
Cost Graphs for Concurrent Calculi

久保誠* Makoto Kubo

Department of Computer Science, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

Abstract

We present a theory of cost of concurrent programs, which is an important
measure to evaluate their quality. The basic idea is to assign each program a set
of graphs which give derivation of a program argumented with cost information,
then order two progra.ms by comparing these two sets. According to the ways of
comparing these sets, various orderings which capture specific aspects of efficiency
of concurrent programs arise. We show that the efficiency preorder presented by
Arun-Kumar and Hennessy, is closely related with one of these orders, thus showing
our theory is a conservative extension of their construction.

1 Introduction
One essential quality of a program is its efficiency or cost of computation. If two programs
can achieve the same thing, we always prefer the one which runs faster or at least the
one which does the work “in time”1. In fact this is one of the most important concerns
in theoretical computer science, where the formal transformation methods for program
optimization is along-lasting and still active field of study. Now for any such methodology,
we should have a basic notion of what we mean by cost of programs. While this may
not be easy in the real applications, some clean idea in the abstract setting should surely
help, giving the basic criteria and a reference framework for further ramifications, offering
a formal way of evaluating the quality of software components.

In the sequential programs, one clean answer exists, which says an abstract cost of
a program can be measured in terms of the number of (elementary) computation steps
needed for it to reach the final answer. This is the basis of the theory of computational
complexity and Levy’s notion of optimal $reduction[7]$. This idea comes from the fact that
sequential computation may not make sense if a program has nontermination. Yet when
we turn to the concurrency world, where the computation proceeds by processes or objects
which communicate with each other, this simple answer cannot be adapted easily, since
the underlying semantic framework is quite different. Specifically:

*kubo@mt.cs.keio.ac.jp
1The present paper does not consider so-called space-cost of programs.

数理解析研究所講究録
902巻 1995年 64-79 64

\bullet In concurrency, it is often the case that the intermediate action sequence matters.
In fact, in many cases concurrent programs are made not to compute the single
answer, but to interact with the outside world, e.g. operating systems or banking
systems.

\bullet Relatedly, concurrent computation may make sense even if a program has nonter-
mination. In fact the banking system is not expected to stop at all!

\bullet In addition, concurrent computation is essentially non-deterministic due to the
existence of interference (or competition). So there can be many possible non-
deterministic branching executions of the same program.

Therefore we should consider not only the number of computation steps but also the
properties such as nondeterminism, nontermination, intermediate steps, etc. This makes
it difficult to have a clean idea about what cost means in concurrency, even in the abstract
setting. Considering the importance of cost in software evaluation, we think that a formal
framework for concurrent computing in this regard is absolutely needed since a program
becomes meaningful only when they are implemented to run in the real machine and
architecture.

Under the above background, this paper introduces an elementary theory of cost or
efficiency for concurrent programs, based on the $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\backslash$ cture called cost graphs. Just as the
theoretical study of sequential programs often uses λ-calculi as its theoretical basis, we
use process calculi (e.g. $\mathrm{C}\mathrm{S}\mathrm{P}[4],$ $\mathrm{C}\mathrm{C}\mathrm{S}[9],$ π-calculus [11] and many others) as our $\mathrm{b}\mathrm{a}s$ic
formal theories of concurrent computation. A cost graph is a graph which traces the
actions a process $\mathrm{m}\dot{\mathrm{a}}\mathrm{y}$ take considering their cost as well as branching structures. Due
to a nondeterministic behaviour, a program can be given a set of cost graphs, which are
essentially isomorphic to each other, if we forget the cost information. Cost of programs

$\overline{\mathrm{i}}\mathrm{s}$ evaluated in terms of the whole set of such graphs. While we assume that the cost of
computation is the number of transition steps as in λ-calculi, the ways of measuring and
comparing cost are quite different from those in sequential programs.

There exists earlier work [1] by Arun-Kumar and Hennessy, which considers the cost
of computation in the concurrency setting. [1] defines the order over CCS terms by
the number of τ transitions of the labelled transition system of CCS, taking the non-
deterministic behaviour into consideration. The definition of the ordering is inductive
just like bisimulation, offering a convenient proof methods. Assuming a prior knowledge
of CCS [9]: let us give a definition of efficiency prebisimulation over CCS terms. It is a
binary relation $R\subseteq P\cross P$ such that, for every $<P,$ $Q>\in R$,

1. $Parrow P’s$ $\Rightarrow\exists s’s\leq s’\exists Q^{\prime_{Q}}sarrow Q’\wedge’<P’,$ $Q’>\in R$

2. $Qs’arrow Q’$ $\Rightarrow\exists ss\leq s\exists\prime P/Psarrow P’\wedge<P’,$ $Q’>\in R$

where $s,$ $s’$ is the sequence of labels and $s\leq s’$ is given as $\alpha.\tau.\beta.0\leq\alpha.\beta.0$ etc. The
theory offers, as far as we know, the first coherent notion of concurrency cost in the line
of behavioural equivalence over processes. Note that the ordering relation is essentially
convex, thus expressing a relative notion of cost between two terms. Thus even if P is
ordered as superior to $Q,$ P may not run faster than Q if we have a bad luck.

65

Regarding Arun-Kumar-Hennessy construction as an important precursor, we note
that there might be several features which we may need for a cost theory of computation
but which cannot be covered by the above notion. For example, there seems to be no
obvious way of defining “absolute” comparison (one program runs absolutely faster than
another, etc.). Moreover we may face a subtle situation where we may want a different

measure of evaluating cost. Let us think of two terms, $a.P|\Omega$ and $\tau.a.P$, where $\Omega^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\tau.\Omega$

(note $P|\Omega$ and P is semantically equal w.r.t. bisimilarity). From a viewpoint of cost,
the former takes at least one step to reach $P|\Omega$. At the worst case, however, it takes
infinite steps. In contrast, it always takes two steps for the latter to reach P in any cases.
They cannot be compared in efficiency bisimulation in general, but certainly there are
situations where we prefer one to the other (e.g. a “speculative” person likes $a.P|\Omega$ while
a “steady” person will like $a.\tau.P$). Such $\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{t}/\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e}$ -case analysis seems difficult in the
framework of efficiency bisimulation.

Theory of cost graphs are our trial to provide a comprehensive theoretical framework
for the study of cost in concurrent computation. We take CCS as a $\mathrm{b}\mathrm{a}s\mathrm{e}$ formalism,
partly to retain the continuity from the Arun-Kumar-Hennessy construction, partly due
to its simplicity and popularity. However the result can be transplanted in any CCS-like
formalism for which labelled transition relation as well as τ-action are definable. We show
how the set of cost graphs are derivable from a CCS term based on its derivation graph,
how we compare two different cost graphs, and, based on the ordering obtained in this
way, how various orderings over CCS terms are obtained, each with distinct emphasis on
the feature of cost which we may be concerned with. One of such orderings is closely
related with efficiency bisimulation

The remainder of the paper is organized as follows. In section 2, we show the con-
struction of derivation of cost graphs.from labelled transition systems. Section 3 describe
the ordering of the cost graph. And, we explain the examples of comparison of concurrent
programs using the presented orders. Section 4 describe the embedding into efficiency
preorders. Finally, Section 5 describe the further issues and conclude.

2 Cost graph of concurrent computation

2.1 CCS and Its labelled transition systems

CCS $[8, 9]$ is a well-known process calculus. The discussions in this paper are $\mathrm{b}\mathrm{a}s$ed on
CCS and its labelled transition system, which we summarize below.

Definition 2.1 (the syntax of CCS)
Let A and \overline{A} be a countable set of names and co-,names. Let $L=A\cup\overline{A}$ be a countable set
of labels, ranged over by $l,$ $l’,$

\ldots . Let $Act=L\cup\{\tau\}$ be a countable set of actions, ranged
over by $\alpha,\beta,$

\ldots . Let A is a countable set of process variables, ranged over by $X,$ $Y,$ \ldots .
We define the set of processes P , ranged over by $P,$ $Q,$ \ldots , as follows:

$P=\alpha.P|P|Q|P\backslash L|P+Q|X$

where $X^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}P$.

66

Definition 2.2 (The operational semantics of CCS)
the transition $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}arrow\subseteq\alpha P\cross Act\cross P$ is satisfying the following conditions.

ACT $\alpha.P-^{\alpha}P$

COM $l.P|\overline{l}.Qarrow P|\mathcal{T}Q$

PAR $P-^{\alpha}P’$ \Rightarrow $P|Q-^{\alpha}P’|Q$

RES $Parrow P’\alpha\Rightarrow P\backslash Larrow P\alpha/\backslash L$

SUM_{1} $P-^{\alpha}P’\Rightarrow P+Qarrow P’\alpha$

SUM_{2} $Qarrow Q’\alpha\Rightarrow P+Qarrow Q’\alpha$

REC $P\alphaarrow P’$ and $X^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}P\Rightarrow X\alphaarrow P’$

Definition 2.3 (The labelled transition system of CCS)
Let P be a set of processes and Act be a set of actions and $-^{l}$ be a transition relation.
Triple $T=(P, Act,$ $-^{\alpha}\alpha\in Act)$ is called a labelled transition $\mathrm{s}\mathrm{y}_{\mathrm{S}\mathrm{t}}\mathrm{e}\mathrm{m}$ ($\mathrm{L}\mathrm{T}\mathrm{S}$, in short) of
CCS.

Definition 2.4 (Sequence of label)
$s\in Act^{*}$ is the sequence of actions. $\hat{s}\in L^{*}$ is the sequence of label.

\bullet
$PSarrow Q=^{\mathrm{f}}Parrowarrow P_{2^{arrow}}\mathrm{d}\mathrm{e}\tau*\alpha_{1}\mathcal{T}*\ldotsarrowarrowarrow Q\tau*\alpha_{n}\tau*$ where $s=\alpha_{1}\cdots\alpha_{n}$

\bullet $P\hat{s}arrow Q=^{\mathrm{e}}Parrowarrow P12^{arrow}\mathrm{d}\mathrm{f}\mathcal{T}*l\tau*\ldotsarrowarrowarrow\tau*l_{n}\tau*Q$ where $\hat{s}=l_{1}\cdots l_{n}$

Definition 2.5 reach$(P)=^{\mathrm{e}}\mathrm{d}\mathrm{f}\{P’\in P|P\in P\alphaarrow P’\}*$

Definition 2.6 (Derivative graph of process P)
Let P be a processes. An derivative graph of process P is a triple $DG(P)=(N, E)$
satisfying the following conditions.

1. N is a set of nodes such that $N^{\mathrm{d}\mathrm{e}\mathrm{f}}=reaCh(P)$

2. E is a set of labeled directed edge iff $E^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\{<P, \alpha, P’>|P-^{\alpha*}P’\}$.

Definition 2.7 (Weak-bisimilarity)
A binary relation $R\subseteq P\cross P$ is a weak bisimulation if $\forall(P, Q)\in R$ and

1. $Psarrow P’$ $\Rightarrow\exists Q’Q\hat{s}arrow Q’$ A $(P’, Q’)\in R$

2. $Q-^{s}Q’$ \Rightarrow
$\exists P’Parrow\hat{s}P’$ A $(P’, Q’)\in R$ \blacksquare

P weak bisimilar Q,written $P\approx Q$, iff \exists weak bisimulation $R,$ $P\mathrm{R}Q$

2.2 Construction of cost graph
If we use a labelled transition system to define the semantics of computation, the number
of transition steps is naturally used to compare two concurrent programs. So we add the
cost data to transition relation as a label, i.e. $P-^{l}Q$ becomes $P<l_{C},>arrow Q$ where c is
transition cost. Next, two programs compared with respect to cost should be semantically
equal. In this paper, we assume “semantic equality” means weak-bisimilarity, one of the
most stable semantic notions for process calculi.

67

Figure 1: Derivative graph and abstract derivative graphs

Figure 2: cost graphs from Figure 1

68

2.3 Formal definitions of cost graph
In this section, we define formally the notion of cost graphs. To show the idea, we
introduce possibly the most condensed way of presenting transitions $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{l}\mathrm{o}\approx \mathrm{a}\mathrm{s}$ a graph.
The structure is later annotated by cost to become a cost graph. Mathematically, this
underlying structure is a graph whose nodes are equivalence classes of \approx , and whose
edges are “semantically atomic” transitions between the equivalence classes, annotated
by self-directed edges at each node.

Notation 2.8

1. $Parrow_{\approx}P^{\prime^{\mathrm{d}}}\mathcal{T}=P\mathrm{e}\mathrm{f}arrow P^{J}\tau$ A $P\approx P’$

2. $P\tauarrow 0,1P^{\prime^{\mathrm{d}}}=P\mathrm{e}\mathrm{f}’Parrow P’\tau$

3. $P \frac{/\backslash }{/\prime}=\mathrm{d}\mathrm{e}\mathrm{f}$ for no $\alpha \mathit{8}.t$. $Parrow\alpha$

Definition 2.9 (Abstract derivative graph)
Let $DG(P)=(N, E)$ be the derivative graph of a process $P,$ $\approx \mathrm{b}\mathrm{e}$ the weak-bisimilarity
on P . Let $L^{+}=L\cup\{\epsilon\}$ be the set of abstracted-labels, ranged over by $k,$ $k’$. $DG_{\approx}(P)=$

$(N_{\approx}^{P}, E_{\approx})$ is called an abstracted-derivative graph iff

1. $N_{\approx}^{P^{\mathrm{d}\mathrm{e}\mathrm{f}}}=N/\approx \mathrm{i}\mathrm{s}$ a set of equivalence classes of reach(P) induced $\mathrm{b}\mathrm{y}\approx$, ranged over
by $\mathit{0},\mathit{0}’,$

\ldots , with a distinguished element $[P]_{\approx}$.

2. $E_{\approx}\subseteq N_{\approx}\cross L^{+}\cross N_{\approx}$ is a set of
$\mathrm{l}\mathrm{a}\mathrm{b}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{d}\mathrm{d}k\mathrm{i}\mathrm{r},\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{d}$

edges $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\varpi$ing the following
conditions. $<\mathit{0},$ $k,$ $\mathit{0}’>\in E_{\approx}$ is written $\mathit{0}arrow \mathit{0}$.

$E_{\approx}=\mathrm{d}\mathrm{e}\mathrm{f}\{$

{ $<\mathit{0},$ $l,$ $O’>|_{\mathit{0},\mathit{0}’}\in N_{\approx}$ A $P_{1}arrowarrow P_{2}\tau*\approx l\wedge P_{1}\in O\wedge P_{2}\in \mathit{0}’$ } \cup

{ $<\mathit{0},$ $\epsilon,$ $O’>|\mathit{0},$ $O’\in N_{\approx}$ A $P_{1}arrowarrow\tau*\tau\approx 0,1P_{2}\wedge P_{1}\in O\wedge P_{2}\in \mathit{0}’$ }

\blacksquare

As seen in Proposition 2.10, 2.11, and 2.13, the graph is the faithful and “condensed”
representation of transition graphs modulo weak bisimilarity, where no extra edges are
present (except adjoined ϵ edge) but all possible transition paths can be generated from
it. We do not know whether this construction has appeared in the literature or not.

The following proposition is important. It shows that the restriction of an abstracted
edge in $DG_{\approx}(P)$ to a “semantically atomic” transition may not be restrictive.

Proposition 2.10 Suppose $\mathit{0}arrow o’l$ in an abstract derivative graph. Then for any $P\in \mathit{0}$

$Parrow wehav\tau*\approx^{arrow P’}eParrow\tau 0,1\tau\approx$

.
$*larrow P’\in o’$ for some $P’$. Similarly if $\mathit{0}-^{\epsilon}o’$ for any $P\in o$ we have

Proof: We only show the first case. The second case is similar. Suppose not. Then,
while for some $Q\in \mathit{0}$

$Qarrowarrow Q’\tau*l\in\tilde{O}’\approx$

69

for some $P\in \mathit{0}$, for no $P^{\prime/}$,
$Parrow_{\approx}P’\tau*/arrow P/\in Ol/$

Take $\{P_{i}\}_{i\in I}s.t$. $Parrow_{\approx^{arrow\#}}\mathcal{T}*\mathcal{T}P_{i}arrow lP’$. But if no P_{i} is bisimilar to $Q,$
$P\not\simeq Q.$’

contradiction, So $P_{i}\approx Q\approx P$, as required.

Now the graph $DG_{\approx}(P)$ can also be considered as a tree just by unfolding the deriva-
tives, which is denote by $DG_{\approx}^{t}(P)=(N^{L}, E)$, assuming each node is labeled by equiva-
lence classes on $[P]_{\approx^{\mathrm{V}\mathrm{i}}}\mathrm{a}$ a labelling function L .

The following is an important property of $DG_{\approx}(P)$, whose proof relies on the con-
struction of Definition 2.9.

Proposition 2.11 For any $DG_{\approx}^{t}(P)=(N^{L}, E_{\approx})$, its automorphism (either respecting L.or not) is always identity.

Proof: Since no two nodes in $DG_{\approx}(P)$ can have the isomorphic unfolding. If they do,
then we can easily construct a bisimulation by which we are forced to adjoin these two
nodes. Details are by induction on the depth of the first nodes rleted automorphism: See
[6]. \blacksquare

Definition 2.12 A graph $G=(N^{L}, E)$ is isomorphic to another graph $G’=(N^{\prime L}, E’)$

respecting $e.g$. labelling function L , written $(N^{L}, E)\simeq(N^{\prime L}, E)$, by usual graph theory.

The following proposition shows that “semantically equivalent” programs have the
same abstract graphs, and vice versa. By the result we are going to regard $DG_{\approx}(P)$ as a
semantic basis of our cost theories.

Proposition 2.13 $DG_{\approx}(P)\simeq Dc\approx(Q)$ $\Leftrightarrow P\approx Q$

Outline of Proof: In the case $\mathrm{o}\mathrm{f}\Rightarrow$, Since $DG_{\approx}(P)$ and $DG_{\approx}(Q)$ are isomorphic graphs,
there exists a corresponding edge in $DG_{\approx}(Q)$ to the edge in $DG_{\approx}(P)$ and vice versa.
Easily, $\{(P, Q)|Dc_{\approx}(P)\simeq Dc_{\approx}(Q)\}$ is a weak bisimulation. In the $\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}\Leftarrow \mathrm{i}\mathrm{s}$ direct from
Proposition 2.10. (note: reach$(P)_{WB}=reaCh(Q)_{\approx^{\mathrm{i}\mathrm{f}}}P\approx Q$) \blacksquare

Examples 2.14 (Example of abstract derivative graphs)
A part of abstract graph of Figure 1 is as follows:

$[a.(\mathcal{T}. \cdot P+\mathcal{T}.\tau.P)]_{\approx}\Rightarrow[aP]_{\approx}$

Now we about to define a cost graph. Before it, we define a pre-cost graph as any
abstract derivative graph with cost data. A cost graph is defined as a pre-cost graph
which correspond to a possible execution of a program, including branching structures.

Definition 2.15 (Pre-Cost graph)
A pre-cost graph (N^{L}, E, ρ) is an abstract derivative graph $DG_{\approx}(P)=(N^{L}, E)$ with a
cost function $\rho:Earrow Nat\cup\{\omega\}$.

70

Notation 2.16
$\mathrm{A}\mathrm{n}\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}oarrow<l,n>,.=eo\Rightarrow O’$

i$O\iota$
n a pre-cost graph, whose cost function is $\rho(e)=n$, is denoted by

Definition 2.17 (Cost graph)
A cost graph, denoted by $cg,cg’$, is a pre-cost graph (N^{L}, E, ρ) for which there exists a
map Ψ : $Narrow P$ such that:

1. $\mathit{0}arrow O<l,n>/$
\Rightarrow $\Psi(\mathit{0})arrowarrow\Psi-1l(\tau nO’)\approx$ where $\Psi(\mathit{0})\in \mathit{0}^{L}$ and $\Psi(\mathit{0}’)\in \mathit{0}^{\prime L}$.

2. $\mathit{0}^{<}arrow\epsilon,n>O’\Rightarrow\{$

$\Psi(\mathit{0})arrowarrow\tau nn-1\approx\#^{\Psi(\mathit{0}’}\tau)$ where $\Psi(\mathit{0})\in \mathit{0}^{L}$ and $\Psi(\mathit{0}’)\in \mathit{0}^{\prime L}$

$\Psi(\mathit{0})arrow\Psi(\tau \mathit{0}’\approx)\neqarrow \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\Psi(\mathit{0})\in \mathit{0}^{L}$ and $\Psi(\mathit{0}’)\in \mathit{0}^{\prime L}$

$(n\geq 1)$

3. $\mathit{0}^{<}arrow\epsilon,\omega>O’$
$\Rightarrow\forall n\Psi(\mathit{0})arrow\Psi(\tau no’)\approx$ where $\Psi(\mathit{0})\in \mathit{0}^{L}$ and $\Psi(\mathit{0}’)\in \mathit{0}^{\prime L}$.

4. Moreover, if none of the above conditions hold for $L(\mathit{0})$, we let $\mathit{0}-<\epsilon,0>O’$.

Some discussions on Definition 2.17 are given.

1. By Proposition 2.10, 1 is well defined.

2. For 2 and 3, if $\mathit{0}-^{\epsilon}\mathit{0}’$ originally with $L(\mathit{0})=L(\mathit{0}’)$, a corresponding transition
$P\tau-_{\approx}^{n}$ with $n\neq 0$ can be:

(a) $P’$ has further transition $\mathrm{o}\mathrm{f}-_{\approx}^{\tau*}$.

(b) $P’arrow andl/orP^{\prime_{arrow\#}}\mathcal{T}$, or $P’\star$.

If (a) is the only case, we keep $\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}arrow\approx\tau$. If not (a), then we select (any
of) the holding cases. If both, we can again select either. Whatever

$\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}<\alpha,n>,$’ by
Proposition 2.10, for each original $\mathit{0}-^{\alpha}\mathit{0}’$, we have a corresponding $\mathit{0}arrow \mathit{0}$.

3. In the above scheme, if (a) continues to hold forever, then $\mathit{0}arrow \mathrm{r}<\epsilon,\omega>\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{s}$.

4. Note, if $\mathit{0}-<\epsilon,0>O’$, necessarily $\Psi(\mathit{0})\equiv\Psi(\mathit{0}’)$. Conversely, suppose $\mathit{0}-^{\epsilon}o’(\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y})$

with $\Psi(\mathit{0})\equiv\Psi(\mathit{0})$. Given $\Psi(\mathit{0}),$ $\Psi(\mathit{0})arrow P’\tau\Rightarrow\Psi(\mathit{0})\not\simeq P’$ or $\neg\Psi(\mathit{0})-^{\mathcal{T}}$, none of
the above labelling is possible, so we use $<\epsilon,$ $0>$.

5. To summarize, the scheme $\mathrm{C}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{t}\mathrm{s}-^{\tau}\approx \mathrm{s}\mathrm{t}\mathrm{e}\mathrm{P}\mathrm{s}$ a program needs for it to achieve any
meaningful event(state change, $\mathrm{n}\mathrm{o}\mathrm{n}- \mathcal{T}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n},\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$). Note that state change
should be considered to respect branching structures of underlying bisimilarity. If
we take other equivalences, other ideas would be adapted. But the present one is
most faithful to the underlying semantic structure, i.e. $DG_{\approx}(P)$.

Examples 2.18 (Examples of cost graph of programs)

71

1. $a.\tau.0$

Using the case 1 and second half of 2 of Definition 2.17,
Since $a.\tau.0arrow \mathcal{T}a.0arrow 0\mathcal{T}1$, we have $\mathit{0}arrow \mathit{0}arrow O<a,1>/<\epsilon,1>//$.
Here $\mathit{0}^{L}=a.\tau.0$ and $0^{\prime L}=\tau.0$ and $0^{\prime/L}=0$.

2. $\tau.a+\tau.b$

Using the case 1 and first half of 2 of Definition 2.17 since $\tau.a+\tau.b\not\simeq a\not\simeq b$,
Since $\tau.a+\tau.barrow aarrow 0\tau a$, we have $\mathit{0}arrow Oarrow<\epsilon,1><aa’ 1>O’$.
Since $\tau.a+\tau.b\tauarrow barrow 0b$, we have $\mathit{0}arrow obarrow O’<\epsilon,1><b,1>$.
Here $\mathit{0}^{L}=\tau.a+\tau.b$ and $\mathit{0}_{a}^{L}=a$ and $\mathit{0}_{b}^{L}=b$ and $0^{\prime L}=0$.

3. $\Omega^{\mathrm{d}\mathrm{e}\mathrm{f}}=\tau.\Omega$

Using the case 3 of Definition $2.17,<\epsilon,\omega>$

Since $\forall ns.t$. $\Omega\tauarrow n_{\Omega}$, we have $\mathit{0}arrow \mathit{0}$ where $\mathit{0}^{L}=\Omega$.

There may be several execution paths of a program P , since a concurrent system in-
cludes the branching structure whose components are “semantically” equal. The following
is defined considering this property.

Definition 2.19 (Cost graphs of a program P)
A cost graphs of $P,\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{n}c\mathcal{G}(P)$, is a set of all cost graphs for P .

Examples 2.20 (Examples of cost $graph_{\mathit{8})}$

A part of a cost graph of Figure 1 is defined as follows:
a cost graph

$a.(\mathcal{T}.P+\mathcal{T}.\mathcal{T}.P)<_{\Rightarrow^{>}P}a,2$

and a cost graph
$a.(\tau.P+\tau.\tau.P)\Rightarrow^{>}P<a,3$

These cost graphs are shown in Figure 2.

The following definition and proposition shows that, for any cost graph of P , the cost
graph is isomorphic to the abstracted derivative graph of P .

Definition 2.21 (Function from cg to $DG_{\approx}(P)$)
Let $cg=(N^{L}, E)\in C\mathcal{G}(P)$ and $DG_{\approx}(P)=(N_{\approx}, E_{\approx})$. $\phi=<\phi_{N},$ $\phi_{E}>$ such that
ϕ_{N} : $Narrow N_{\approx},$ ϕ_{E} : $E\cross\rhoarrow E_{\approx}$ is defined as follows:

$\phi_{N}(\mathit{0})=O$

$\phi_{E}(\mathit{0}^{<^{\iota,m}>}arrow \mathit{0})/=\phi N(\mathit{0})\Rightarrow^{l}\phi_{N}(\mathit{0}’)$

By Proposition 2.13, we have the following essential result. We omit the easy proof.

Proposition 2.22 $\phi(cg)\simeq DG_{\approx}(P)$ iff $cg\in DG_{\approx}(Q)$ with $P\approx Q$

This proposition allows us to compare between two programs which are semantically
equal.

72

3Various orderings on terms using cost graphs
In this section, we show several orderings on CCS-terms using cost graphs. Then we show
the orderings between the sets of cost graphs using the order over cost graphs.

3.1 Comparison between two cost graphs
There are several ways to compare two cost graphs. This comparison is the basis to
compare concurrent programs in terms of cost.

Definition 3.1 (Comparable graphs)
Two cost graphs, say cg and $cg’$, are comparable iff $\phi(cg)\simeq\phi(cg’)$.

By proposition 2.22, cg and $cg’$ are comparable iff they are bisimilar programs.

Definition 3.2 (Cost order on cost graph)
Let $cg=(N^{L}, E, \rho)$ and $cg’=(N^{\prime L}, E’, \rho)$’ be two comparable cost graphs. Then cg is
faster than $cg’$, written $cg\leq_{c}cg’$, iff for a bijection Ψ from N^{L} to $N^{\prime L}$, we have, for some
n such that $n\geq m$,

$\Psi(\mathit{0})^{<\alpha,n>}arrow\Psi(\mathit{0})/$ $\Leftrightarrow \mathit{0}^{<\alpha,m>}arrow \mathit{0}/$

where $\geq \mathrm{i}\mathrm{s}$ the usual order relation on natural numbers. \blacksquare

Note that by Proposition 2.11, when two comparable cost graphs are given, there is
only one way to define such Ψ .

Proposition $3.3\leq_{C}$ is a preorder relation.

Proof: Clearly, $cg\leq_{C}cg$. Moreover $cg\leq_{C}cg’\leq_{C}cg^{\prime/}$ $\Rightarrow cg\leq_{C}cg^{\prime/}$. \blacksquare

If a cost graph of one program is comparable to that of another program then they
are bisimilar, by Proposition 2.22 and Definition 3.1 and 3.2.

Proposition 3.4 $cg\leq_{c}cg’\wedge cg\in C\mathcal{G}_{P}\wedge cg\in C\mathcal{G}_{Q}$ $\Rightarrow P\approx Q$ \blacksquare

3.2 Comparison between two sets of cost graphs
There are several ways to compare two sets of cost graphs. In concurrent programs, there
are several possible execution paths. Thus, in general, several cost graphs are generated
by a programs. Thus comparison between two sets of cost graphs means comparison
between every possible execution paths of two programs. By the way of ordering the sets
of cost graph, there are several ways of ordering two sets of cost graphs.

73

Definition 3.5 (Cost Preorders on Program)
We define cost preord,ers on program as follows.

$\{$

1 $P\subseteq_{rand}omQ$ \Leftrightarrow $\exists cg_{p}\in C\mathcal{G}(P)$. $\exists cg_{q}\in c\mathcal{G}(Q)$. $Cg_{p}\leq cg_{q}$

2 $P\subseteq_{ro}Q$ \Leftrightarrow $\forall cg_{q}\in c\mathcal{G}(Q)$. $\exists \mathrm{c}gp\mathcal{G}(\in cP)$. $cg_{p}\leq Cg_{q}$

3 $P\subseteq_{rw}Q$ \Leftrightarrow $\forall cg_{p}\in c\mathcal{G}(P)$. $\exists cgq\mathcal{G}(\in cQ)$. $cgp\leq cg_{q}$

4 $P\subseteq_{r}Q$ \Leftrightarrow $P\subseteq_{r}Q\wedge P\subseteq_{r’}Q$

5 $P\subseteq_{\mathit{0}}Q$ \Leftrightarrow $\exists \mathrm{c}g_{p}\in c\mathcal{G}(P)$. $\forall cgq\mathcal{G}(\in cQ)$. $cgp\leq cg_{q}$

6 $P\subseteq_{w}Q$ \Leftrightarrow $\exists cg_{q}\in C\mathcal{G}(Q)$. $\forall cg_{p}\in c\mathcal{G}(P)$. $Cg_{p}\leq cg_{q}$

7 $P\subseteq_{\sigma w}Q$ \Leftrightarrow $P\subseteq_{\mathit{0}}Q\wedge P\subseteq_{w}Q$

8 $P\subseteq_{SO}Q$ \Leftrightarrow $\forall cg_{p}\in c\mathcal{G}(P)$. $\forall cg_{q}\in C\mathcal{G}(Q)$. $cgp\leq cg_{q}$

\subseteq_{random} is called random cost preorder. \subseteq_{rw} is called relative optimal cost preorder. \subseteq_{ro} is
called relative worst cost preorder. \subseteq_{r} is called relative cost preorder. \subseteq_{0} is called optimal
cost order. \subseteq_{w} is called worst cost order. $\subseteq_{\sigma w}$ is called optimal-worst cost order. \subseteq_{so} is
called strong optimal cost order. \blacksquare

Discussion 3.6

1. $P\subseteq_{random}Q$ shows that If P and Q run, the run of P may be faster than the run
$\mathrm{o}\mathrm{f}Q$.

2. $P\subseteq_{ro}Q$ means in comparison with any run of Q , that P may run faster. So this is
a speculative order.

3. $P\subseteq_{rw}Q$ is important: This says that P is more stable than Q , in the sense that,
if we let P run, it is always possible that Q does worse than that.

4. $P\subseteq_{r}Q$ is a sound way of combing previous two.

5. Sometimes we require that, if P does its (one of) the best, then it always beats Q :
this is $P\subseteq_{\mathit{0}}Q$, measuring $P’ \mathrm{s}$ efficiency at its best, $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}\subseteq_{ro}$.

6. $P\subseteq_{w}Q$ compares P and Q at $Q’ \mathrm{s}$ (one of the) worst. This is clearly the strength-
ening $\mathrm{o}\mathrm{f}\subseteq_{rw}$.

7. $P\subseteq_{\sigma w}Q$ is a sound way of combing the previous two.

8. $P\subseteq_{\theta O}Q$ assures that at any possible run, P is always faster. In other words, the
worst runs of P is better than the best runs of Q .

We show the examples of various ordering

Examples 3.7 (Examples of comparison $ofcost<a,1>$ graph)
For $a+\tau.\tau.a$, there are two cost graphs $\mathit{0}arrow o’$ and $\mathit{0}^{<}arrow a,3>O’$. For $\tau.a$, there is a cost

graph $\mathit{0}arrow \mathit{0}<a,2>$.
1. $a\subseteq_{so}\tau.a$ and $a\subseteq_{so}a+\tau.\tau.a$ But, $\tau.a\not\subset_{so}a+\tau.\tau.a$.

Their means a is always faster than $\tau.a$ and $a+\tau.\tau.a$. But, $\tau.a$ is not always faster
than $a+\tau.\tau.a$. Precisely speaking, $\tau.a$ is reduced to 0 at two steps(\mathcal{T} and a) . $a+\tau.\tau.a$

takes at least one step, while at most three steps.

74

Figure 3: Inclusion relation on cost orders

2. $\tau.a\subseteq_{w}a+\tau.\tau.a$. But, $\tau.a\not\in_{\mathit{0}}a+\tau.\tau.a$

There exists a run $\tau.\tau.a$ is slower than a run $\tau.a$ of a term $\tau.a$. So $\tau.a$ is stable $\mathrm{w}.\mathrm{r}.\mathrm{t}$.
cost. But, This also means that $\tau.a$ is not $\mathrm{f}\mathrm{a}s$ter than every run(path) of $a+\tau.\tau.a$.
That is $\tau.a$ is not always faster than $a+\tau.\tau.a$. So, $\tau.a$ is not optimal $\mathrm{w}.\mathrm{r}.${. cost.

3. $a+\tau.\tau.a\subseteq_{\mathit{0}}\tau.a$. But, $a+\tau.\tau.a\not\subset_{w}\tau.a$

This example is reverse of the previous example. $a+\tau.\tau.a$ contains the optimal run
a . But $\tau.a$ not contain the worst path.

4. $a+\mathcal{T}.\mathcal{T}.a\not\subset_{SO}a+\mathcal{T}.\mathcal{T}.a$

It means that \subseteq_{so} is not a preorder since it is not reflexive.

The following shows inclusion among these preorders.

Proposition 3.8 ($Inclu\mathit{8}ion$ relation among cost orders)

1. $\subseteq_{so}\subseteq\subseteq \mathit{0}\subseteq\subseteq_{ro}\subseteq\subseteq_{random}$

2. $\subseteq_{so}\subseteq\subseteq_{w}\subseteq\subseteq_{rw}\subseteq\subseteq_{random}$

\blacksquare

Proof: 1 and 2 are direct from definitions of each preorder. \blacksquare

The inclusion results are shown in Figure 3. Other than the transitive closures of the
inclusion, no comparison is possible. Moreover all depicted inclusions are proper at least
for CCS terms.

75

4Relationship between orders of cost graphs and
efficiency preorder

4.1 Efficiency preorder

In Introduction, we discussed the efficiency preorder for CCS, which was proposed in [1].
This preorder is based on the number of τ transitions. The preorder is defined as $\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{W}\mathrm{s}^{2}$:

Definition 4.1 (Orders on label)
Let $\leq \mathrm{b}\mathrm{e}$ the binary relation on Act^{*} generated by inequations $s\leq\tau s$ and $s\leq s$ i.e. $\leq \mathrm{i}\mathrm{s}$

closed under reflexivity, transitivity, and substitution under catenation contexts. \blacksquare

Definition 4.2 (Efficiency Prebisimulation)
A binary relation $R\subseteq P\cross \mathcal{P}$ is an efficiency prebisimulation if $\forall(P, Q)\in R$ and

1. $Psarrow P’$ $\Rightarrow\exists s’s\leq S\exists Q’/QSarrow Q’$

’

A $(P’, Q’)\in R$

2. $Qs’arrow Q’$ $\Rightarrow\exists \mathit{8}S\leq s’\exists P’Parrow sP’$ A $(P’, Q’)\in R$ \blacksquare

Definition 4.3 (Efficiency $preorder\subseteq_{E}$)

1. $\subseteq_{E}=\cup$ { $R|R$ is a efficient prebisimulation}

2. $P\subseteq_{E}Q$ iff \exists efficiency prebisimulation $R,$ $P\mathrm{R}Q$
\blacksquare

Lemma 4.4 $P\subseteq_{E}Q$ \Rightarrow $P\approx Q$

4.2 Correspondence between cost preorder and efflciency pre-
order

In this section, we show the correspondence between cost preorder presented in this paper
and efficiency preorder. Firstly, we show the following lemma that cost preorder can
be defined inductively. Then, we show that cost relative order is indeed an efficiency
bisimulation.

Lemma 4.5 The subtree of a cost graph is a cost graph.

Lemma 4.6
$P\subseteq_{r}Q$ iff $\{$

$Parrowarrow P’\mathcal{T}mn\approx\alpha\Rightarrow$
$\exists n$ s.t.m $\leq n\wedge Q\tau_{\mathcal{T}}arrowarrow\alpha n\approx_{m}Q’\wedge P’\subseteq_{r}Q’$

$Q\tauarrowarrow Q’\approx\alpha\Rightarrow\exists ms.t.m\leq n\wedge Parrowarrow P’\approx\alpha\wedge P’\subseteq_{r}Q’\blacksquare$

Proof:
(\Rightarrow) : We should prove three cases $\mathrm{o}\mathrm{f}-^{\alpha}$. Since three cases are similar, we show one of
them.

2Our definition reverses left and right for original definition

76

1. $P-_{\approx}^{\tau m}-^{l}P/$. By Definition 2.17,

$Parrowarrow P’\tau ml\approx\Rightarrow Oarrow \mathit{0}<l,m+1>/\wedge \mathit{0}^{L}=P\wedge \mathit{0}=/LP’$

By Assumption for any $cg\in C\mathcal{G}(P)$, there exists $cg’\in C\mathcal{G}(Q)$ such that $cg\leq cg’$.
Let $cg=(N, E, \rho)$ and $cg’=(N’, E^{\prime/}, \rho)$. Then by Definition 3.1, there exists a
bijection Ψ : $N^{L}arrow N^{\prime L}$ such that $m\leq n$ and

$o^{<l,m}arrow \mathit{0}+1>/\Leftrightarrow\Psi(\mathit{0})^{<}\iota_{n},+1arrow>\Psi(\mathit{0}’)$

If $\Psi(\mathit{0})<l\underline{n+},\rangle 1>\Psi(\mathit{0}’)$, then $Parrow_{\sim}arrow P’\tau nl$ where $\Psi(0)^{L}=Q$ and $\Psi(0)^{L}=P’$. While
if $cg\leq cg’$, then for any $cg^{\prime/}\in C\mathcal{G}(P’)\sim$, there exists $cg^{\prime/\prime}\in C\mathcal{G}(Q’)$ which is a subtree
of $cg’\in C\mathcal{G}(Q)$ such that $\mathrm{c}g’’\leq cg^{\prime\prime/}$. Hence $P’\subseteq_{r}Q’$.

2. $Parrow_{\approx}arrow\not\simeq^{P’}\tau m\tau$,

3. $P-^{\tau m+1}\approx P’$. In both cases, similarly to 1 using the edge $<\epsilon,n>arrow$.
(\Leftarrow) : We should prove that for any $cg\in C\mathcal{G}(P)$ there exists $cg’\in C\mathcal{G}(Q)$ such that
$cg\leq \mathrm{c}g’$. There are three type of the edge.

1. Case $\mathit{0}^{<l,>}-^{n}O’$:
$o^{<l,>}-^{n}\mathit{0}’$

\Rightarrow $P-_{\approx}^{m}\mathcal{T}l-P/\wedge \mathit{0}^{L}=P$ A $0^{\prime L}=Q$ (Definition 2.17)
\Rightarrow $\exists n.(m\leq n)$ A $Qarrowarrow Q\tau m\iota\approx/\wedge P’\subseteq_{r}Q’$ (Assumption)
\Rightarrow

$\mathit{0}^{\prime/}arrow<l,n>\mathit{0}^{\prime/}$ ’ A $0^{\prime/L}=Q$ A $0^{\prime\prime/L}=Q’\wedge P’\subseteq_{r}Q’$ (Definition 2.17)
\Rightarrow

$\mathit{0}arrow//<l,n>/\prime\prime O\bigwedge_{\mathit{0}’=}/LQ\wedge \mathit{0}^{\prime/}=/LQ’$

$\wedge\forall cg^{\prime/}\in C\mathcal{G}(P’)\exists cg///\in C\mathcal{G}(Q)s.t.cg^{\prime/}\leq cg^{\prime//}$ (Definition 3.5)

Then for any cg containing $cg^{\prime/}$, there exists $cg’\in C\mathcal{G}(Q)$ containing $cg”’$.

2. Case $\mathit{0}<\epsilon,n>arrow \mathit{0}’$: Therefore, we divide two cases. That is $P-_{\approx}^{m}\mathcal{T}\mathcal{T}arrow\not\simeq Q$ and
$P-_{\approx}^{m+1}\tau Q$. In both cases, we can prove similarly to 1. \blacksquare

Theorem 4.7 $P\subseteq_{r}Q\Rightarrow P\subseteq_{E}Q$ \blacksquare

Proof: Assumes that there is a transition $Psarrow P’$. This transition can be divided into
$Parrowarrow\#^{P_{1}^{1}}\tau m^{0}\tau\approxarrow\tau m_{1}^{1}\tau\approxarrow\ldots {}_{\#}P^{j}1arrowarrow^{1}\tau m_{j}^{1}l\tau m_{1}^{2}\approx P_{1}arrow\tau j\approxarrow\not\simeq\cdots P_{i}arrow\tau m_{\dot{j}}\approx P’$

Then, by Lemma 4.6,

$P\subseteq_{r}Q$ then $Parrowarrow\mu Prm^{0}\tau\approx 11$ $\Rightarrow\exists n^{0_{S.t}.}m\leq n^{0}\wedge Qarrowarrow\not\simeq\approx Q_{1}\tau n^{0}\tau 1\wedge P_{1}^{1}\subseteq_{r}Q_{1}^{1}$

$P_{1}^{1}\subseteq_{r}Q_{1}^{1}$ then $P_{1}^{1}arrow-\tau m_{1}^{1}\tau P^{2}\approx\# 1\Rightarrow$
$\exists n_{1}^{1}S.t.m^{1}1\leq n_{1}^{1}$ A $Q_{1}^{1}arrowarrow\not\simeq Q’rn_{1}^{1}\tau\approx$ A $P_{1}^{2}\subseteq_{r}Q_{1}^{2}$

$.\cdot$

. .\cdot.
$P_{i}^{j}\subseteq_{r}Q_{i}^{j}$ then $P_{i}^{j}arrow P’\tau m_{j}\approx:\Rightarrow\exists n_{j^{S}}^{i.i}t.m_{j}\leq n_{j}^{i}\wedge Q_{i}^{j}arrow_{\approx}\tau n_{\acute{\dot{j}}}Q’\wedge P’\subseteq_{r}Q’$

Then, $P\subseteq_{r}Q\Rightarrow Parrow P’s\Rightarrow$ $\exists s’s\leq \mathit{8}’\exists Q’Qs’arrow Q’$ A $P’\subseteq_{r}Q’$.
By Definition 4.2, this $\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{w}\mathrm{S}\subseteq_{r}$ is an efficiency prebisimulation. \blacksquare

We do not know whether the converse inclusion holds or not.

77

5 Conclusion
In this section we compare our construction with Arun-Kumar-discuss some further issues.

Comparison with efflciency preorder

There are several differences between our work and Arun-Kumar-Hennessy’s construc-
tion. As was discussed already, our cost graphs are intended to provide a comprehensive
framework for evaluating and analysing concurrent programs in regard of their efficiency.
Specifically varied ways of measuring efficiency of programs according to the need are
a feature not found in the precursor. Especially the relative optimal and strongly opti-
mal orderings seem to have practical significance. The second difference is the semantic
framework. Efficiency preorder is based on inductive definition, which would make the
reasoning easier for some cases. However we believe, especially in the case when the rea-
soning can be performed semi-algorithmically, both methods may not differ so much in
practice. Finally we should note that two frameworks are different in the ways of count-
ing cost of two different transitions which do the same thing but whose $‘(\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{e}$

semantic points” may be different (this is counted $\mathrm{i}\mathrm{n}\subseteq_{E}$ but not in ours). Indeed it can
be proved that, if we relax this point, \subseteq_{r} easily coincides with \subseteq_{E} which shows how our
construction $\mathrm{o}\mathrm{f}\subseteq_{r}$ is at least close $\mathrm{t}\mathrm{o}\subseteq_{E}$. While this and other options are possible, our
intention is to start from the formulation which is most faithful to the underlying seman-
tic structure, i.e. abstract derivation graphs. In practice various ramifications should be
considered.

Issues
There are several problems which are to be solved for the application of the present theory.
The first thing, maybe the most difficult, is how the present framework can be mapped to
the real cost of execution environments. In this context, cost theory should also include
the soundness of mapping between programs and their execution, w.r.t. cost orderings.
But the significance of the present construction also lies in that, at least in the stipulated
criteria, ways of ordering programs, either their execution images or source programs, are
now present.

As a theoretical basis for pragmatic development, algorithmic aspects of cost theory
should be performed. Apart from such issues as algorithmic construction of cost graphs
for e.g. finite-state programs, not only comparison of programs but also optimization
methodologies can be developed, once we are given a firm criteria about efficiency. We
hope that many optimization technologies in sequential programs will be adaptable in
concurrency settings, but very $\mathrm{P}^{\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{a}\mathrm{b}1}\mathrm{y}$ a special method may be needed for concurrent
systems. This point is also related with the optimal execution graph of a given program,
as well as the existence of optimal programs among weakly bisimilar ones.

In conclusion, in this paper we have investigated the possibility of capturing the notion
of cost in concurrency (specifically the one of the execution time) in a rigorous formal
framework. While many things remain to be solved, we hope that our work provides a
possible formal foundation for measuring efficiency of concurrent programs.

78

Acknowledgments
The author thank Kohei Honda for discussions and comments on the paper and proof-
reading.

References
[1] S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta Infor-

matica 29, pages 737-760, Springer-Verlag, 1992.

[2] H. Barendregt. The Lambda $CalculuS:It_{S}$ syntax and semantics. North Holland,
revised edition edition, 1984.

[3] J. Hindley and J. Seldin. Introduction to $c_{om}binator\mathit{8}$ and λ calculus. Cambrige
University Press, 1986.

[4] T. Hoare. Comunicating Sequential Processes. 1978.

[5] K. Honda and M. Tokoro. An Object Calculus for Asynchronous Communication.
ECOOP’91, LNCS 512, pp.21-52, Springer-Verlag 1991.

[6] M. Kubo. Notes on unfolding cost graph, manuscript.

[7] J-L. Levy. Optimal reduction in th lambda-calculus. In J-P. Seldin and J-R. Hind-
ley, editors, To H.B.Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages pp159-191, Academic Press, 1980.

[8] R. Milner. A Calculus of Communicating Systems. LNCS 92, Springer-Verlag, 1980.

[9] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[10] R. Milner. Function as ProceS8eS. Mathematical Structure in Computer Science, 2(2),
pp.119-146, 1992.

[11] R. Milner, J. Parrow, and D. Walker. A calculus of Mobile Proce8SeS $PartI/II$. Tech-
nical Report ECS-LFCS-89-85/86, Laboratory for Foundations of Computer Science,
University of Edinburgh, June 1989.

79

