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PERIODIC SOLUTIONS OF SOME DIFFUSIVE
FUNCTIONAL DIFFERENTIAL EQUATIONS

Satoru Murakami (#f £ &)
(Okayama University of Science, 1-1 Ridai-cho, Okayama 700, Japan)

§1. Introduction.

In this paper, we shall consider the diffusive functional differential equation

%(t,x) = D(z)Au(t,z) + f(t,z,u(-,z)) in (0,00) x Q, (1.1)

together with the boundary condition

g%(t,:r.) = k(z)(K — u(t,z)) on (0,00) x 09, (1.2)
and discuss the existence of periodic solutions of (1.1) and (1.2). Here u = (uy,---,un), Q
is a bounded domain in R’ with smooth boundary 0Q (e.g., 9Q € C?*** for some
o € (0,1)), and A and 9/0n respectively denote the Laplacian operator in R’ and
the exterior normal derivative at 0f). Moreover, K is a (positive) constant vector in
RN D(z) = diag(dy(z),---,dn(z)) with d; € C*(Q) and di(z) > 0 on Q,k(z) =
diag(ry(z), -, ky(z)) with &; € C'*(0Q) and k;i(z) > 0 on 9N and u(-,z) is a
function mapping R_ := (—00,0] into R defined by u(6,z) = u(t + 0,z) for § € R_.
The subject is intimately related to the work of Zhang [14], as well as the one of Burton
and Zhang [2]. In [14], Zhang has treated the equation (1.1) together with the Dirichlet
boundary condition, and by using an a priori H'(£2)-bound for periodic solutions he has
deduced the existence of periodic solutions which satisfy (1.1) in the sense of L*((2).
The purpose of this paper is to discuss the existence of periodic solutions which satisty
(1.1) and (1.2) in the classical sense and whose values are in a bounded region in R".

Especially. we feel interest in periodic classical solutions whose range is contained in the
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positive cone in RV, which are called positive periodic solutions of (1.1) and (1.2). In a
clear reason, the existence of positive periodic solutions would be an important subject
in connection with biology, ecology or other fields. In the analysis of the subject, we
need to have a C(Q)-bound rather than an H'(Q)-bound. Roughly speaking, in this
péper we shall employ the following strategy to deduce the existence of positive periodic
solutions of (1.1) and (1.2). First we consider the Banach space X = C(Q) equipped
with the supremum norm and the (unbounded) linear operator A which is the closure
in X of the operator DA with domain D(DA) = {£ € C*(Q; RN) : 9¢/0n + k€ = 0 on

99}, and then reformulate (1.1) and (1.2) as an abstract functional differential equation

C;—? = Av(t) + G(t,v), t>0, (1.3)
on X, where v(t) = u(t,-) — K and G(t,v)(z) = f(t,z,u(:,z)). Moreover, following
an idea in [2] and [14] we consider a functional differential equation with a parameter k
together with an associated map H corresponding to (1.3). Next, observing that a fixed
point of the map H for k = 1 yields a periodic solution of (1.3), we deduce the existence
of positive periodic solutions of (1.3) from an a priori bound on all possible positive '
fixed point of the map H for 0 < k < 1. Consequently, one can obtain positive periodic
solutions of (1.1) and (1.2) by assuming a C(Q)-bound for all possible positive periodic
solutions of the parametrized diffusive functional differential equation corresponding to
(1.1) and (1.2) (Theorem 3.2). We provide also two examples to illustrate how our
theorem is effectively applicable (Theorems 3.3 and 3.4). In the examples, we derive
a C(Q)-bound for possible positive periodic solutions of the parametrized equation by
applying the maximum principle. Our approach in this paper would be advantageous
in several ways. Among others, it should be noted that the intermediate space defined
by the fractional power (—A)l/ 2 is not needed in the analysis of concrete problems
(Theorems 3.3 and 3.4), while it played an important role in [14]. We emphasize that
the structure of the intermediate space is well-known in case X = L?*(f2), but it is not

so in case X = C(Q).
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§2. Abstract results.

Let X be a Banach space with norm || - ||, and let A be a (unboundéd) linear operator
which generates an analytic compact semigroup T'(t) of bounded linear operators on X
with sup,s, || T'(#)|| < co. We consider the (abstract) functional differential equation

du

- = Au(t) —a) + F(t,uy), t>0, (2.1)
where a is a fixed element in X and F is a function mapping R x BC(R_; X),R_ :=
(—00,0], into X. Here and hereafter, for any topological space O and any Banach space
Y we denote by C(O;Y') the space of all continuous functions mapping O into Y, and by
BC(0;Y) the space of all ¢ € C(0O;Y) whose supremum norm ||¢|| := sup{||@(8)|| : § €
O} is finite. Moreover, for any function u € BC(R;Y) and any ¢ € R, u, denotes the
element in BC(R_;Y’) defined by u;(0) = u(t + 0) for § € R_. We impose the following

condition on F.

(H1) (i) For some w > 0, F' is w—periodic in t; that is, F(t + w, ) = F(t,¢) for all
(t,) € R x BC(R_; X);
(ii) for any ¢ € BC(R; X), F(t,:) is continuous in t € R;
(iii) for any r > 0 there exist constants L > 0 and ¢ € (0, 1] such that

1F(t, ) = F(s, )|l < L{|t = 5" + llo — |I”}
for all (t,¢), (s,%) € [0,r] x BC(R_; X) with ||¢|| <r and ||¢|| <.

For any ¢ > 0, we set A. = A — cI, where I is the identity operator on X. Clearly A.
generates the analytic compact semigroup T.(t) := T'(t)e™**. Since the semigroup 7'(t) is
uniformly bounded by the assumption, one can derive that for each z € C with £z > 0,
the bounded inverse (A — zI)™! exists and it is given by the formula (A — 2I)7!z =
—/Oooe‘ZtT(t)a:dt, z € X. Combining this with the fact that the semigroup T'(t) is



analytic, one can see that there exist M > 0 and /2 < n < 7 such that A, — Al is
invertible for A € ¥ := {X: |arg A\| < n} U {0} and
_1” < —M_v
1+ )
Therefore the fractional powers (—A.)* of —A, is defined for & > 0 (e.g., [8, Section

”(Ac_)‘]) AEX.

2.6]), and the estimate
(= A)TL(t)]| < Cat™e™™, t>0, (2.2)

holds, here § and C, are some positive constants (independent of t) (e.g., [8, Theorem

2.6.13 (c)]).

Now we consider the space
X = Cu(R; X) = {p € O(B; X) : p(t +w) = p(t) on R}.
Clearly X endowed with the norm
el = sup{lle()]l : 0 <t < w}
is a Banach space. For any ¢ € X, we set
(Ho)(t) =a+ [ Tt = Olclo(0) =) + 0,000, 1€R (23)

By the periodicity of the function F(f,¢o) and (2.2) with a = 0, one can see that H 1s
a well-defined mapping from X into &'

Lemma 2.1. The map H: X — & is compact.

Proof. First we establish the continuity of H. Let @ and ¥ with ||| < rand ||| < r
be given. By (H1-iii) and (2.2), we have

o=l = sup || [ Tult = O)elo(6) = 0{0)) + F(6.00) = F(O. )|
< s [ coePdbelle il + Llle = 41"}

< (Co/8)fclip — Il + Llle — ¢’}
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This shows the continuity of H. Next we prove that for any bounded set S in X’ the set
LS is relatively compact in X', where Lo := He — a. By (H1-iii), we get

sup{[le(@(0) — a) + F(0,90)l| : ¢ € 5,0 € R}(=: Q) < o0.
Then (2.2) yields

(AP L)OI < Q[ I(-A)Teft = 7)lldr

S ch/2/ (t—T) 1/2 —6(t—T)dT

—00

= QCl/Z/ sTH2e ™8 ds < o0
0

for all ¢ € S, which shows that the set [((—=A)Y2L)S](t) is bounded in X for all
t € R. Therefore the set (L£S)(t) is relatively compact in X, because the operator
(—A)~Y? = I;(l/2 / t~Y2T,(t)dt : X — X is compact. We claim that the family of
functions {(Lp)(:) : ¢ € S} is equicontinuous on R. If the claim holds true, then the

set £ is relatively compact in X' by the Ascoli-Arzéla theorem, as required. Let h > 0
and ¢ € S be given, and set g(t) = ¢(¢(t) — a) + F(,¢;). Then

(L) (t + h) — (Eso)(t)ll
t+h
= ”./t T.(t+h—7)g dr+/ T(t+h—71) = T(t — 7))g(r)d7||

IN

Co@h+Q [Tt +h—7) = Tuft = 7)fjdr
by (2.2). Since ||To(t + h—7) = Te(t = 7)|| < 2Coe~%7) and
[T+ h—r) -Ta-nl = I [ AT@)0)

t—1+h
e / 0-1e=%0 40
t

L —T

< Chrh(t — T)—le_‘s(t”)
for T < t, we get

I(Lo)(t+ k) = (L)@
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Co@h+ QL[ IT(t 4+ h=r) =Tt = n)lldr + [Tt +h—7) = T.ft = 7)]dr}

A

AN

1
CoQh + Q1 /_ Cyh(t — 7)1e=5=dr 4 /t | 2Cpe 0 dr

AN

CoQh + Q{Cih / * 67167549 1 20k}
< 3CoQh + QCih(571 + |log ).

Thus
sup{||(Lp)(t + k) — (Lo)()]| : ¢ € St € R} < 3CoQh + QCih(67" + |log hl)

for h > 0, and consequently sup{||(L¢)(t+h)—(Lp)(t)|| : ¢ € S,t € R} 5 0ash— 0F

This proves the equicontinuity, as required.

For any k € R we consider the equation

‘fl_': = Ad(u(®) — @) + He(ult) = a) + Flt,u)), 1> 0, (2.4)

and moreover, we define the mapping H : R x X — X by
[H(k, )](t) = a+ k/ (1 — 0){c(@(8) — a) + F(6,05)}d6 (2.5)

for any (k,) € Rx X.In caseof k = 1, (2.4) and H(k,) are identical with (2.1) and H,
respectively. u € C(R; X) is called a solution of (2.4) if u is continuously differentiable
on (0,00) and it satisfies (2.4) together with u(t) —a € D(A.) = D(A) for t > 0.

Lemma 2.2. Let ¢ € X. Then ¢ is an w-periodic solution of (2.4) if and only if
H(k,p) = .

Proof. In order to prove the “if ” part, we suppose H (k, @) = . We first assert that

olt) — a = T()((0) — @) + & [ Tt — s)g(s)ds, t>0, (2.6)
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where g(t) := c(p(t) — a) + F(t,¢;). Indeed, since ¢ € C,(R;X), one can choose a

sequence of continuously differentiable functions {g,} C C,(R; X) such that ||g,|| < ||g/|
t

and ||g,(t) — g(t)]| < 1/n on R. Set v,(t) = / T.(t — s)gn(s)ds for t € R. Then

(AT = Thon(t) = (W[ Telt + b= s)ga(s )ds—/t Tt — 5)ga(s)ds)

- ./_OOT( 9)9“(9”’]2 da——/ 0)g. (6 + h)do

for h > 0, and hence

Jim (1/R){T.(h) = Dva(t) = /_ too Te(t — 0)g,(9)d0 — gu(t)
= U;(t) - gn(t)

by the convergence theorem. We thus get
v (t) € D(A:) and Acvn(t) = vl () — gn(t). (2.7)
Making use of this, one can derive the relation

va(t) = To(t)vn (0 +/ $)gn(s)ds, t>0. (2.8)

Since lim,, _, o [kv,(t)] = k/t T.(t—s)g(s)ds = [H(k,)|(t) —a = o(t) — a, (2.6) follows
from (2.8). Now, by [8, Th;gcl)“em 4.3.1], (2.6) implies that ¢ is locally Holder continuous
n (0,00), and in particular, it is Hélder continuous on [w,2w]. Therefore  is uniformly
Holder continuous on R because of the periodicity. From this observation and (H1-iii) it
follows that the function F'(t,¢;) of t is Holder continuous on R, and so is the function
g(t). Thus, by (2.6) and [8, Theorem 4.3.2], we see that  is a solution of (2.4).
Next we prove the “only if ” part. Suppose that ¢ € X is a solution of (2. 4) Then

(d/dt) () — a) = (d/dt)p(t) = A(p(t) — a) + kg(t), and hence

Plt) —a = T.()(o(0) —a) + & [ T.(t — 0)g(0)d0
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for t > 0, where g(t) = c(p(t) — a) + F(t, ;). Since ¢ is w-periodic, so is the function
g. Then

ot) = a+Tft+nw)(p(0)—a)+k [ T+ e — 0)g(0)d0

e Gt Tt ) p(0)—a) 4k [ Tt — 0)g(6)ds.

—nw

Note that ||Ts(t + nw)(¢(0) — a)|| — 0 as n — oco. Letting n — oo in the above, we get
=a+ k/ L(t — 0)g(0)dd = [H(k,p)](t), as required.

Proposition 2.3. Assume (H1). Moreover, let G be a bounded open set in X with

a € G, and suppose that

¢ ¢ 0G (:= the boundary of G)

whenever o € G is a solution of (2.4) with k € (0,1]. Then the equation (2.1) has an

w-periodic solution which belongs to G.

Proof. Consider the operator 7 = H |g: G — X, where H is the one defined by (2.3).
We assert that T # a4+ 7(p —a) for all 7 > 1 and ¢ € 9G. Indeed, if this is false,
then there exist ¢ € 0G and 7 > 1 such that 7o = a + 7( — a), and hence

) =t LM —a) = o+ [ (= 0)elo(0) ) + F(0.00ld8
= <1/r,c,a)1( )

Then ¢ € OG is a solution of (2.4) with £ =1 /T by Lemma 2.2, Which contradicts
our assumption. Thus the assertion must be true. Now the operator 7 is compact by
Lemma 2.1. Therefore, by the fixed point principlg of omitted rays (e.g., [13, Theorem
13.A]), there exists a ¢ € G such that Ty = ¢. Such ¢ is a solution of (2.4) with k =1
by Lemma 2.2, and hence ¢ € G by our assumption. Thus ¢ is the desired one.
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§3. Periodic solutions of some diffusive functional differential

equations.

Throughout this section, we will employ the following notation. Let RY be the N-

dimensional Euclidean space with norm |-|. For any diagonal matrix B - diag(by, -+, bn)
and any vector u = (uq, - -,un), we denote by Bu the vector (byus,---,byun). For any
vectors v = (uy,---,uy) and v = (v, ,vN), We write as u < v (resp. u < v) when-
ever u; < v; (resp. u; < v;) foralls =1,---,N. Ifu,v € RN with v < v, we set

[u,v] = {w € RN . u < w < v}, and call it an interval in RY. Also, we denote by
RY the set {u € RN 10 := (0,---,0) < u}. Let Q be a bounded domain in R with
smooth boundary 90 (e.g., 90 € C*** for some o € (0,1)), and denote by 0/0n the
“exterior normal derivative at 8Q. Furthermore, A denotes the Laplacian operator in R?,
and Av and Ov/dn denote Av = (Avy,---,Avy) and dv/dn = (v, /dn,---,dvn/On),
respectively, for any (smooth) mapping v = (vi,---,vN) : Q+— RV,

In this section, we discuss the existence of periodic solutions of the diffusive functional

differential equation

ou

E(t’ z) = D(z)Au(t,z) + f(t,z,u:(-,z)) in (0,00) x Q (3.1)

satisfying the boundary condition

O (1,0) = k(@)K —u(t,2)) on (0,00)x 00 (32)

Here D(z) = diag(di(z),---,dn(z)) with d; € C*(Q) with di(z) > 0 on Q,k(z) =
diag(k1(z),- -, kn(x)) with £; € C'**(9Q) and ki(z) > 0 on 0, and K € RV is a
(fixed) constant vector such that 0 < K. We assume the following condition on the

mapping f : R x @ x BC(R_; RY) — RN.

(H2) (i) f(t,z,€) is w-periodic 1n t;
(ii) for each ¢ € BC(R x §; RY), the function f(f,z,4:(-,x)) is continuous in
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(t,z) € R x &
(ii1) for any r > 0 there exist constants L > 0 and @ € (0,1] such that

|F(t,7,€) = f(s,9, )] < L{Jt = s|” + |z — y|” + |6 = x|}

for all (t,x,€),(s,y,x) € [0,7] x @ x BC(R_; RN) with ||£]| < r and ||x|| < r.

In order to apply the results in the previous section, we take the Banach space
C(Q; RN) equipped with the supremum norm as X, and define the map F' : R x
BC(R_; X)— X by

F(t,o)(x) = f(t.x.o(-.2)), t€ R xeq.

Clearly F satisfies the condition (H1). For each ¢ = 1,---, N, we next consider the
(unbounded) linear operator A; in X = C(Q; R) which is the closed extension of the
operator d;A with the domain D(d;A) = {6 € C*Q; R) : 9¢/0n + k£ =0 on 8Q}. By
virtue of [11, Theorem 2], A, generates an analytic semigroup Tl(t) on X. Moreover, by

the estimate
217 €llerer < Cll(A: = 2)llcra)

for all complex z in a truncated sector |arg z| < 3w +e,|z| > Ao (cf. (1.1) in [11]), we see
that each resolvent operators of A; is compact on X, and hence the semigroup T;(t) is
compact. It is a direct consequence of the maximum principle that Tl( t) is nonexpansive;

that is, ||TZ|| < 1. For any ¢ = (1, -, ¢N) € D(fll) X -« x D(An) =: D(A), we set
Ap = (Alsﬁl, S AN@N)~

Then A generates the analytic compact semigroup T'(t) := (Tl‘(t), e ,TN(t)) of nonex-
pansive bounded linear operators on X. Take any (small) constant ¢ > 0, and consider
the operator H(k,y) defined by (2.5) with a = K. By Lemma 2.2, ¢ = H(k, ¢) means
that o(t) is an w-periodic solution of the (abstract) equation (2.4) on X = C(Q; RV).
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Now we certify that u(t,z) := [p(t)](z) satisfies the diffusive functional differential
equation
du

E(t,x) = D(z)Au(t,z) + c(l — k) (K —u(t,x)) 4+ kf(t, 2, u-, x)) (3.3)

in (0,00) x €, together with the boundary condition (3.2), whenever ¢ = H(k, ).

[
?

Lemma 3.1. Let (H2) hold, and suppose that H(k,¢) = o for some ¢ € X. Then
the function u(t,z) := [p(t)}(z) is an w-periodic (classical) solution of (3.3) and (3.2).

Proof. The lemma can be proved by the standard regularity argument (e.g., [4, pp.75-
76]). For completeness we contain the proof. Set v(t) = ¢(t) —a and g(t) = cv(t) +
F(t,¢:). Since v is w-periodic, from the fact that v € C((0,00); X) it follows that
v(t,z) := [v(t)](z) is continuously differentiable with respect to ¢ € R uniformly for
z € Q, together with sup,cp||(d/dt)v(t)|| = sup{|(8/dt)v(t,z)| : t € R, = € Q} <
oo. Then (H2-iii) yields that ||g(t) — g(s)]| < C|t — s|?, ¢, s € R, for some constant
C. Let 0 < é < B < ¥, and take p > 0 so large that § + (N/p) < min{23,1}.
Since (d/dt)v(t) = Acv(t) + kg(t), it follows from [4, Lemma 3.5.1] that the function
t € R — AP(dv/dt) € X (C LP(R)) is locally Hélder continuous, and consequently
the function ¢ € R — (Ov/dt)(t,-) € C°(Q) also is locally Hélder continuous by the
standard argument in LP-theory (e.g., [4, p.75], [8, Chapter 8]). Also, from the fact that
the function t € R — A.v(t) € X is continuous, it follows that the function t € R —
v(t,") € C*5(Q) is continuous. Thus g(¢)(-) € C’(Q) by (H2-iii), and consequently
An(t) = dv/dt — kg(t) € C°(). Hence v(t,-) € C**(Q) by a classical regularity
theorem for elliptic equations (cf. [4, p.10}), and consequently g € C%/2%( R x Q) by (H2-
iii). Also, by the standard argument in LP-theory (e.g., [4, p.75]) it follows that v satisfies
Ov/0n + kv =0 on (0,00) x 9. Consequently, Ou/0On = 0v/0n = —kv = k(K — u) on
(0,00) x 01, and hence ‘u satisfies (3.2). Since the compatibility condition of order 0 is

satisfied for v(0,-) € C?*4(f), by [5, Theorem 5.3, p.320] there exists a unique function
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5 € C1H/2248( R % Q) satisfying 00/0t = DA —cv+kg in (0,00) xQ, 09/0n+kv =0
on (0,00) x dQ and ¥(0,z) = v(0,z) on Q. Then (d/dt)v(t) = A.0(t) + kg(t) and
5(0) = v(0) in X, and hence one gets o(t) = T(t)v(0) + k[T, (t — s)g(s)ds = v(t) or
o(t,z) = v(t,z). Consequently, the function u(t,z) is continuously differentiable in ¢,
twice continuously differentiable in z, and satisfies (3.3) on R x 2. This completes the

proof.
Combining Lemma 3.1 with Proposition 2.3, we obtain the following result:

Theorem 3.2. Let (H2) hold, and assume that there exist some constant vectors

pi1, iz, vy and vy in RN such that py < py < K < vy < vy and that
py <u(t,z) <wvy on RxQ

whenever u(t,z) is an w-periodic solution of (3.3) with k € (0,1] satisfying p1 <
u(t,z) < v; on R x Q together with (3.2). Then there exists an w-periodic solution

of (3.1) and (3.2) of which the range is contained in the interval [py, v;].

Now we provide two examples which show how Theorem 3.2 is effectively applicable.
Ezample 1. Together with the boundary condtion (3.2) (with N = 1), we consider

the scalar diffusive functional differential equation
- %(t,m) = d(z)Au(t,z) — Mt, z)u(t,z) + g(t,z,ue(-,z)) in (0,00) x @,  (3.4)
where d € C*(Q) with d(z) > 0 on (. Assume that:

(H3) (H2)is satisfied for the function f(2,z,¢&) = —A(t, z)€(0)+g(t, x,&) with N = 1.

(H4) (i) 0 < X :=inf;, A(t,z) < sup,, A(t,z) = A < oo;
(ii) £ € BC(R_; Ry), Ry :=[0,00), implies inf; ; g(¢, 2, ) > 0. Moreover, £, x
€ BC(R_; Ry) with £(8) < x(8) on R_ implies g(t,z,£) > g(t,z,x) on R x Q;

(iii) there exists a constant vy > 0 such that v; > vy := (1/A) sup, , g(t,7,0)
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and that
g(t,z,v) < KA(t,z) < g(t,z,0) on RxQ,

where K is the one in (3.2).

Equation (3.4) describes a mathematical model for the survival of red blood cells in
an animal (cf. [6, 12]). It is easy to see that (H4-ii) is satisfied whenever g is given by
g(t,z,&) = / e~ dp (1), where v € BC(Ry; Ry) and p : Ry — R is bounded

0

and nondecreasing. We set

Ho = (1//\)1tﬂzfg(t,.’13,l/1)
Then 0 < py < K < v, by (H4).

Theorem 3.3. Assume (H3) and (H{), and let /ﬁ and v, be the constants cited
above. Then there exists an w-periodic solution of (3.4) and (3.2) of which the range is

contained in the interval [pq, vy].

Proof. Take a pi; € (0, pg). Then 0 < yy < py < K < vy < 1y. For any k € (0,1], let

u(t,z) be an w-periodic solution of the equation

%?(L z) =d(z)Au(t,z) + (1 — k) (K —u(t,z)) + k[-X(t, z)u(t,z) + g(t, T, u(-, 7))

in (0,00) x Q satisfying p; < u(t,z) < v on R x Q together with the condition (3.2).

In order to establish the theorem, it suffices to prove that
py <u(t,r) <wvy on Rx Q.

Now, let ¢ > 0 be any number such that ¢ < min{u,, Aus}, and consider the solution
m(t) of the ordinary differential equation
;ﬁm(t) =[—k(A —¢c) —cJm(t) + Ke+ k(Apy — Ke¢), t>0,



with m(0) = py — e. Clearly m(t) is given by
Ke+ k(Apg — Ko) — (kX —ke+c)t
P =) T e {l—ce¢ }. (3.5)

It is easy to check that 0 < m(t) < K on Ry. We assert that

)e—(kf\—kc+c)t

m(t) = (p —¢

u(t,r) >m(t), (t,r)€ Ry x Q. | (3.6)

To establish the assertion by a contradiction, we suppose that (3.6) is false. Then there
exists some (to, z0) € (0,00) x Q such that u(to, o) = m(to) and u(t,z) > m(t) for all
(t,z) € [0,%0) x Q. Set w(t,z) = m(t) — u(t,z). Then w(to,zo) = 0 and w(t,z) < 0 for
all (t,z) €10,%) x . Moreover, we get

ow d ou .
E(t,iv) = E‘m(t)-a(ﬂl)

= d(z)Aw(t,z) — (kA(t,z) + ¢ — ke)w(t, z) + km(t)(A(t,x) — X)
+k(5‘:u’2 - g(tv xr, ut('?'r))

on (0,t] x Q. Since 0 < p1 < u(t,z) < vy on R x O, we get \vy, > g(t,2,0) >
g(t, z,us(-,x)) > g(t,z,v1) > Apy by (H4-ii), and hence d(z)Aw(t,z) — (8/0t)w(t,z) —
(k(A(t,z) +c—kc)w(t,z) > 0 on (0,t5] x . This would lead to a contradiction. Indeed,
if zo € Q, then w(t,z) = 0 on [0,%y] x Q by the strong maximum principle (e.g.,[9,
Theorems 3.3.5, 3.3.6 and 3.3.7]), which is a contradiction because of u(0,z) > p; >
m(0). We thus obtain zo € 99 and w(t,z) < 0 on [0,%,] x 2, and hence dw/dn > 0 at
(to, zo) by the strong maximum principle, again. However, this is impossible because of

(Ow/0n)(to, To) = —(Ou/On)(to, o) = K(zo)(u(to, 2o) — K) = &(xo)(m(te) — K) < 0.
Now we obtain lim;_,. m(t) = [Kc+ k(Apg — Kc)]/[k(X — ¢) + ¢] by (3.5), and con-

sequently lim,_,., m(t) > p; because of k € (0,1]. Therefore, from (3.6) it follows that

lim,_ o u(t,z) > lim;_ o m(t) > g on Q, and consequently ming u(t,-) > us on R by

the periodicity of u(¢,z). Similarly, one can prove that maxg u(t, ) < v; on R. Indeed,

in place of m(t), we may consider the solution M(t) of the ordinary differential equation

%M(t) =[-A—c)k—c]M(t)+ Kc+ k(Av, — Kc), t>0,

84
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with M(0) = v;+¢, and repeat the argument similar to the one for m(t). This completes

the proof of the theorem.

Example 2. We next consider a system of diffusive functional differential equations

o N
(;: (t,z) = di(z)Auy(t, z)+u;(t, x){a;(t, x)—b(t, ;r)ui-(t..r_)—z cii(t x)hy(t z, uy(-,x)) ),
. 7=1
(3.7)
t=1,---,N,
in (0,00) x €, together with the homogeneous Neumann boundary condition
Oou ,
a_“(t.,m =0 on (0,00) x 90, (3.8)
n

where u = (uy,---,uy), and the functions a;.b;,¢;; : R x Q — Ri,j =1,---, N, are

continuous and w-periodic in ¢, and moreover d; € C'*(Q2) with d;(z) > 0 on § for

t=1,---,N. Note that (3.8) is a special case of (3.2) (with ¥ = 0). We assume that:

(H5) (H2) is satisfied for the function f(¢,2,¢) := (fi(t,z,€), -, fn(t,2,€)), where

N
filt,x. &) = &(0){a:(t,z) — bi(t. 2)&(0) — Zcij(t, r)hii(t,z.€)}

=1

for £ = (&5, €n).

0 < g; :=infy, ai(t,z) <sup, . a;(t,2) =: a@; < oo,

(H6) (i) - 0 < b; :=infy, b;(t, z) < sup, . b;(t, ) =: b; < o0,

0 < g :=inf; . ci5(t,z) < sup; , ¢ij(t,z) =: ¢; < o0

for 2,7 =1,---, N, and moreover

N
a; > Y ¢ij(a;/b;)
i=1
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fori=1,---,N;
(ii) for any i,j=1,--,N,{x € BC(R_;Rf) with £(0) < x(0) on R_
implies 0 < h;;(¢, z,€) < hij(1, =, x), and moreover h;;(t,z,p) = p;

(normalized) whenever p =‘(p1, ---,pN) is a constant.

In mathematical ecology, (3.7) describes the growth of competing N-species whose
i-th population density at time ¢ and place x is u;(t,x), and h;;(t, z,us (-, z)) represents
the effect of the past history on the present growth rate (cf. [L, 3, 6, 10]). It is easy
to see that (H6-ii) is satisfied if hi(t,2,€) = /0 Ko (8)€;(=0)d0 for € = (&1, En) €
BC(R_; RN), where K;;(f) > 0 and /OOOK“(H)dH = 1. The condition (H6-i) is the one
considered by Gopalsamy in [3] to derive the existence of a globally stable w-periodic
solution for integrodifferential eQua.tions (without diffusion). Ahmad and Lazer [1, The-
orem 4.1] have treated the case where N = 2 and d; depends on the variable t as well
as z, and established the existence of an w-periodic solution under the condition (H6-1)
with N = 2. We remark that the case where hy;(t,z,€) = £;(0); that is, (3.7) does not
contain delay-terms, has been treated in [1], and the method in [1] is not applicable
to delay-equations. In the following theorem we also impose the condition (H6-i) and

deduce the existence of an w-periodic solution of (3.7) and (3.8).

Theorem 3.4. Assume (H5)and (H6). Then there exists an w-periodic solution of
(3.7) and (3.8) of which the range s contained in the product

ﬁ[ﬁi ~ X1 G5(a5/) @
b; b

=1 1

].

Proof. Take a § > 0 so that
~ N
0<266,-<g,~—26ij(aj/bj), t=1,---, N,

i=1

which is possible by (H6-1), and consider the vectors iy, pta,v1,v2 and K in RYN whose
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i-th combonehts are defined by

N
pii = 6, po;i= la; — Zéij(aj/bj)]/bia vy = 2a;/b;,

J=1
N
ve: = @b, K;=(a;— 25Z£ij)/bi,
i=1

respectively. Since -26 < a;/b; for all 7, we get 0 < py < p < K < vy < vp. Now, for
any k € (0,1], let u(t,z) = (u1(t, ), - - ,un(t,z)) be an w-periodic solution of a system
of diffusive functional differential equations

Ou;

E (t,z) = di(z)Aui(t,z)+c(l — k)(K: - ui(t, z))

. N
—l—kui(t, x){ai(t, .E) - bi(t, I)ui(t, 1) - z_: cij(t,$)hij(t,3:,ut(~, .15))}

i=1,---,N,

in (0,00) x () satisfying g1 < u(t,z) < on R X Q together with (3.8), where ¢ > 0 is

a constant. In order to establish the theorem, it suffices to certify that
sy < ult,z) <wvy on RxQ. (3.9)

Consider the solution M(t) = (My(t),---.Mx(t)) of a system of ordinary differential
equations

¢ N
(—‘;—Mi(t) = K{(Mi(t) - Ki)(c = 1) + M;(t)(a; — b;Mi(t) = Y ciji,5)}
! g j=1

t>0, ¢=1,---,N,

with M(0) = v; + ¢, where ¢ is any positive number. It is easy to see that M (¢) exists
globally and 0 < M(¢) on R,. Furthermore, by employing the same manner as in the

proof of (3.6). one can deduce that

u(t,z) < M(t), (t.x) € Ry x 9. (3.10)
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Each component M;(t) of M(t) is a positive solution of mdmary differential equation

;1] = —By? 4+ Ay + C(= G(y)), where A = c(k — 1) + ka; — kZCUpU,B = bk and
C = Kic(1 — k). Since B > 0 and C > 0, M;(t) tends to the uni(;u; positive root of the
quadratic equation G(y) = 0 (say, v(k.?)), as t — oo. The root v(k,1) is given by the
equation |

N N

2by(k,1) = a;i— 7 — ) ey +{(a — 7~ Zgijlu‘l,j)z + 41_71'[{1'7'}1/2

i=1 i=1 \

with 7 = ¢(1/k—1) > 0. Consider the right hand side of the above eqﬁation as a function-

of 7 > 0, and write it by Y(7), simply. Then Y(7) is nonincreasing in 7, because of

N

T(r){(a: — 7= Y cijp )’ + b KT}
=1
N
x[{(a-—T—ZcUul]) + 4b,K;7}Y? — (a —T—Zc”'u,lj + 25, K]
1=1
a — SN o
— AR (K, - AT

N .
= 4b;K;Y  cij(pa; —26) <0.

=1
Thus we get
N
(k1) < Y(0)/(2b;) = (@ — D cijpn ) /b < vag

J=1
for all k € (0,1] and all 7 = 1,---, N. By the periodicity of u, this fact and (3.10) yield
that u(t,z) <.v, on R x Q, which proves the half part of (3.9). To prove the remainder
of (3.9), we consider the solution m(t) = (my(t),---,mn(t)) of a system of ordinary

differential equations

c N
%mi(t) = ’?{(mi(t) — Ki)(c— 7:) +mi(t)(a; — bimy(t) — X_: CijV2,5)}
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with m(0) = p; — (&,---,€), where € is any positive number such that € < y;; for all
i =1,---,N. It is easy to see that m(t) exists globally and 0 < m(t) on R,. Since

u(t,z) < vy on R x (), by the same reasoning as for M(t) one can deduce that
m(t) < u(t,z), (t,z) € Ry x Q. (3.11)

Observe that each m;(t) tends to the a positive number ¥(k, %) as t — oo, where 7(k,¢)
is given by the equation
2k, i) = a; — 7 — Y Giva; + {(e — T =Y Gjvay)’ + 46K},
1=1 J=1

where 7 = ¢(1/k — 1) > 0. It is straightforward to see that the right hand side of the

above equation is nondecreasing in 7 > 0. Then we get

N -
o 4 = Gijlay
J(k,7) 2 ]Bl — = H2,

for all k € (0,1] and all i = 1,---, N. By the periodicity of u, the above observation and
(3.11) yield the remainder part of (3.9). This completes the proof.
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