\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\},$ $m\geq 2$

be a set of given orientations, where $\alpha i$ ’s are angles for positive direction of x-axis, and we
assume that $0\leq\alpha_{1}<\alpha_{2}<\cdots<\alpha_{m}<\pi$ .

If the orientation of a line (a half line, a line segment) belongs to $A$ , we call the line (the
half line, the line segment) A-oriented line (half line, line segment).

Let $B=$ { $L$ : A-oriented line segment}, and for $x_{1},$ $x_{2}\in R^{2}$ , let $[x_{1}, x_{2}]=\{x=\lambda x_{1}+(1-$

$\lambda)x_{2}:0\leq\lambda\leq 1\}$ . The A-distance is defined as follows.

Deflnition 1 (The A-Distance) For any $x_{1},$ $x_{2}\in R^{2}$ , we define the A-distance between $x_{1}$

and $x_{2}d_{A}(x_{1}, x_{2})$ as

$d_{A}(x_{1}, x_{2})=\{\begin{array}{ll}d_{2}(x_{1}, x_{2}), [x_{1}, x_{2}]\in B\min_{x_{3}\in R^{2}}\{d_{2}(x_{1}, x_{3})+d_{2}(x_{3}, x_{2})|[x_{1}, x_{3}], [x_{3}, x_{2}]\in B\}, oth erwise\end{array}$

where $d_{2};_{S}$ the Euclidean metric. We call $d_{A}$ the A-metric, In fact, $d_{A}$ is a metric in $R^{2}[10]$ .

Theorem 1 ([10]) For any $A$ and any $x_{1},$ $x_{2}\in R^{2},$ $d_{A}(x_{1}, x_{2})$ is always realized by the polyg-
onal line which consists of at most two A-oriented $\dot{l}$ne segments,

In the following, we assume that $A$ is given.

Definition 2 (The A-Circle) For a point $y\in R^{2}$ and a constant $c>0$ ,

$\{x\in R^{2}|d_{A}(y, x)=c\}$

is called the A-circle with radius $c$ at center $y$ .
For the simplicity, let $\alpha_{m+k}=\pi+\alpha_{k}(k=1,2, \cdots, m)$ and $\alpha_{0}=\alpha_{2m}-2\pi,$ $\alpha_{2m+1}=\alpha_{1}+27\Gamma$ .

In this case, it follows that $0\leq\alpha_{1}<\alpha_{2}<\cdots<\alpha_{m}<\pi\leq\alpha_{m+1}<\cdots<\alpha_{2m}<2\pi$ . Moreover,
let $a_{j}=(\cos\alpha_{j}, \sin\alpha_{j})(j=0,1, \cdots, 2m+1)$.

Figure 1.

By Definition 1, we can show the following lemma easily.

Lemma 1 ([6]) For $x$ $=$ $(x^{1}, x^{2}),$ $y$ $=$ $(y^{1}, y^{2})$ $\in$
$R^{2}$ , if $x$ $\in$ $y+C\{aa\}$ , where

$C\{a_{j}, a_{j+1}\}=\{\lambda a_{j}+\mu aj+1|\lambda, \mu\geq 0\}$, then $d_{A}(x, y)$ can be represented as follows.

(2.1) $d_{A}(x, y)= \frac{(x^{1}-y^{1})(\sin\alpha_{j+1}-\sin\alpha_{j})+(x^{2}-y^{2})(\cos\alpha-\cos\alpha)}{\sin(\alpha j+1-\alpha j)}$

Lemma 2 ([6]) For each $y\in R^{2},$ $f(x)=d_{A}(x, y)$ is a convex function,
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3 The Minisum Location Problem

In this section, we consider a single facihty minisum location problem under the A-distance.
In $R^{2}$ , let $y_{i}=(y^{i}, y_{1}^{2})$ {or $i=1,2,$ $\cdots,$ $n$ , be the location of $n$ demand points, $wi$ be positive

weight associated each demand point $i,$ $x$ be the location of the facihty to be located. The
problem is formulated as follows.

(3.1) $\min F(x)$
$x\epsilon R^{2}$

where $F(x)= \sum_{i=1}^{n}w:d_{A}(x, y_{i})$ .
By Lemma 2, $F$ is a convex function. Therefore, (3.1) is the convex programming problem.

Furthermore, there exists an optimal solution for (3.1). Let $S^{*}$ be a set of optimal solutions for
(3.1).

First, for each demand point, we draw $aU$ A-oriented lines which passes the point. Let
$L_{1j}=\{y_{i}+\gamma aj|\gamma\in R\}$ $(i=1,2, \cdots, n;j=1,2, \cdots , m)$ . We call an element of

$| \bigcup_{1’j}\bigcup_{\neq j’}(L_{1j}\cap L_{i’j’})$

an intersection point (Figure 2). Let $I$ be a set of all intersection points. We call a convex
polygon $S\subset R^{2}$ a region if $aU$ boundary lines of $S$ are some of $L_{1j}$ ’s and $intS\neq 1$ and

$(intS)\cap L_{ij}=\emptyset$ , $i=1,2,$ $\cdots,$ $n;j=1,2,$ $\cdots,$ $m$ ,

where intS is the interior of $S$ (Figure 2).

Figure 2. $A= \{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}\}$

Since, for some $j;(1\leq j;\leq 2m),$ $i=1,2,$ $\cdots,$ $n$ , any region $S$ is represented as

$S= \bigcap_{:=1}^{n}(y_{i}+C\{aa\})$ ,
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$F$ is linear on each region $S$ by (2.1). On the other hand, for any $x \not\in\bigcup_{i,j}L_{ij}$ , the region $S$

whose interior contains $x$ is determined uniquely as follows.

$S= \bigcap_{1=1}^{n}(y_{i}+C\{a_{g:}, a_{J;+1}\})$

where
$x\in y_{i}+C\{a:’ a\}$ , $i=1,2,$ $\cdots,$ $n$ .

In this case, we $caU$ the region $S$ the region characterized by $x$ , and write $S(x)$ .

Theorem 2
$S^{*}\cap I\neq\emptyset$

Theorem 3 Let $S_{1},$ $S_{2}$ be adjacent bounded regions.

$S_{1}\subset S^{*}\Rightarrow S^{*}\cap(intS_{2})=\emptyset$

Next let $\{P_{\lambda}, \lambda\in\Lambda\}$ be a set of $aU$ convex polygons including $\{y_{1}, y_{2}, \cdots, y_{n}\}$ , which all
boundary lines are A-oriented lines. Let

$P= \bigcap_{\lambda\in\Lambda}P_{\lambda}$
.

$P$ is the smallest convex polygon including $aH$ demand points, which all boundary lines are
A-oriented lines(Figure 3). Note that boundary lines of $P$ are A-oriented supporting lines to
$\{y_{1}, y_{2}, \cdots,y_{n}\}$ .

Figure 3. $P$ for $\{y_{1}, y_{2}, \cdots, y_{5}\},$ $A= \{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}\}$

Theorem 4
$S^{*}\subset P$
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By Theorem 2 and 4, there exists an optimal solution which is an intersection point on
$P$ . So we consider to deteimine such an optimal solution by iteiative method that traces only
iniersection points where a initial point is any demand point. Now we assume that a solution
after the rth iteration is $x^{(r)}$ . Of cource, $x^{(r)}\in I$ .

We say $a_{j}(1\leq j\leq 2m)$ holds condition (Q) for $x^{(r)}$ if

$\exists y_{i}(1\leq i\leq n)$ s.t. $y_{i}=x^{(r)}+\gamma aJ$ for some $\gamma\in R$

and
$\exists\epsilon>0$ s.t. $x^{(r)}+\epsilon a4\in P$.

Let
$J=$ {$j|aj$ holds condition (Q) for $x^{(r)}$ }.

For the objective function $F$ , we represent the right differential coefficient of $F$ at $x_{0}\in R^{2}$

with respect to $0\neq a\in R^{2}$ as $\partial_{+}F(x_{0};a)$ , and let

(3.2) $u^{(r)}= \min_{j\in J}\{a)\}$ .

If $u^{(r)}\geq 0$ then $x^{(r)}$ is optimal by the convexity of the objective function $F$ .
By Theorem 3 and 4, the set of optimal solutions $S^{*}$ is an intersection point or A-oriented

line segment, whose end points are adjacent intersection points, or a region.
Before we state the algorithm, we consider the determination of $P$ . First, we sort $L_{ij}$ ’s

according to x-intercept or y-intercept. For each $j$ , if $\alpha_{j}\neq\frac{\pi}{2},$ $L_{lj}$ is $-x\tan\alpha_{J}\cdot+y=y_{i}^{2}-y_{t}^{1}\tan\alpha_{J}\cdot$ ,
let $b_{tj}=y_{i}^{2}-y_{i}^{1}\tan\alpha_{j}$ . Otherwise, i.e. $\alpha_{j}=\frac{\pi}{2},$ $L_{ij}$ is $x=y_{1}!$ , let $b_{tj}=y_{\iota}^{i}$ .

For each $j$ , we sort all different lines among $L_{ij},$ $i=1,2,$ $\cdots,$ $n$ according to $b_{ij},$ $i=1,$ $\cdots$ , $n$

in ascending order. Let those lines be $l_{1}^{j},\ell_{2}^{j},$
$\cdots,l_{n;}^{j}$ , where $l_{i}^{j}$ is the ith line among $\alpha 4$ -oriented

soited lines. Note that $n_{j}\leq n$ .
Now we assume that $0\leq\alpha_{1},$ $\cdots,$ $\alpha_{q-1}<\frac{\pi}{2},$ $\alpha_{q}=\frac{\pi}{2},$ $\frac{\pi}{2}<\alpha_{q+1},$ $\cdots,$ $\alpha_{m}$ . Next we arrange

$\ell_{i}^{j},$ $i=1,2,$ $\cdots,$ $nj;j=1,2,$ $\cdots,$ $m$ as follows.

(3.3) $\ell_{1}^{1},$ $l_{1}^{2},$

$\cdots,$
$\ell_{1}^{q-1},l_{n_{q}}^{q},\ell_{n_{q+1}}^{q+1},$

$\cdots,$ $l_{n_{m}}^{m},$ $l_{n_{1}}^{1},\ell_{n}^{2_{2}},$
$\cdots,$ $\ell_{n_{q-1}}^{q-1},l_{1}^{q},$ $l_{1}^{q+1},$

$\cdots,$
$l_{1}^{m}$

Now coefficients of $L_{ij}$ ’s are stored. When we consider $P,$ $=$
” in $\ell_{1}^{J}(1\leq j\leq m)$ is replaced by

$\geq$”, and $=$
” in $\ell_{n}^{j}j(1\leq j\leq m)$ is replaced by $\leq$ ”. $P$ is the region determined by its system

of inequalities. Note that this system of inequalities may contain reduntant inequalities.
For the simplicity of the representation, let lines in (3.5) be $\ell(1),$ $\ell(2),$ $\cdots,$ $\ell(2m)$ . Especially,

let $\ell(2m+1)=\ell(1),$ $l(2m+2)=\ell(2)$ .

The procedure for the determination of $P$

Step 1. Determine an intersection point of $l(1)$ and $l(2)$ , and let its intersection point be $z_{1}$ .
Set $j=2$ .

Step 2. Determine an intersection point of $\ell(j)$ and $\ell(j+1)$ , and let its intersection point be
$z_{j}$ .

Step 3. If $zj=zj-1$ then remove $\ell(j)$ .

Step 4. If $j=2m+1$ then stop otherwise set $j=j+1$ and go to Step 2.
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Let $l(j_{1}),$ $l(j_{2}),$ $\cdots,$ $l(j_{p})$ be lines left after the above proceduie. $P$ is repiesented by
the system of inequalities corisponding to those lines. Now its system of inequalities does not
contain iedundant inequalities.

The Iterative Algorithm

Step 1. Choose any demmd point as an initial solution $x^{(0)}$ . (We choose the demand point
with the laigest weight.) Set $r=0$ .

Step 2. Calculate $u^{(r)}$ .

Step 3. If $u^{(r)}>0$ then stop. $x^{(r)}$ is an optimal solution.

Step 4. If $u^{(r)}=0$ then stop. If the numbei of $a_{k}$ ’s which hold $u^{(r)}=0$ , i.e. $\partial_{+}F(x^{(r)};a_{k})=0$ ,
is

1. one, then any point on $[x^{(r)}, x_{k}^{(r)}]$ , where $x_{k}^{(r)}$ is an $a_{k}$-oriented adjacent it intersection
point to $x^{(r)}$ , is optimal.

2. two, then for sufficiently small $\epsilon>0$ and $a_{k_{1}},$ $a_{k_{2}}$ which hold $u^{(r)}=0$ , any point
$x\in S(x^{(r)}+\epsilon(a_{k_{1}}+a_{k_{2}}))$ is optimal.

Step 5. Otherwise, i.e. $u^{(r)}<0$ , choose any $a_{k}$ which holds $u^{(r)}=\partial_{+}F(x^{(r)};a_{k})$ , and let
$x^{(r+1)}$ be an $a_{k}$-oriented adjacent intersection point to $x^{(r)}$ . Set $r=r+1$ , and go to Step
2.

The Iterative Algorithm is convergent because $x^{(r)}$ in The Iterative Algorithm is different
from $x^{(0)},$ $x^{(1)},$

$\cdots,$
$x^{(r-1)}$ and the numbei of intersection points is finite. Since the number of

intersection poins is $\mathcal{O}(n^{2})$ and the complexity of caluculation of $F(x^{(r)})$ is $\mathcal{O}(n)$ , the complexity
of The Iterative Algorithm is $\mathcal{O}(n^{3})$ .

If $ak$ which holds $u^{(r)}=\partial_{+}F(x^{(r)};ak)$ is deteimined in Step 5 of The Iterative Algorithm,
we need to determine $x^{(r+1)}$ which is an $a_{k}$-oiiented adjacent intersection point to $x^{(r)}$ . Next
we consider the piocedure to determine $x^{(r+1)}$ . For each $j$ , let $f_{j}(x, y)$ be the left side of $L_{tj}$ ,
i.e.

$f_{j}(x, y)=\{\begin{array}{ll}-x\tan\alpha j+y if \alpha_{j}\neq\frac{\pi}{2},x if \alpha j=\frac{\pi}{2}.\end{array}$

If $\alpha J\neq\frac{\pi}{2}$ then $\nabla f_{j}(x, y)=(-\tan\alpha j, 1)$ otherwise $\nabla f_{j}(x, y)=(1,0)$ .
We assume that an initial solution $x^{(0)}=y_{i_{0}}$ is given. Set $r=0$ wheie $r$ is a counter. Next,

we determine
$p_{s_{r}(j)},$ $j=1,2,$ $\cdots,$ $m;1\leq s_{r}(j)\leq n_{j}$

coiresponding to $L_{t_{0}}j,$ $j=1,2,$ $\cdots,$ $m$ (e.g. binary search). Note that $x^{(r)}$ is an intersection
point of $l_{s_{r}(j)}^{j}\prime s$ , i.e. $x^{(r)}$ can be represented by $s_{r}(j)’ s$ . We concentrate on $s_{r}(j),$ $j=1,2,$ $\cdots,$ $m$ .
We assume that $\alpha_{k}(1\leq k\leq 2m)$ is determined in Step 5 of The Iterative Algoiithm. Let

$j’=\{\begin{array}{ll}k if 1\leq k\leq m,k-m if m<k\leq 2m.\end{array}$

For $j\neq k,$ $j\neq k-m(1\leq j\leq m)$ , let

$t_{kj}=<\nabla f_{j}(x, y),$ $a_{k}>$
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where $<x,y>$ is innei product of $x,$ $y\in R^{2}$ .
Next, {or each $j\neq j’(1\leq m)$ , we determine an intersection point of $\ell_{s_{r}(j)}^{j’}$ and $l_{s_{r}(j)+sign(t_{kj})}^{j}$ ,

where, for $x\neq 0$ ,

sign$(x)=\{\begin{array}{l}+1 if x>0,-1 if x<0.\end{array}$

For $j\neq j’(1\leq j\leq m)$ , let $z_{kj}$ be an intersection point of

(3.4) $l_{s_{r}(j)}^{j’}$ and $\ell_{s_{r}(j)}^{j}$ .

$z_{kj}$ ’s are candidates for $x^{(r+1)}$ . Let

(3.5) $J^{(r)}= \{j:d_{2}(x^{(r)}, z_{kj})=\min_{i\neq j,1\leq i\leq m}\{d_{2}(x^{(r)}, z_{kj})\}\}$ .

$x^{(r+1)}$ is an intersection point of $\ell_{s_{\Gamma}(j)+sign(t_{kj})}^{j},$ $j\in J^{(r)}\cup\{j’\}$ . Let

(3.6) $s_{r+1}(j)=\{\begin{array}{ll}s_{r}(j) if j=j’,s_{r}(j)+sign(t_{kj}) if j\in J^{(r)},s_{r}(j)+0.5sign(t_{kj}) otherwise.\end{array}$

Set $r=r+1$ , and go to the next step.
In the next step, a solution $x^{(r)}$ is an intersection point of $l_{s_{r}(j)}^{j}$ ’s such that $s_{r}(j)\in N$ where

$N$ is a set of natural numbers. For $j$ such that $s_{r}(j)\not\in N$ , it means that $x^{(r)}$ lies between $l^{j}$

$[s_{r}(j)]$

and $l_{[s_{r}(j)]+1}^{j}$ where $[\cdot]$ is Gauss’ symbol.
In The Iterative Algorithm, we condider the representation of a solution after the rth iteration

$x^{(r)}$ as
$x^{(r)}\ell^{j}$, $s_{\Gamma}(j)j=1,2,$ $\cdots,$ $m$ .

The above is only the case of $r=0$ . If we consider the case of $r\geq 1$ in The Iterative
Algorithm, sign$(t_{kj})$ in (3.4) and the second equation in (3.6) is replaced by

$[s_{r}(j)-0.5]$ if sign$(t_{kj})=-1$ ,
$[s_{r}(j)+1]$ if sign$(t_{kj})=1$ ,

and sign $(t_{kj})$ in the third equation in (3.6) is replaced by

sign$(t_{kj})([s_{r}(j)]-[s_{r}(j)-0.5])$ .

4 Numerical Example

In the problem (2), let $n=5,$ $A= \{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}\},$ $y_{1}=(63,97),$ $y_{2}=(102,7),$ $y_{3}=(10,90),$ $y_{4}=$

$(197,57),$ $y_{5}=(73,20),$ $w_{1}=w_{2}=w_{3}=w_{4}=w_{5}=1$ . We set $x^{(0)}=y_{1}$ as an initial solution,
by The Iterative Algorithm, we have $x^{(0)}=$ (63,97), $x^{(1)}=$ (63,90), $x^{(2)}=$ (63,57), $x^{(3)}=$
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(73,57), $x^{(4)}=$ $($ 73,36). The optimal solution is $x^{(4)}=$ (73,36), and the optimal value is
$F(x^{(4)})=340.22$ (Figure 4).

Figure 4. : the optimal solution
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