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A Collision Avoidance Control Problem for

Moving Bodies in the Plane

Jun-hong Ha, Jito Vanualailai and Shin-ichi Nakagiri

1 Introduction

There appeared several works related with the applicability of direct method of
Liapunov to the find-path problems lies in the qualitive theory of differential games
and the avoidance control strategies. We refer to, e.g., Vincent and Skowronski[4],
Skowronski and Vincent[5], Stonier|[7], and Skowronski and Stonier|[6] for differential
game aspects, and Leitman[3], Stonier[8] and JHN[9] for avoidance strategy aspects.
In these works the generation of a suitable Liapunov function is the key in the view
of the Liapunov stability theory. Recently, L.T. Grujic[1,2] has established that an
asymptotically stable nonlinear system permits the construction of a Liapunov function
to guarantee the asymptotic stability. That is, there is no Liapunov function which
makes a given system be asymptotically stable if the given system is not asymptotically
stable. But, it is very difficult or impossible to determine a suitable Liapunov function
for the given complexed nonlinear system, because we have not to integrate the dini-

- derivative, see[1,2]. Therefore, in many cases we need to construct a Liapunov function,
which implies that a system may be stable, and often we can obtain asymptotic stability
under some restricted conditions.

Approaching the findpath problem to a collision avoidance strategy of robot arms,
Stonier({8] adopts the Liapunov theory from the control and differential game literature
for capture within targets, and for avoidance of antitargets. It may be the first good
proposal in [8] to solve the collision avoidance control problem in the basis of Liapunov
theory. The essential feature of his approach is to construct Liapunov functions for

the approaching targets and collision avoiding of antitargets and to determine control
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variables according to the time derivatives of Liapunov functions. However, in the
determination of feedback control variables, he used assumption called “right-of way”,
which is reasonable in numerical simulations but not meaningful in mathematical sense,
and unfortunately the generalized Liapunov functions do not satisfy the sufficient con-
dition of Liapunov stability theory; see[8]. In our previous work JHN[9], we can remove
assumption such as “right-of way”, and we introduce the elliptic Liapunov function to
obtain good paths of orbit of moving objects. But, in [9] we have failed to treat control
parameters which may make the path change freely, and futher the Liapunov function
does not satisfy the sufficient condition of the Liapunov stability.

In this paper, we introduce a new Liapunov function which satisfies the Liapunov
stability sufficient conditions, and by using the Liapunov function we may easily change
the paths freely via the control parameters. Finally, we note that almost all are “reg-
ular cases” in that we are getting in nice, smooth paths for the collision avoidance in
numerical simulations. These are illustrated by several examples, and the comparisions

of our numerical results with the cases of [8] and [9] are given.

2 Control plan for m numbers of moving objects

Let us consider a systém, containing m numbers of moving objects and m numbers
of fixed targets in a plane workspace, for the trajectories of the moving objects being
controlled to obtain collision avoidance and to reach the targets. The collsion avoidance
control problem is to control the movement of the ¢-th moving object to reach the center
of the i-th target, while ensuring the i-th entire moving object to avoid the j-th target
and the j-th entire moving object which is regarded as an antitarget with respect to
the i-th one, where 7 # j, 1 < 1,7 < m. We will use the Liapunov technique as known
as a powerful mathematical method to accomplish the plan for solving the collision
avodience control problem. Therefore, to utilize the Liapunbv technique, it is necessary
to introduce the Lia,punov function which can be applied to the given system, and we

give it below.



2.1 The Liapunov techique

Let Rt be the set of positive real numbers. We will denote by A; the i-th moving
object and by T; the j-th target respectivély, where 1 < 4,5 < m. Let us regard the
centers of moving objects A; as the points (z;,y;) on the plane. When each moving
object A; moves continuously depending on t € R*, we can consider (z;,y;) as a
continuous function for ¢ € Rt. In the paper, as studied in Stonier{8] and J-H-N[9], we
suppose thaf the dynamics of m point objects (z;,¥;),t = 1,2,---,m, are describéd by

the system of the controlled ordinary differential equations,

Z; = 2z

2 = U ‘

¢ (2.1)
Yi = Wy

|y =vi, i=1,2,-,m.

Here in (2.1), (zi,wi) = (&%) denotes the time derivatives of the i-th point object
and (u;,v;) denotes the i-th control variables pair. We remark that the special case
where m = 2 is considered in Stonier[8] and J-H-N[9]. By the Liapunov technique,
the controlls (u;,v;),1 < ¢ < m will be. determined as feedback controls which are
obtained by the result of differentiating the Liapunov function associated with the
system equation (2.1). Let us define the target set T'S; of the i-th target T; with center
(pic1, pice) and radius rp; and the moving object set AS; of the j-th moving object A;

with center (z;,y;) and length rap; of the j-th moving object A; as follows:
TSi = {(z,y) : (z —pic1)® + (y — pice)® < rpj}, 1<i<m,

AS;={(z,9): (z— ;)" + (— )’ Srapf}, 1<j<m.

In Qx‘der to determine the controls which give the trajectories to avoid collision, we
need to define the Liapunov functions such as approaching to the targets and avoiding
the antitargets. Therefore, lét us define such functions on the plane as follows. Let us
define the following (sub)-Lapunov functions:
V; the Liapunov function to make the i-th moving object A; approach to the i-th
target T;;
Vi= %{(fﬂi —pic1)? + (yi — pice)? + 27 +wi}, 1<i<m,
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W;; the Liapunov function to make the i-th moving object A; avoid the j-th target
T30 # 75

Wi; = %{(mi —pja)’ + (i —pjc)’ —rp3}, 1< 4,5 <m,
Vi; the Liapunov function to avoid the i-th moving object A; and the j-th moving

object Aj,1 # j each other;
1
Vij = 5{(w: = 2))° + (4 — 9;)? — max{rap},rapj}} ,1 <4, < m,

G; the function which denotes the distance between centers of the ¢-th moving object

and the i-th target;
1 :
G, = -2-{( —pic1)? + (y; — pic2)?}, 1 < i< m.

Using the above Liapunov functions V;, W;;, Vi; and G;, we can now define the total Li-
apunov function £ on D(L) = {(x,2) € R¥™ x R?®™ : V;; (x4, ¥i, 5, y;) > 0, Wij(zi, yi) >
0,1 < 7,7 < m} for the system (2.1) as follows,

a;;jGi (wz yz QR BiiGi(zi, y:)Gi (x5, Y;)
L((x,2) =) Vi(zi,ui ; b k2 el AR LV 3 i\Td, Yi )t i\ Ly, Ui
((%,2)) Z (x,y,zz,w)+§]z:l o) 2;; e

where x = (21,91, ", ZTm, Ym) € RZ™, 2 = (21, w1, "+, 2m, wm) € R?®™ and for all
7y @i = Bi; = 0, a;j,Pi; > 0 and B = Bj; for 1 < 4,5 < m. Then it is verified by the
direct calculations of the time derivative L.',(z.l)((x, z)) along the equation (2.1) is given
by

. m

Lon(x,z)==-) (’Yﬂi? + l‘i“’?)

i=1
nrovided that the feedback control variables (ug,v) are given by

ur = —(zk —prc1) (1+z:akz Zﬁ_’{}k )

=1
m
aiGk B kG Gk
+ ) 7 (Tk — pict) = Z - - k) = VeZk,
z:l ki 7
(&7 ﬂk'z
v = —(Yk — Prc2) 1+Z Z V.
i=1 ki
m
ki G /3
+ Z v[z/2 (yx — pic2) — Z e V2 Yi — Yk) — MWk, (2.2)
i=1 ki i=1 ik
where k& = 1,2,---,m. From now on we will call a;;,5;; the control parameters and

v > 0, ; > 0 the convergence parameters. The role of the numerators G; and G;G;



appeared in second and third trems of £ is to wipe out the unnecessary effect of W;;
and V;; when A; approach to T; or A; approach to T, where 1 < 1,7 < m. Then we
can easily know that £((x,z)) > 0 and for z # O, L",(Q,l)((x,z)) < 0 for the solution
(x,2) € D(L) associated with (2.1) and (2.2). Also, the Liapunov function L satisfies
L(P) = 0 which becomes a sufficient condition for the stability, and simultaneously,
which guarantees that £((x,z)) — 0 as t — oo implies (x,2z) — P, ie., each moving
object goes to each target, where P = ((p1c1,p1c2,p2c1,p2c2),0) is an equilibrium point
for the dynamics equation (2.1) with (2.2). But in Stonier(8] and JHN[9], for m = 2
they required some restricted conditions that the control parameters a;j, 1,7 =1,2 and
Bij. 1, = 1,2 are sufiiciently small in order that V((x,2)) — 0 as t — oo, where V is

the Liapunov functions introduced by Stonier[8]

a2 Pz a1 . P )
Vaposon= (Vi + 32, A2y 221, 2
Stonier ( 1t Via + Wi’ 2+ Va1 + Wa /)’

and by JHN[9]

Q12 + o21 + —’Bﬁ + ’3—21— + Elliptic Liapnov Function.

VigN =Vt 12+ Via  Vau Wi Woy

As the result, since they have to demand the control parameters a1z, @21, P12 and fo,
sufficiently small, it is difficult or impossible to control the trajectories for the system
(2.1) with the controlls which they determined under the Liapunov functions, Vgionier
and Vjji,- That is to say, they failed to give their’s control parameters intrinsic means
owing to some constraints for all control parameters to be small. Beside, we can
not expect the avoidance of collsion between moving objects or moving objects and
targets in the case where the control parameters are very small, because the effect of
Vi2, Vo1, le and Wo, disappeares for such the cases. For the new Liapunov function,
it is casily verified that Bi2 pla,ys the role of adjusting the distance between moving
objects, A, As and the aa(resp. o21) plays the part of modulating the distance between
moving object A (resp. Az) and target Th(resp. T1). Therefore, we have the advantage
point of turnning a trajectory for the system (2.1) with (2.3) into the best trajectory

by artficial. We will survey such the points from some examples.
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2.2 Analysis of trajectories for m =2

For the case of m = 2, where it becomes an original problem introduced by Stonier[8],
the forms of new Liapunov function and controlls are given as follows:

Forms of Liapunov function and controlls for m = 2

012G | a1Ga G1G>
L=Vi+Va+ + + .
PR W, Wa Frz Vio
a12G A
up = —A(z1 —pray) + —IW%(M —pa2c1) + %152'(1’1 = 23)G1G2 — 1121,
i 12

12 12
vi = —A(y1 = p162) + ~rpm(y1 — paca) + ﬁ_z(yl —¥2)G1G2 — pywy,
7%; 7

a21G2 12
(22 —p1c1) + =

W. Vs
«

21Go 12
7—(Y2 — p1c2) + ﬂ—f(yz —41)G1G2 — powo,
W3 Vis

L (2.3)
(2 — 21)G1G2 — Y222,

vy = —B(ys — paca) +

/

where A =1+ 375 + él‘—fg—z and B =1+ 347 + %fl Since the asymptotic stability
of the system (2.1) with (2.2) was not expected in general, there exists a possibility
such as F = {x € R*: ﬁ(z_l)((x, z)) = 0, x # (p1c1,p1C2,P2c1,P2¢0)} is not empty.
When the solution z(t) = (x1(¢),y1(t), z2(t), y2(t)) satisfies x(¢t) € E for all t > 0, we
shall call such one the singular solution. It is difficult to find the conditions for E = 0
because of the complexity of controlls in (2.3), but we may search for the cases where
the singular solutions exist under some initial conditions. In particular, one may guess
that the trajectories caused by the symetricity of initial conditions belong to the set

E. Indeed, firstly, let x(t) satisfying

z1(t) — pre1 = —(z2(t) — pac1), y1(t) = ya(t), pac1 = pacz, ¥t > 0 (2.4)

be the solution of (2.1) with (2.3) under initial conditions satisfying 21(0) + 25(0) = 0
and w;(0) = wy(0). Then either 773 = v2 or yu; = po implies that a2 = a9, 71 =
v2, 41 = p2 and rp; = rpe. Thus, either aj9 # a9 or rp; # rpy implies the fact
that there is the time ¢; when trajectories satisfying above initial conditions don’t
hold the equation (2.4), moreover the trajectories at ¢ty when z(tf) € E can’t satisfy
the equation (2.4), where t; denotes the final time whén all trajectories are stopped.
Secondly, for given fn,n € R, let p;ca = mp;c1 + n,i = 1,2 and let initial conditions

satisfy 21(0) + 22(0) = 0 and w;(0) = mz;(0). Then we can easily see that for each



t > 0, the solutions y;(t) = mz;(t) + n,i = 1,2 satisfies (2.1) with (23)if = m
and 72 = p2. Therefore, the case where the i-th target or trajectory is between j-th
target and trajectory indicates z(t) € E. Similar to the first case, one can know when
" 4 # pi,i =1 or i =2, for the trajectories to escape from the line y;(t) = mz;(t) +n

and never to return to a parallel line with y;(t) = ma;(t) + n, because of considering

the first case after rotating it proper.

EXAMPLE 2.1 We start to compare with three results through this example. This

example shows that an absolute value of controls is very small than two results, and

the same time, reaching time to targets is to be shorten largely.

i) initial condition

Ty 21 Y1 W1 T2 22 Y2 W2

-20 1 5 5 20 -1 2

ii) position of target and size of moving object, target and RK4( Runge-Kutta 4th)

2

pici pice Dpac1 p2cz TP Tp2 rapy rapz RK4

12 0 -12 0 6 6 6

iii) control and convergence parameter

6

0.01

Pz o012 Qa1 M1 P11 Y2 M2

case 1 1 1 1 1 1 1

iv)maximum and minimum value of controls

max Uy U1 ug
Stonier 21.99  38.62 1287.61
JHN 1793 17.19  443.08
- New 25.71 7.60 10.16
min Stonief —69.14 —54.99 —86.48
JHN  —46.02 -74.95 —-37.27
New.  —490 -28.41 -16.84

vjreaching time to targets

1

v2
513.86
148.12
3.60
—51.99
—15.98
-10.75
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Stonier JHN New
Ay — Ty 4831 69.13 2640
A, — Ty 26.07 38.10 11.59

Trajectories for three results in example 2.1 are illustrated in picture 2.1.

EXAMPLE 2.2 In this example, we consider the case where initial condition and
center of target are placed on the graph {(z,y) : y = mz + n, m,n € R}. The case
1 where targets and initial points are put on two parallel lines is that the trajectories
don’t go to the targets, but we can make the trajectories move to the targets by
changing the value of aj9 different to ag;. The case 2 where all datum are put on
the line y = 2z + 6 can become asyptotically stable by virtue of varying the values of
convergent parameters, for example, p; = 4.

i) initial condition

Ty 21 Y1 w1 X2 22‘ Y2 w2
Casel -20 1 10 1 20 -1 10 1
Case2 —-10 1 -14 2 6 -1 18 -2

ii) position of target and size of moving object, target and RK4

pic1 pic2 pa2c1 pace Tp1 Tp2 Tapy rapz RK4
Casel 10 5 —10 5 5 5 5 5  0.05
Case 2 2 10 -5 —4 3 4 4 4 0.05

iii) centrol and convergence parameter

P2 o2 a1 M o Y2 P2
casel 1 1(2) 1 3 3 3 3

case 2 1 2 3 3 34) 3 3
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iv)maximum and minimum value of controls

max Ul U1 u2 V2
case 1 28.32 17.95 22.88  28.23
case 2 9.61 17.22 7.63 15.49

min case 1l -—14.83 -9.29 -29.57 -11.02
case 2 -—35.78 -—13.79 -7.95 -15.91

v)reaching time to targets

case 1 case 2
23.6
20.6

A1 — T1
Ag — T

29.6
24.0

Trajectories for the case 1 and 2 in example 2.2 are illustrated in picture 2.2 and picture

2.3, respectively.

2.3 Analysis of the trajectories for m > 3

In order to verify that even for m > 3 the new Liapunov function has no obstacle
finding a path for the collision avoidance control problem, we will give some examples
for the cases of m = 3,m = 4 and m = 5. It may occure the case, similar to the case
m = 2, that the solution of the system (2.1) with (2.2) belongs to an invariant set or
becomes asymptotically stable according to varying the values of parameters and initial
conditions. Here we can get an information about the positions where the trajectories
stop on the way, which is occurred when the trajectories fall into a-dead alley. Therefore,
it is necessary to block up the entrance of a dead alley for the trajectories not to enter
into a dead alley, which can be obtained by taking the control parameter «;; around a

target where a dead alley arises sufficiently large.

2.3.1 An example for m =3

Form of Liapunov function and controllers for m =3

L =

G
Vi+Va+Vs+G (ﬂ” 2y 2y a13)

Vi2 Wi Wis
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B23G3 a1 o3 ) (ﬁ13G1 31 032 )
Gs ( + 24 +G + L
>\ Va3 Wor  Was S\ Vi3 W31 Wi

: aig | o13 | Gofre Gaﬁm)
vy = —(x;—pic) |1+ + + + — vz
' (o1 =m 1)( Wi Wiz Vio Vis nA
[B12G2 B13G3 a2
+ Gl L 1/1?2 ( ) — 2) V123 (373 .'L'l) + "—W122( pgcl) + — W123 (:L'l p3cl)]

a o G G
v = —(y1—pic2) (1 + Vl/1122 + Wl; + ‘2/.'18212 + ;iw) — p1wi
B12G2

P13G3
+ Gy [-_—(yl —y2) — (Y3 — ¥1) + e (1 — P2c2) + —= 2 (y, - p363)]
V122 Vl W122 W

az1 a3 | Gifi2 | G3fas )
“2 (&2 = p2e) ( W21 + Was + Via + Va3 7272
[ B23G3

7 (z2 — z3) — ﬁV122 (1 — z2) + W221( zg2 —pic1) + 5/2 (22 — pgcl)]

+ Go

o a G G
vy = —(y2 —-p2C2) (1 + W/le + VV?ZZ + ‘1/.'16212 + ‘3}5323> — Uowo
: B23G3 B12G1 Ba1 B23
+ G2 [' (Y2 —y3) — 5~ (W1 —¥2) + —=5 (Y2 — p162) + —5(y2 — P362)]
z v 7, W,

az1 |, az  Gifis Gzﬂzs)
uz = —(x3—p3c (1+ + + + — 732
( 3¢1) Wi Wi Vis Va3 7853

+ G ['6132 (z3 — 1) — ﬂ%j(wz — 23) + ok W 2 (x3 — prer) + Wz 2 (23 — pzc1)]

ug = —(y3— Pacz) — H3W3

+ Gs [ﬂ-—-—ggl (ys - y1) — 'sz (y2 — y3) + (ys p1c2) + (ya chz)]

EXAMPLE 2.3 In this example, we consider the case where targets and initial points
are concentrated around the origin, which are considered as a difficult situation to
control the trajectory. In the case 1, the trajectories do not go to the targets in
the desired time, and asymptotically stable under the case 2 where we change the
control parameters a9, a3 and ag3;, which play a role of making A; travel T3 in the
direction, Az to T and As to T and removing of the entrance into three dead alleys

simultaneously.
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i) initial condition

Iy zZ1 Y1 wi T9 292 Y2 W2 I3 z3 Y3 w3

71 6 1 7 1 6 1 0 1 =5 1

ii) position of target and size of moving object, target and RK4

pici Ppic2 P21 P22 P3C1 P3c2

3.5 0 -35 0 0 6
rp; = 3.5, rap; =3, 1 =1,2,3, and RK4 =0.05

iii) control and convergence parameter

Bi2 Biz Poz 12 @13 Q21 Q23 031 032 Y1 K1 Y2 H2 Y3 M3
casel 5 5 5 1 1 1 1 1 1 5 5 5 5 5 3§
case 2 5 5 5 15 1 1 15 15 1 5 b 5 5 5 5

iv) reaching time to targets

A — T A2—+T2 A3—>T3
case 2 20.0 20.0 20.5

Trajectories for the case 1 and 2 in example 2.3 are illustrated in picture 2.4.

2.3.2 An example for m =4

EXAMPLE 2.4 This example may not occure in a realistic system, but it is a very in-
teresting case. Since the movirig objects are closed up, they may get out of a workspace,
otherwise they may collide each other or a moving object may collide with a target.
Thus, it is necessary to adjust the strength between the moving objects to weak, which
means mak‘ing. the control parameters 3;; be small enough.

i) initial condition

1 2z Y1 w1 T2 22 Y2 w2 T3 23 Y3 W3 Ty 24 Ya W4

16 1 0 -1 =13 1. 0 1 -10 1 0 -1 -7 1 0 1

i) position of target and size of moving object, target and RK4

pic1 picy P2c1 P2c2 P3Ci P3Cz P4aci Pace
0 0 7 0 12 0 15 0



rp1 =4, rp2 =3 Tp3 =2 rtpgs =1
rap; =2,1=1,2,3,4.

iii) control and convergence parameter

1yi=pi=5 1<i<4, ;=005 1<i<j<4andey=11<45<4, i#
j, RK4 = 0.005.

3]

. 'Yt:lLl:S’ 1SZS4’ IBl]=00]-7 1$1'<Js4a'ndal]=15 1S7‘5]S432¢
j, RK4 = 0.01.

Trajectories for the case 1 and 2 in example 2.4 are illustrated in picture 2.5(a) and

picture 2.5(b).

2.3.3 Some examples for m =5

‘We present two interesting examples where the shape of located targets has four dead

alleys and where all moving objects are concentrated on the very small workspace.

EXAMPLE 2.5 When we regard the T} as a big pillar placed on the plane and the
other targets as some small bodies which are attached on the T, there exist four dead
alleys which swallow all moving objects A;,7 = 2,3, 4,5.

i} initial condition

Ty 21 Y1 w1 T2 22 Y2 w2 T3 23 Y3 W3

o 0 0 0 -15 1 0 -1 0 1 -15 1

Tga 24 Ysa W4 Tz 25 Y5 Ws

15 -1. 0 1 0 -1 156 -1

il) position of target and size of moving object, target and RK4

p1c1 Pic2 Paci Pacz P3c1 P3ca pacl Pace psc1 Pser

0 0 8 0 0 8 -8 0 0 -8
rpr =35, rpi=3.2<1<5,

rap; =2, 1 <1< 5and RK4 =0.05.
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iii) control and convergence parameter

vi=pi=3,1<i<5, B;;=1,1<:<5<4,
a9 = a31 = aq1 = as; = 20, ags = a3z = g3 = as4 = 0.5
and other than then o;; = 1.

Trajectories for m=5 in example 2.5 are illustrated in picture 2.6.

EXAMPLE 2.6 Since all moving objects are closed up in the very small workspace,
we have to make the control parameters fB;;+1,? = 1,2, 3,4 be small to prevent moving
object and moving object or moving object and target from colliding each other, and
then it is necessary to arrange the control parameters c;; to obtain the smooth of the
trajectories. The results are below.

i) initial condition

1 21 Y1 wy T2 22 Y2 w2 I3 zZ3 Y3 w3

00 1.0 -50 1.0 475 -1.0 -1.55 1.0 2.95 1.0 3.0 1.0

T4 24 Ya Wy Ts 25 Ys ws

—-2.95 1.0 4.05 -1.0 —4.75 1.0 —-1.55 1.0

i} position of target and size of moving object, target and RK4

pic1 Ppica Paci Paca P31 p3c2 pact pacz psci Psco

0 10 -95 31 -59 -81 59 -81 95 3.1
rp; =4, 1 <1 <5,
rap; =2, 1 <i<5and RK4=0.05.

iii) control and convergence parameter

lyi=pi=5 1<i<5 B;j=0051<i<j<5andoy=1,1<47<4,i#
]
2. vi=p;i=51<4<5, 5; =005 1<:<j<5,

Qi3 = g4 = (35 = o) = asg = 10 and other than them o;; =1.

Trajectories for the case 1 and 2 in example 2.6 are illustrated in picture 2.7.
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3 Conclusion

The most important feature of this paper is that the Liapunov function for the system
(2.1) is setted up skilfully, so that the cotrolls and convergence parameters play their
proper roles such as altering the trajectory of the system (2.1) into the desired one. It
is obvious that the system (2.1) with (2.2) is stable. However, under the new Liapunov
funciion, the asymptotic stability for the system (2.1) with (2.2) is not verified in
general. In fact, for m = 2 there were many examples of the trajectories being stopped
on the way, but we could avoid it by means of manipulating every condition to break out
a symmetrical condition. We have hardly a stopping situation halfway, because the new
Liapunov function have many parameters which are not necessary symmetry. When
m > 3, we were confronted with many situations that the trajectories belong to the
invariant set, but most situations were solved by adjusting the control parameters. If
one want to make the state which is not asymptotically stable be asymptotically stable,
we have to compose another Liapunov function with relation to a neural system, but

it is a problem in the future.
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Picture 2.5. (b) Trajectories for the case 2.
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Picture 2.7. Trajectories for the case 1 and 2.
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