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Abstract

The distance (the A-distance) which is determined by given orientations is proposed
by P.Widmayer, Y.F.Wu and C.K.Wong[10]. In this article, we consider a single facility
location problem under the A-distance with respect to minisum criterion, study properties
of the optimal solution for the problem, and propose “The Iterative Algorithm” to find all
optimal solutions. In RZ?, we consider the problem min g p2 F(z) = i, wida(z,9;),
where d 4 is the A-distance.

For each demand point and each given orientation, we draw a oriented line which passes
the point. Then a plane is divided into regions. We call a point passing some lines an
intersection point. It is shown that there exists an optimal solution in the set of intersection
points. Let P be the smallest convex polygon including all demand points, which all boundary
lines are given orientated lines. It is shown that any optimal solution is in P.

We propose “The Iterative Algorithm”, where the solution in each step is an intersection
point. This algorithm is as follows: We choose any demand point as an initial solution. The
solution in the next step is determined as the adjacent intersection point in the steepest
orientation among orientations according to lines which passes the present solution. We also
propose the method to determine the adjacent intersection point easily by sorting lines.

Keywords : Location problem, Minisum criterion, A-metric, A-distance

1 Introduction

When we consider where a facility should be located on a plane, the problem will be a single
facility location problem. In this paper, we assume that the facility can be located almost
everywhere on a plane. Such a model is called a continuous model. We use minisum criterion.
For example, minisum criterion is used when the facility is the public one. In this article,
we consider a single facility location problem of a continuous model with respect to minisum
criterion.

On the other hand, the location problem is different according to the distance used in it.
So various distances are used [1,2,6,7,8,9]. The distance (the A-distance) which is determined
by given orientations is proposed by P.Widmayer, Y.F.Wu and C.K.Wong[10]. We consider the
above location problem under the A-distance.

In section 2, we give some definitions and results for the A-distance. In section 3, we formulate
a single facility minisum location problem under the A-distance , and give some properties of
the optimal solution, and propose an iterative algorithm for that problem.
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2 The A-Metric

In R?, let
A= {al,a2,~-,am}, m Z 2

be a set of given orientations, where o;’s are angles for positive direction of z-axis, and we
assume that 0 < oy < o2 < -+ < ap < 7.

If the orientation of a hne (a half line, a line segment) belongs to A, we call the hne (the
half line, the line segment) A-oriented line (half line, line segment).

Let B = {L : A-oriented line segment }, and for z1,z; € R?, let [z1,%;) = {z = Az; + (1 -
A)xz : 0 < A <1}. The A-distance is defined as follows.

Definition 1 (The A-Distance) For any :z:i,:z:z € R?, we define the A-distance between xy
and ) dA(:B],xg) as

d2(z1, x2), [z1,22] € B
da(z1,x2) = min {dz(xl,xa) + do(z3, T3) I [z1, z3], [z3, 22] € B} otherwise
zse R’ :

where dy is the Euclidean metric. We call d4 the A-metric. In fact, d4 is a metric in R? [10].

Theorem 1 ([10]) For any A and any =1,z € R?, dg(x1,T2) is always realized by the polyg-
onal line which consists of at most two A-oriented line segments.

In the following, we assume that A is given.
Definition 2 (The A-Circle) For a point y € R? and a constant ¢ > 0,
{x € R?|da(y,z) = c}
ts called the A-circle with radius c at center y.

For the simplicity, let o416 = 74 ax (£ =1,2,---,m) and g = a2m — 27, dom41 = a1 +27.
In this case, it follows that 0 < o3 < a2 < - < a4y < T < 41 < -+ < a2 < 27. Moreover,
let a; = (cosaj,sine;) (j =0,1,---,2m + 1).

Figure 1.

By Definition 1, we can show the following lemma easily.
Lemma 1 ([6]) For ¢ = (z),7%),y = (v',9%) € R?, if ¢ € y + C{aj,a;41}, where
C{aj,a;41} = {Aaj + pa;i1|A, p > 0}, then ds(z,y) can be represented as follows.
(z! — y!)(sin 041 — sin ;) + (22 — y%)(cosa; — cos aj11)
sin(aj41 — ;)

(2.1) dA(:z;,y) =

Lemma 2 ([6]) For eachy € R?, f(z) = da(=,y) is a conver function.
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3 The Minisum Location Problem

In this section, we consider a single facility minisum location problem under the A-distance.

In R? let y; = (y},y?) for i = 1,2,---,n, be the location of n demand points, w; be positive

weight associated each demand point ¢, = be the location of the facility to be located. The
problem is formulated as follows.

(3.1) min_F(z)
zeR’
where F(z) = Y [, wida(z, y;). ‘
- By Lemma 2, F is a convex function. Therefore, (3.1) is the convex programming problem.
Furthermore, there exists an optimal solution for (3.1). Let S* be a set of optimal solutions for

(3.1).
First, for each demand point, we draw all A-oriented lines which passes the point. Let
Lij={y; +yajly € R} (i=1,2,---,n;5 = 1,2,---,m). We call an element of

U U i) Lirs)

i3 55"

an intersection point (Figure 2). Let I be a set of all intersection points. We call a convex
polygon S C R? g region if all boundary lines of S are some of L;;’s and intS # @ and

(mtS)ﬂL,Jz(b, t1=1,2,---,n;5=1,2,---,m,

where intS is the interior of S (Figure 2).

A%~ N

Figure 2. A= {0,%, %, %’-’-

Since, for some j; (1 < j; < 2m), 1=1,2,---,n, any region S is represented as

S = ﬂ(y, + c{aj.‘y aji+1})9

=1
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F is linear on each region S by (2.1). On the other hand, for any = ¢ Ui, Li;, the region S
whose interior contains z is determined uniquely as follows.

S= n(yl + C{ajiy a’].‘;i-l})
=1

where
xeyi"'c{aj,'saj.’-l-l}) izlyzy"'sn

In this case, we call the region S the region characterized by =, and write S(z).

Theorem 2

S*(\I+#9
Theorem 3 Let 51,5, be adjacent bounded regions.
S) C S* = §*(\(intS;) = 0

Next let {Py,A € A} be a set of all convex polygons including {y;,¥5,---,y,}, which all
boundary lines are A-oriented lines. Let

P= () P.

AEA

P is the smallest convex polygon including all demand points, which all boundary lines are
A-oriented lines(Figure 3). Note that boundary lines of P are A-oriented supporting lines to

{yl,yz,"’{yn}-

X
X
s !Il/
7 S 7
ANNTP y«—
/. /

7 /y's j’\<\ \

Figure 3. P for {y;,¥y,, -, ¥s}, A= {O’y% 3_4'

Theorem 4
S*CcP
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By Theorem 2 and 4, there exists an optimal solution which is an intersection point on
P. So we consider to determine such an optimal solution by iterative method that traces only
intersection points where a initial point is any demand point. Now we assume that a solution
after the rth iteration is (™). Of cource, (") € I.

We say a; (1 < j < 2m) holds condition (Q) for x() if

Jy, 1<i<n)st. gy, =z + ya; for some v € R

and
3> 0st. 2 4ca; € P.

Let
J = {j|a; holds condition (Q) for (M}

For the objective function F, we represent the right differential coefficient of F at o € R?
with respect to 0 # a € R? as 3, F(xo;a), and let

(") — mi ). a.
(3.2) u _111161?{6+F(z ,aj)}.

If u(") > 0 then (") is optimal by the convexity of the objective function F.

By Theorem 3 and 4, the set of optimal solutions S* is an intersection point or A-oriented
line segment, whose end points are adjacent intersection points, or a region.

Before we state the algorithm, we consider the determination of P. First, we sort L;;’s
according to z-intercept or y-intercept. Foreach j,if a; # 3, L;;j is —ztana,+y = y?—yl tan aj,
let b;; = y? — y} tan ;. Otherwise, ie. aj = %, L;j is © = y}, let b;; = y}.

For each j, we sort all different lines among L,’,‘, t=1,2,---,n according to b;;, 1 =1,---,n
in ascending order. Let those lines be ¢, 45, - ,ln , where Z’ is the ith line among o;-oriented
sorted lines. Note that n; < n.

‘ Now we assume that 0 < aj,--,04-1 < 5, @3 = 5, 5 < Qg41," ", am. Next we arrange
¢, i=1,2,---,n5;5 =1,2,---,m as follows.
1 52 q—1 +1 ™ 1 2 — q+1 m
(3.3) T RTINS e O PR s Y ORI L s Y & RRRY

Now coefficients of L;;’s are stored. When we consider P, “=" in Z’ (1< < J < m) is replaced by
“>”, and “=" in Zﬁ,j(l < j < m) is replaced by “<”. P is the region determined by its system
of inequalities. Note that this system of inequalities may contain reduntant inequalities.

For the simplicity of the representation, let lines in (3.5) be £(1),£(2),---,4(2m). Especially,
let Z(2m + l) = f(l),l(2m + 2) = [(2).

The procedure for the determination of P

Step 1. Determine an intersection point of £(1) and £(2), and let its intersection point be 2.
Set j = 2.

Step 2. Determine an intersection point of £(j) and £(j + 1), and let its intersection point be
z;. ‘

Step 3. If z; = z;_; then remove £(j).

Step 4. If j = 2m + 1 then stop otherwise set j = j + 1 and go to Step 2.
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Let £(j1), £(j2), -+, £(jp) be lines left after the above procedure. P is represented by
the system of 1nequa11t1es corrsponding to those hnes Now its system of 1nequaht1es does not
contain redundant inequalities.

The Iterative Algorithm

Step 1. Choose any demand point as an initial solution (%), (We choose the demand point
with the largest weight.) Set r = 0.

Step 2. Calculate u(").
Step 3. If u(” > 0 then stop. (") is an optimal‘solution.

Step 4. If (") = 0 then stop. If the number of ax’s which hold u =0, 1ie. 6+F(m(’); a_,k) =0,
is
(r)

where z; ' is an ak—oriented adjacent it intersection

ol

1. one, then any point on [z(7), T},
point to ("), is optimal.

2. two, then for sufficiently small ¢ > 0 and ag,,ax, which hold u() = 0, any point
z € S(z(") + e(ay, + ax,)) is optimal. :

Step 5. Otherwise, i.e. u(”) < 0, choose any ag which holds ul?) = 8+F(z(r);ak), and let
(1) be an aj-oriented adjacent intersection point to (7). Set r = r +1, and go to Step
2. '

The Iterative Algorithm is convergent because (") in The Iterative Algorithm is different
from (@ z® ... z("=1 and the number of intersection points is finite. Since the number of
intersection poinsis O(n?) and the complexity of caluculation of F(z(")) is O(n), the complexity -
of The Iterative Algorithm is O(n®). v

If @) which holds u(") = 8, F(z("); ay) is determmed in Step 5 of The Iterative Algorithm,
we need to determine z("*1) which is an ax-oriented adjacent intersection point to x(*). Next
we consider the procedure to determine z("+1). For each j, let fi(z,y) be the left side of L;j,
ie.

—ztano; +y ifo; # 7,
f](zay) - { lf ag 72r

If aj # 5 then V f;(z,y) = (- tan o, 1) otherwise V f;(z,y) = (1,0).
We assume that an initial solution (% = Y;, is given. Set r = 0 where 7 is a counter. Next,
we determine

by =12 m1 < 5,() < g

corresponding to L ;, j = 1,2,---,m (e.g. binary search). Note that z(") is an intersection
posnt of Ei*(j)’s, i.e. ) can be represented by s,(j)’s. We concentrate on s,(j), j =1,2,---,m.
We assume that ox(1 < k < 2m) is determined in Step 5 of The Iterative Algorithm. Let

. [k iH1<k<m,
T k-m ifm<k<2m.

For j # k,j # k —m(1 < j < m), let

tr; =< Vfi(z,9),ar >
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where < z,y > is inner product of =,y € R?.

. . . . . . j’ J
Next, for each j # j' (1 < m), we determine an intersection point of ls,(j') and Zh(j)ﬂign‘(t“),
where, for z # 0, :

ign(z) = +1 ifz >0,
SIMEI=N -1 iz <o.
Forj#j; (1<j S m), let z;; be an intersection point of
7' J
(3.4) &gy and £ .
zj;’s are candidates for 2+, Let
nN=1J;. ") 5, ) = i (r) o, . .
(3.5) J {] : dz(m ,Zk_,) j#j'l,llusl;'Sm{dz(z ,ij)}}
(1) is an intersection point of Zir(j)+sign(tk,~)’ j€ J(T)U{j'}' Let
S.,-(j) lf]: jly
(3.6) sr1() = { 8,(3)+ sign(ti;)  ifj € IO,

$;(j) + 0.5sign(tx;) otherwise.

Set r = r + 1, and go to the next step.
In the next step, a solution =(7) is an intersection point of Zir(j)’s such that s,(j) € IV where

N is a set of natural numbers. For j such that s,(j) ¢ N, it means that (") lies between [fs,(j)]
and th(]-)] +1 Where [] is Gauss’ symbol.

In The Iterative Algorithm, we condider the representation of a solution after the rth iteration
T as

("), gir(j), j=1,2,---,m.

The above is only the case of r = 0. If we consider the case of r > 1 in The Iterative
Algorithm, sign(tx;) in (3.4) and the second equation in (3.6) is replaced by

[s,(j) — 0.5] if sign(tx;) = -1,
[sr(7) +1]  if sign(ty;) =1,

and sign(tk;) in the third equation in (3.6) is replaced by

sign(te;)([s- ()] = [s-(5) = 0.5])-

4 Numerical Example

In the problem (2),let n =5,4={0,%,%, %’5 Yy = (63,97),y, = (102, 7),y5 = (10,90),y, =
(197,57),y5 = (73,20), w1 = w3 = w3 = wy = ws = 1. We set £(®) = g, as an initial solution,
by The Iterative Algorithm, we have z(® = (63,97),z(1) = (63,90), 2 = (63,57),z0 =
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(73,57), Y = (73,36). The optimal solution is =¥ = (73,36), and the optimal value is
F(z®)) = 340.22 (Figure 4).

L/
X
%
7 b p / Ys
77 <

7 VRN

Figure 4. (© : the optimal solution
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