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ABSTHACT. We construct a new cohomology functor from a certain category of quantum operator

algebras to the category of Batalin-Vilkovisky algebras. This Moonshine cohomology has, as a group

of natural automorphisms, the Fischer-Griess Monster finite group. We prove a general vanishing

theorem for this cohomology. For a certain commutative QOA attached to a rank two hyperbolic

lattice, we show that the degree one cohomology is isomorphic to the so-called Lie algebra of

physical states. In the case of a rank two unimodular lattice, the degree one cohomology gives
a new construction of Borcherd’s Mollster Lie algebra. As applications, we compute the graded

dimensions and signatures of this cohomology as a hermitean Lie algebra graded by a hyperbolic

lattice. In the first half of this paper, we give as preparations an exposition of the theory of quantum

operator algebras. Some of the results here were announced in lectures given by the first author at

the Research Institute for Mathematical Sciences in $\mathrm{I}\langle \mathrm{y}\mathrm{o}\mathrm{t}_{0}$ in September 94.

1 Introduction

In the $1980’ \mathrm{s}$ , there took place the following developments, all of which are now understood
to be connected with two-dimensional quantum field theory:

1) Frenkel and Kac gave a construction of the simply-laced simple Lie algebras via the
vertex operator representation of the corresponding affine Kac-Moody Lie algebras. The vertex
operators were already thought of as quantum fields that depend holomorphically on one complex
variable. These fields had their origin in the dual resonance model, which was central to the
creation of string theory. Frenkel later extended this vertex operator construction to obtain some
new infinite dimensional Lie algebras that contained Kac-Moody Lie algebras of hyperbolic type.
In the process, Frenkel gave a proof of the No Ghost Theorem in string theory.

2) Frenkel, Lepowsky and Meurman generalized the Frenkel-Kac vertex operator construction
in order to construct an infinite dimensional graded representation of the Monster finite group.
The existence of the FLM Moonshine module immediately explained the empirically observed
connection between the modular function $j(\tau)$ and the dimensions of irreducible representations
of the Monster. Borcherds soon afterwards discovered that the Moonshine module possessed
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the structure of what he called a vertex algebra. The book by Frenkel, Lepowsky and Meurman
gave a complete treatment of vertex operator algebras and the Moonshine module.

3) Belavin, Polyakov and Zamolodchikov developed the so-called operator product expansion
into a powerful tool for the study of two dimensional conformal quantum fields. As a conse-
quence, BPZ determined the possible central charges and critical dimensions of the minimal
conformal field theories. This analysis required the deep work by Kac, and later Feigin and
Fuchs on the structure of the highest weight representations of the Virasoro Lie algebra. It was
soon recognized (see for example [29]) that there was a close relationship between the theory of
the operator product expansion and the theory of vertex operator algebras.

4) Feigin invented the theory of semi-infinite cohomology for Virasoro and Kac-Moody Lie
algebras. The construction of the differential in Feigin’s complex was soon reinterpreted in
terms of some elementary holomorphic quantum fields arising in conformal field theory and the
BRST quantization construction in string theory $[18][36]$ . Moreover, Frenkel, Garland and the
second author of the current paper were able to give a new proof of the No Ghost Theorem via
the analysis of a particular semi-infinite cochain complex. At the end of the eighties, the two
authors of the current paper began a long series of papers building on the earlier work of FGZ.

5) Koszul discovered a new relationship between graded commutative superalgebras and
graded Lie superalgebras. Specifically, Koszul found that under certain very general hypotheses,
the failure of a second order differential operator to be a derivation led to the existence of a
graded Lie bracket on the underlying commutative algebra. An important special case of the
same relationship was found independently by the physicists Batalin and Vilkovisky. At the
time, there was no perceived connection between the work of Koszul, Batalin and Vilkovisky
and the rapidly developing study of conformal quantum fields.

In the early $1990’ \mathrm{s}$ , Borcherds proved the Conway-Norton conjectures for the FLM Moonshine
module. The first two developments above are fundamental for Borcherds. As a brief aside,
Borcherds claims in his paper that semi-infinite cohomology theory, as discussed in 4 above,
can be employed to obtain alternate constructions of the infinite dimensional Lie algebras that

$\mathrm{f}\mathrm{i}\mathrm{g}\mathrm{u}\dot{\mathrm{r}}\mathrm{e}$ prominently in his work. However, he presents no details to support his claim.

The main purpose of the current paper, partly inspired by [28], is to forge a synthesis of
Borcherds work with all five of the above developments. We construct a new functor that we
call Moonshine cohomology and which fully justifies Borcherds claim. This new cohomology
theory is an outgrowth of the developments sketched in 3, 4 and 5 above. In particular, we
employ a new mathematical approach to the operator product expansion, and we work with a
recent generalization of the notion of a VOA to the notion of a commutative quantum operator
algebra. Our paper on CQOAs [24] is designed to be a companion to the current paper on
Moonshine cohomology.

Degree one Moonshine cohomology provides a functor from the category of vertex operator
algebras to the category of Lie algebras that carry an action of the Monster finite group by auto-
morphisms. The degree one Moonshine cohomology of a particular VOA yields the generalized
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Kac-Moody Lie algebra that is the key to Borcherds proof of the Conway-Norton conjectures.

The total Moonshine cohomology provides a functor with values in the category of Batalin-
Vilkovsky algebras that carry an action of the Monster finite group by automorphisms. BV
algebras are odd Poisson algebras in which the graded Lie bracket is related to the graded
commutative product in the fashion first described by Koszul and Batalin-Vilkovisky (see 5
above.) The abstract notion of a BV algebra, though present in the paper of Koszul, did not
become well known until the recent work of Penkava-Schwarz and Getzler.

As in any cohomology theory, the total cohomology is better behaved and more fundamental
than the cohomology of any special degree. Moreover, the BV structure on the total cohomology
allows us to relate a complicated Lie algebra structure to a more elementary commutative algebra
structure. We hope that Moonshine cohomology will yield further insight into the structure of
the Moonshine module as well as into the proof of the Conway-Norton conjectures. We also hope
that our current paper unifies a number of seemingly disparate points of view in mathematics
and mathematical physics.

Here is a brief summary of the contents of this paper:

In section 2, we state the definitions of our main concepts: $\mathrm{q}$.uantum operators, matrix
elements, Wick product.s, iterated Wick products, the infin,itely many (

$‘ \mathrm{c}\mathrm{i}\mathrm{r}\mathrm{C}\mathrm{l}\mathrm{e}$
” products, the

operator product expansion, the notions of locality ari $\mathrm{d}$ commutativity, and finally the corre-
sponding notions of local and commutative quantum operator algebras. Finally, we discuss some
elementary known facts about commutativity.

In section 3, we introduce what we call the Wick calculus, which deals with operator products
of the form: $t(z)u(z)$ : $v(w)$ as well as $t(z)$ : $u(w)v(w)$ : under the assumption that the quantum
operators $t(z),$ $u(z)$ , and $v(z)$ are pairwise commutative. Here, : $t(z)u(Z)$ : denotes the Wick or
normal ordered product of $t(z)$ with $u(z)$ . The Wick calculus is essential for both computations
as well as for theoretical issues, such as the explicit construction of CQOAs. Section 3 continues
with the construction of the CQOA $O(b, c)$ , which acts in the ghost Fock space of the BRST
construction. Following this is a construction of the CQOA $O_{\kappa}(L)$ , which arose originally in the
seminal work of BPZ [3], and which acts in the state space of any conformal field theory having
central charge $\kappa$ . This section concludes with a construction of a CQOA from a Lie algebra
equipped with an symmetric invariant form. All three examples are special, in that these
algebras are spanned by Wick products of $\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{i}_{\mathrm{V}}\dot{\mathrm{a}}$tives of the generating quantum operators. In
fact, we exhibit explicit bases consisting of such products in the first two examples.

In section 4, we discuss the BRST construction in the language of what we call conformal
QOAs. Given a conformal QOA $0$ with central charge $\kappa$ , we form the tensor product $C^{*}(O)=$

$O(b, c)\otimes O$ . We then construct the special quantum operator $J(z)$ , which we call the BRST
current. We also give a simple characterization of $J(z)$ . We then recall the famous result that
the coefficient $J(\mathrm{O})={\rm Res}_{z}J(z)$ is square-zero if and only if $\kappa=26$ . After that we specialize to
this central charge.
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The first main result of section 4 is Theorem 4.6, which states that the Wick product induces
a graded commutative associative product on the cohomology of $C^{*}(O)$ with respect to the
derivation, $[J(\mathrm{O}), -]$ . This theorem first appeared in work of E. Witten [33], who called the
ghost number zero subalgebra the “ground ring of a string background”. An approach to this
theorem via VOA theory appears in [26]. The approach in the current paper is via CQOA
theory. Continuing section 4, we develop the theory of the ghost field, $b(z)$ , and its coefficient,
$b(1)$ . As a preparation, we remind the reader of the definition of a Batalin-Vilkovisky $(\mathrm{B}\mathrm{V})$

operator and BV algebra. The second main result of section 4 is Theorem 4.8, which states that
the operator $b(1)$ induces a BV operator acting in the BRST cohomology algebra. Thus the
cohomology becomes a BV algebra. This theorem was inspired by work of Witten and Zwiebach
[37], and first appeared $\mathrm{i}!\mathrm{n}[26]$ , where it was derive At the end of section 4 we state the precise
connection between BRST cohomology and semi-infinite cohomology.

In section 5, we finally present the construction of Moonshine cohomology $\mathrm{M}^{*}$ as a functor
from conformal QOAs to BV algebras. Our main result is Theorem 5.2, which asserts that
Moonshine cohomology vanishes for degrees less than zero and greater than three. In fact, we
first prove Theorem 5.3, which states a vanishing theorem for semi-infinite cohomology; Theorem
5.2 follows immediately.

We specialize in section 6 to the Moonshine cohomology of the conformal QOA attached
by FLM to a hyperbolic lattice of rank 2. Theorem 6.2 asserts that in this case, the degree
zero and degree three Moonshine cohomology groups are both one dimensional; moreover, the
degree one and degree two cohomology groups can both be canonically identified with the so-
called space of physical states, whose definition dates back to the early days of string theory
(see $[8][9][5]$ ). We actually prove a more general result, Theorem 6.4, $\mathrm{w}-\mathrm{h}-\mathrm{i}\Gamma_{--}\mathrm{h}_{-\mathrm{O}}\sim \mathrm{f}\underline{\mathrm{l}}\underline{\iota}\circ \mathrm{w}- \mathrm{s}$from a semi-
infinite cohomology calculation, Theorem 6.5. As a consequence, we are able to compute the full
Moonshine cohomology as a $\mathrm{t}\mathrm{r}\mathrm{i}$-graded linear space, and determine all the graded dimensions of
this space. As a second application, we compute the signature of the hermitean form on degree
one cohomology and show that the form is positive definite.

At the end of section 6 we discuss some open questions about Moonshine cohomology. In
particular, we conjecture that the natural automorphism group of the functor $\mathrm{M}^{*}$ is isomorphic
to the Monster finite group. This conjecture is suggested by the known theorem that the Monster
is the full automorphism group of the Moonshine VOA [11]. We hope that future study of the
functor $\mathrm{M}^{*}$ will cast new light on a rich amalgam of mathematics and mathematical physics.

Sections 2-4 of this paper are meant to be an exposition, and should be accessible to the
readers who are new to the theory of operator product expansions. Many useful (in the authors’
opinion) exercises are given. Sections 5-6 are more advanced because they draw from several
different subjects. We hope that the included references will help the readers who are interested
in further details.

Acknowledgments: $\mathrm{B}.\mathrm{H}$ .L. would like to express special thanks to Prof. M. Miyamoto
and Prof. H. Yamada for their invitation to lecture at the Research Institute for Mathematical
Sciences in Kyoto in September 94. He also thanks them for their hospitality during his stay in
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Kyoto, and for their patience waiting for the final draft of this paper. We thank F. Akman for
carefully proofreading our manuscript.

2 Quantum Operator Algebras

Let $V$ be a $\mathrm{Z}$ doubly graded vector space $V=\oplus V^{n}[m]$ . The degrees of a homogeneous
element $v$ in $V^{n}[m]$ will be denoted by $|v|=n,$ $||v||=m$ respectively. In physical applications,
$|v|$ will be the fermion or ghost number of $v$ . In conformal field theory, $||v||$ will be the conformal
dimension or weight of $v$ . We say that $V$ is bounded if for each $n,$ $V^{n}[m]=0$ for $m<<0$ .

Let $z$ be a formal variable with degrees $|z|=0,$ $||z||=-1$ . Then it makes sense to speak of
a homogeneous (biinfinite) formal power series

$u(z)=n \in\sum_{\mathrm{z}}u(n)z^{-}n-1$
(2.1)

of degrees $|u(z)|,$ $||u(z)||$ where the coefficients $u(n)$ are homogeneous linear maps in $V$ with
degrees $|u(n)|=|u(\mathcal{Z})|,$ $||u(n)||=-n-1+||u(z)||$ . Note then that the terms $u(n)z-n-1$ indeed
have the same degrees $|u(z)|,$ $||u(z)||$ for all $n$ . We require that for every $v\in V_{f}u(n)v=0$ for
$n>>0$ . (If $V$ is bounded, then this requirement is superfluous.) We call a finite sum of such
homogeneous series $u(z)$ a quantum operator on $V$ , and we denote the linear space of quantum
operators as $QO(V)$ .

Notations: By the expression $(z-w)^{n},$ $n$ an $integer_{f}$ we usually mean its formal power
series expansion in the region $|z|>|w|$ . Thus $(z-w)^{-2}$ and $(-w+z)^{-2}$ are different, $as$

power series. When such expressions are to be regarded as rational functions rather than formal
series, we will explicitly mention so. $W_{l}enA(z)= \sum A(n)z-n-1$ is a formal series with coef-
ficients $A(n)$ in whatever linear space, we define ${\rm Res}_{z}A(z)=A(\mathrm{O}),$ $A(z)^{+}=\Sigma_{n\geq 0}A(n)Z-n-1$ ,
$A(z)^{-}=\Sigma_{n<0}A(n)Z-n-1,$ $\partial A(z)=\Sigma-(n+1)A(n)Z-n-2$ . If $u(z),$ $u’(\mathcal{Z})$ belong to QOAs $O,$ $O’$

respectively, we abbreviate $u(z)\otimes u’(z)_{)}$ as an element of $O\otimes O’$ , simply as $u(z)u’(Z)$ . When no
ambiguity occurs, we denote $|u(z)|,$ $||u(z)||$ simply as $|u|,$ $||u||$ . The restricted dual of a graded
vector space $V$ is denoted $V\#$ . If $A_{1}(z),A_{2(z}),\ldots$ are quantum operators, an arbitrary matrix
element $\langle x, A_{1}(Z_{1})A_{2}(z2)\cdots y\rangle$ with $x\in V^{\#},$ $y\in V$ , is denoted as $\langle A_{1}(Z_{1})A_{2}(Z_{2})\cdots\rangle$ . In the
interest of clarity, we often write signs like $(-1)^{1}t||u|$ simply $as\pm$ . This convention is used only
when the sign arises from permutation of elements. When in doubt, the reader can easily recover
the correct sign from such a permutation. Given two homogeneous linear operators, $X,$ $Y$ , we
write [X, $Y$ ] $=XY-(-1)^{|X|}|Y|YX.$ A similar notation applies to quantum operators when it
makes sense.

Given two quantum operators $u(z),$ $v(z)$ , we write

$:u(z)v(w):=u(z)^{-}v(w)+(-1)^{|u|||}v(vw)u(z)^{+}$ . (2.2)
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Because $v(n)t=u(n)t=0$ for $n>>0$ , it’s easy to check that if we replace $w$ by $z$ , the right hand
side makes sense as a quantum operator and hence defines a nonassociative product on $QO(V)$ .
It is called the Wick product. Similarly given $u_{1}(Z),$

$\cdot \mathrm{v}\cdot,$
$u_{n}(z)$ , we define : $u_{1}(z_{1})\cdots u_{n}(Z_{n})$ :

inductively as : $u_{1}(Z_{1})(:u2(Z2)\cdots u_{n}(Z_{n}) :)$ :.

Exercise 1 Show that : $u_{1}(z)\cdots u_{n}(Z)$ : makes sense as an element of $QO(V)$ .

Definition 2.1 For each integer $n$ we define a product on $Qo(V)$ :

$u(w)\mathrm{o}_{n}v(w)={\rm Res}_{z}u(z)v(w)(Z-w)^{n}-(-1)^{|u||v}|{\rm Res}_{z}v(w)u(z)(-w+z)^{n}$ . (2.3)

Explicitly we have:

$u(z)\mathrm{o}_{n}v(Z)=\{$

$\frac{1}{(-n-1)!}$ : $\partial^{-n-1}u(z)v(z)$ : if $n<0$

$[(\Sigma_{m=0}^{n}u(m)(-Z)n-m), v(Z)]$ if $n\geq 0$ .
(2.4)

If $A$ is a homogeneous linear operator on $V$ , then it’s clear that the graded commutator $[A$ , - $]$

is a graded derivation of each of the products $0_{n}$ . Since $u(z)\mathrm{o}_{0}v(Z)=[u(0), v(z)]$ , we have

Proposition 2.2 For any $t(z),$ $u(z),$ $v(z)$ in $QO(V)$ and $n$ integer, we have

$t(z)\mathrm{o}_{0}(u(_{Z)}\mathrm{o}_{n}v(Z))=[t(z)\mathrm{o}_{0}u(z)]$ O $v$ (n $Z$ ) $\pm u(_{Z})0_{n}[t(_{Z)\mathrm{o}v}\mathrm{o}(z)]$ ,

$ie$ . $t(Z)0_{0}$ is a derivation of every product in $QO(\iota\nearrow)$ .

Proposition 2.3 For $u(z),$ $v(z)$ in $QO(V)_{J}$ the following equality of formal power series in two
variables holds:

$.u(z)v(w)= \sum_{0n\geq}u(w)\mathrm{o}nv(w)(z-w)^{-n}-1:+u(Z)v(w)$
:. (2.5)

Proof: We have $u(z)v(w)=[u(z)^{+}, v(w)]+:u(z)v(w)$ :. On the other hand by inverting the
second $\mathrm{e}\mathrm{q}\mathrm{n}$ . in (2.4), we get

$[u(m), v(w)]= \sum_{n=0}^{m}u(w)$ o $v$ (n $w$ ) $w^{m}-n$ . (2.6)

Thus we have

$[u(Z)^{\dagger}, v(w)]$ $=$ $\sum_{m\geq n\geq 0}u(w)\circ_{n}v(w)w^{m}-n-Zm-1$

$=$ $n \geq\sum_{0}u(w)\mathrm{o}_{n}v(w)^{\frac{1}{n!}}\partial_{w}n(_{Z}-w)^{-1}$

$=$
$\sum_{n\geq 0}u(w)\circ_{n}v(w)(Z-w)-n-1$

. $\square$ (2.7)
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In the sense of the above Proposition, : $u(z)v(w)$ : is the nonsingular part of the operator
product expansion (2.5), while $u(w)\mathrm{o}_{n}v(w)(z-w)^{-}n-1$ is the polar part of $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}-n-1$ (see
[3] $)$ . In physics literature, $u(w)\mathrm{o}_{n}v(w)$ is often written as $\frac{1}{2\pi i}\int_{C}u(z)v(w)(z-w)^{n}dz$ where $C$ is
a small circle around $w$ . The above proposition clearly justifies this notation. The products $0_{n}$

will become important for describing the algebraic and analytic structures of certain algebras of
quan.tum operators. Thus we introduce the following mathematical definitions:

Definition 2.4 A graded subspace $A$ of $QO(V)$ containing the identity operator and closed
with respect to all the products $0_{n}$ is called a quantum operator algebra. We say that $u(z)$ is local
to $v(z)$ if $u(z)\mathrm{o}_{n}v(z)=0$ for all but finitely many positive $n.$ A $QOA$ $A$ is called local if its
elements are pairwise mutually local.

We observe that for any element $a(z)$ of a QOA, we have $a(\mathcal{Z})0_{-}21=\partial a(z)$ . Thus a QOA is
closed with respect to formal differentiation.

Proposition 2.5 Let $u(z),$ $v(z)$ be quantum $operat_{\mathit{0}}rs_{f}$ and $N$ a nonnegative integer. If $u(z)0_{n}$

$v(z)=0$ for $n\geq N$ , then $\langle u(z)v(w)\rangle$ represents a rational function in $|z|>|w|$ with poles along
$z=w$ of order at most $N$ .

Proof: By eqn (2.5), we have

$\langle u(z)v(w)\rangle=\sum_{n\geq 0}\langle u(w)\mathrm{o}_{n}v(w)\rangle(z-w)-n-1+\langle:u(z)v(w):\rangle$
. (2.8)

It is trivial to check that $\langle: u(z)v(w):\rangle,$ $\langle u(w)\mathrm{o}_{n}v(w)\rangle\in \mathrm{C}[z^{\pm 1}, w]\pm 1$ . Thus our claim follows
immediately. $\square$

Lemma 2.6 Let $u(z)$ be local to $v(z)$ , and $\langle u(z)v(w)\rangle$ represent the rational function $f(z, w)$ .
Then for $|w|>|z-w|$ ,

$f(z, w)= \sum_{\in n\mathrm{Z}}\langle u(w)\mathrm{o}nv(w)\rangle(z-w)^{-n}-1$
. (2.9)

Proof: The Laurent polynomial $\langle: u(z)v(w):\rangle$ in the above region is just
$\Sigma_{i\geq 0}\frac{1}{i!}\langle: (\partial^{i}u(w))v(w):\rangle(zarrow w)^{i}$ . Now apply $\mathrm{e}\mathrm{q}\mathrm{n}$ . (2.4). $\square$

We note that none of the products $0_{n}$ is associative in general. However it clearly makes
sense to speak of the left, right or two sided ideals in a QOA as well as homomorphisms of
QOAs and they are defined in an obvious way. For example, a linear map $f$ : $Oarrow O’$ is a
homomorphism if $f(u(z)\mathrm{o}_{n}v(z))=fn(\mathcal{Z})\mathrm{o}_{n}fv(z)$ for all $u(z),$ $v(z)\in O$ , and $f(1)=1$ . An
$O$ -module is a graded space $M$ equipped with a homomorphism of QOAs $g:Oarrow QO(M)$ .
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Exercise 2 Define the notions of a left, right, and two sided ideals for QOAs.

Definition 2.7 Two quantum operators $u(z\mathrm{I}, v(Z)$ are said to commute if they are mutu-
ally $loCal_{J}$ and $\langle u(z)v(w)\rangle,\pm\langle v(w)u(z)\rangle$ represent the same rational function. This is equivalent
(Proposition 2.5) to the following: for some $N\geq 0,$ $(z-W)^{N}\langle u(z)v(w)\rangle=\pm(z-w)N\langle v(w)u(z)\rangle$

as Laurent polynomials. We call a $QOAO$ whose elements pairwise commute a commutative
$QOA$ .

Proposition 2.8 If $u(z),$ $v(z)$ commute, then for all $m$

$[u(m), v(w)]= \sum_{n\geq 0}u(w)\mathrm{o}_{n}v(w)w^{m}-n$ . (2.10)

Proof: The case $m\geq 0$ is obtained by inverting the second $\mathrm{e}\mathrm{q}\mathrm{n}$ . in (2.4). Since $u(z)v(w)=$
$[u(z)^{+}, v(w)]+$ : $u(z)v(w)$ : and $v(w)u(z)=\mp[u(z)-, v(w)]\pm$ : $u(z)v(w)$ :, it follows from
commutativity that $\langle[u(z)^{-}, v(w)]\rangle$ represents the same rational function as $-\langle[u(z)+, v(w)]\rangle$

does, which is just $- \sum_{n\geq 0}\frac{u(w)\mathrm{o}_{n}v(w)}{(z-w)^{n+1}}$ . This gives

$[u(z)-, v(w)]=- \sum_{n\geq 0}u(w)\mathrm{o}_{n}v(w)(-w+z)^{-n-1}$ . (2.11)

Taking ${\rm Res}_{z}[u(Z)-, v(w)]z^{m}$ for $m<0$ gives the desired result. $\square$

The notion of commutativity here is closely related to the physicists’ notion of duality in
conformal field $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{y}[29].$ Frenkel-Lepowsky-Meurman have reformulated the axioms of a VOA
in terms of what they call rationality, associativity and commutativity. The notion of commuta-
tivity in Definition 2.7 is essentially the same as FLM’s. This notion has also been reformulated
in the language of formal variables in [6].

3 Wick’s calculus

In this section, we derive a number of useful formulas relating various iterated products of three
quantum operators. Most of these $\mathrm{f}_{0\Gamma \mathrm{n}}1\mathrm{U}\mathrm{l}\mathrm{a}\mathrm{S}$ are well-known to physicists who are familiar with
the calculus of operator product expansions. We will also include a lemma on commutativity.

Let $t(z),$ $u(Z),$ $v(z)$ be $\mathrm{h}\mathrm{o}\mathrm{m}o$geneous quantum operators which pairwise commute.

Lemma 3.1 (see [22]) For all $n,$ $t(z)\mathrm{o}_{n}u(z)$ and $v(z)$ commute.
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Proof: We include Li’s proof here for completeness. For a positive integer $N,$ $(z-w)^{2N}$ is a
binomial sum of terms $(z-x)^{i}(X-w)^{2Ni}-,$ $i=1,$ $..,$

$2N$ . So $(z-w)^{N2}+N(t(Z)\mathrm{o}_{n}u(Z))v(w)$ is a
binomial sum of terms

${\rm Res}_{x}((z-w)^{N}(z-x)i(X-w)^{2N}-\mathrm{i}(t(X)u(z)(x-Z)^{n}\mp u(z)t(X)(-z+x)^{n})v(w))$ . (3.12)

We want to show that for large enough $N$ , and $\mathrm{f}\mathrm{o}1^{\cdot}0\leq i\leq 2N$ , term by term we have

$(z-w)^{N}(Z-X)^{i}(x-w)^{2N-}i(t(x)u(\mathcal{Z})(X-Z)n\mp u(z)t(X)(-z+x)^{n})v(w)$

$=\pm(z-w)^{N}(z-X)^{i}(x-w)^{2}N-iv(w)(t(X)u(Z)(x-z)^{n}\mp u(z)t(X)(-z+x)^{n})$ . $(3.13)$

Consider two cases: $i\geq N$ and $i<N$ . By assumption, $(z-x)^{k}(t(X)u(z)(X-z)^{n}\mp u(Z)t(x)(-z+$

$x)^{n})=0$ for all large enough $k$ . So for large enough $N$ , (3.13) holds for $i\geq N$ . Similarly
for $i<N,$ $(z-w)^{N}(x-w)^{2N-i}(t(x)u(z)(X-z)^{n}\mp u(Z)t(X)(-z+x)^{n})v(w)$ coincides with
$\pm(z-w)^{N}(x-w)^{2}N-iv(w)(t(X)u(Z).(x-Z)^{n}\mp u(Z)t.(X)(-z+x)^{n})$ . This shows that (3.13) holds
for each $i$ . $\square$

This lemma is useful for showing existence of commutative QOAs: it says that given a set
of pairwise commuting quantum operators, the QOA generated by the set is commutative. We
now develop some abstract tools for studying the structure of commutative QOAs.

Applying (2.5), we have

: $t(z)u(_{Z)}$ : $v(w)$

$=$ $(t(Z)^{-_{u}}(\mathcal{Z})\pm u(z)t(z)^{+}\mathrm{I}^{v}(w)$

$=$ $t(z)^{-_{u()(w)}}Zv\pm u(z)v(w)t(z)^{+}\pm u(z)[t(Z)^{+}, v(w)]$

$=$
$n \geq\sum_{0}$

: $t(z)(u(w)\mathrm{o}_{n}v(w))$ : $(z-w)^{-}n-1:+t(Z)u(_{Z)v}(w)$ :

$\pm\sum_{0n,m\geq}u(w)\circ_{m}$
( $t(w)$ o $v($n $w)$ ) $(_{Z}-w)^{-}n-m-2+$

$\pm\sum_{n\geq 0}$
: $u(z)$ ( $t(w)$ o $v$n $(w)$ ) : $(z-w)-n-1$ . (3.14)

Similarly,

$t(z)$ : $u(w)v(w)$ :
$=$ $\pm[u(w)^{-}, t(z)]v(w)\pm u(w)^{-_{t()(w)}}Zv\pm t(z)v(w)u(w)+$

$=$
$\pm\sum_{n,m\geq 0}(-1)n+1u(w)\circ n(t(w)\mathrm{o}mv(w))(_{Z}-w)^{-n-}m-2$

$\pm\sum_{n\geq 0}(-1)^{n}+1$
: $u(Z)\mathrm{o}_{n}t(\mathcal{Z})v(w)$ : $(z-w)-n-1$

$\pm\sum_{n\geq 0}$
: $u(w)t(w)\circ_{n}v(w):(z-w)^{-}n-1\pm:u(w)t(z)v(w)$ : (3.15)
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Lemma 3.2 The following equalities hold in $|w|>|z-w|$ :

(i) $\sum_{k\in \mathrm{Z}}.\frac{\langle(.t(w)u(w).)\mathrm{o}_{k}v(w)\rangle}{(z-w)^{k+1}}$

.

$= \sum_{n,m\geq 0}.\frac{\langle\cdot\partial^{m}t(w)u(w)\mathrm{o}v(nw)\cdot\rangle\pm\langle.\partial^{m}u(w)t(w)\mathrm{o}_{n}v(w).\rangle}{m!(z-w)n-m+1}.\cdot$

.

$\pm\sum_{n,m\geq 0}\frac{\langle u(w)\circ_{n}(t(w)\mathrm{o}mv(w))\rangle}{(z-w)n+m+2}$

$+ \sum_{m\geq 0}\frac{\langle.\partial^{m}(t(w)u(w))v(w)\cdot\rangle}{m}$ (3.16)

(ii) $\pm\sum_{k\in^{\mathrm{z}}}\frac{\langle t(w)0_{k}.u(w)v(w)\cdot\rangle}{(z-w)k+1}.$

.

$= \sum_{0n,,m\geq}(-1)^{n+}1\frac{\langle u(w)\mathrm{o}_{n}(t(w)\circ vm(w))\rangle}{(z-w)n+m+2}$

$+ \sum_{0n,,m\geq}(-1)^{n+1}.\frac{\langle.\partial^{m}(u(w)\mathrm{o}_{n}t(w))v(w)\cdot\rangle}{m!(_{Z}-w)^{n-m}+1}$

.

$+ \sum_{n\geq 0}.\frac{\langle.u(w)t(w)\mathrm{o}_{n}v(w)\cdot\rangle}{(z-w)^{n+1}}$

.

$+ \sum_{m\geq 0}\frac{\langle.u(w)(\partial^{m}t(w))v(w)\cdot\rangle}{m}$ (3.17)

Proof: To prove (i), consider matrix coefficients on both sides of $\mathrm{e}\mathrm{q}\mathrm{n}$ . (3.14). By assumption
of commutativity these matrix coefficients represent rational functions. Expanding both sides
using Lemma 2.6, we get the first $\mathrm{e}\mathrm{q}\mathrm{n}$ . $(\mathrm{i})$ . The $\mathrm{e}\mathrm{q}\mathrm{n}$ . $(\mathrm{i}\mathrm{i})$ is derived similarly from (3.15). $\square$

By reading off coefficients of the $(z-w)^{i}$ , we can use this lemma to simultaneously compute
all products : $t(w)u(w)$ : $\mathrm{o}_{k}v(w)$ , and $t(w)0_{k}$ : $u(w)v(w)$ : in terms of other products among the
constituents $t(w),$ $u(w),$ $v(w)$ . Thus it is a kind of recursion relation for the products. In the
examples below, we will see how it allows us to understand the structure of commutative QOAs.

Lemma 3.3 If $t(z)^{\pm_{u}}(w)^{\pm}=(-1)^{|t||u}|u(w)^{\pm}t(z)\pm$ , then
: $t(z)u(w)v(x):=(-1)^{1}t||u|$ : $u(w)t(z\mathrm{I}v(x)$ :.

Proof: Applying the definition of the Wick product (and surpressing $z,$ $w,$ $x$ ):

: $tuv:-(-1)^{||}t|u|$ : $utv$ :
$=t^{-}(u^{-}v+(-1)^{|u||v}|)vu^{+}+(-1)^{|t|(|u}|+|v|)(u^{-}v+(-1)^{1u}||v|vu+)t+$

$-(-1)^{||}t|u|(u^{-}(t^{-}v+(-1)^{|t|||}vt^{+})v+(-1)^{|u|(|y}|+|v|)(t^{-}v+(-1)^{|t||v}|vt+)u^{+})$

$=0$ . $\square$ (3.18)
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3.1 Examples

Let $Qo(V)^{-}=\{u(z)^{-}|u(z)\in QO(V)\}$ . This space is obviously closed under differentiation
and the Wick product. It follows that the space is also closed under all $0_{n},$ $n$ negative. Also
observe that for any $u(z),$ $v(z)\in QO(V)$ , we have $u(z)^{-_{v}(}w)-=:u(z)^{-_{v}(}w)-:$ . It follows that

the products $0_{n},$ $n=0,1,$ $\ldots$ , restricted to $Qo(V)^{-}$ , all vanish. Thus $Qo(V)^{-}$ is a local QOA.

Let $LO(V)$ be the algebra spanned by homogeneous linear operators on $V$ . We can regard
each operator $A$ as a formal series with just the constant term. This makes $LO(V)$ a subspace

of $QO(V)$ . It is obvious that every $0_{n}$ restricted to $LO(V)$ vanishes except for $n=-1$ , in which
case $0_{-1}$ is the usual product on $LO(V)$ . Thus $LO(V)$ is a very degenerate example of a QOA.
Obviously, any commutative subalgebra of $LO(V)$ is a commutative QOA.

Let $C$ be the Clifford algebra with the generators $b(n),$ $C(n)$ ( $n\in$ Z) and the relations
[13] [17] [1]

$b(n)C(m)+c(m)b(n)$ $=$ $\delta_{n,-m-1}$

$b(n)b(m)+b(m)b(n)$ $=$ $0$

$c(n)C(7n)+c(r’?)c(n)$ $=$ $0$ (3.19)

Let $\lambda$ be a fixed integer. The algebra $C$ becomes $\mathrm{Z}$ -bigraded if we define the degrees $|b(n)|=$

$-|C(n)|=-1,$ $||b(n)||=\lambda-n-1,$ $||C(n)||=-\lambda-n$ . $\mathrm{L}\mathrm{e}\mathrm{t}\wedge^{*}$ be the graded irreducible $C^{*}$ -module
with generator 1 and relations

$b(m)1=c(\uparrow\eta)1=0$ , $m\geq 0$ (3.20)

Let $b(z),$ $c(Z)$ be the quantum operators

$b(z)$ $=$ $\sum_{m}b(?n)Z-m-1$

$c(z)$ $=$ $\sum_{m}c(m)_{Z}-m-1$
(3.21)

Let $O(b, c)$ be the smallest QOA containing $b(z),$ $c(\mathcal{Z})$ .

Proposition 3.4 The $QOAO(b, C)$ is commutative. It has a basis consisting of the monomials

: $\partial^{n_{1}}b(z)\cdots\partial n\mathfrak{i}b(Z)\partial^{m_{1}}c(Z)\cdots\partial^{m_{g}}C(Z)$ : (3.22)

with $n_{1}>\ldots>n_{i}\geq 0,$ $m_{1}>\ldots>m_{j}\geq 0$ .

Proof: Computing the OPE of $b(z),$ $C(w)$ , we have

$b(z)C(w)$ $=$ $(z-w)^{-}1+:b(z)c(w)$ :
$c(w)b(z)$ $=$ $(w-z)^{-}1+:C(w)b(z)$ :

: $b(z)c(w)$ : $=$ -: $c(w)b(z):$ . (3.23)
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It follows that $b(z)$ and $c(z)$ commute. Also $b(z),$ $c(Z)$ each commutes with itself, hence they
form a pairwise commuting set. By Lemlna 3.1, they generate a commutative QOA.

If each $u_{1}(z),$
$\ldots,$

$uk(z)$ is of the form $\partial^{n}b(z)$ or $\partial^{m}c(z)$ , let’s call : $u_{1}(z)\cdots u_{k}(z)$ : a mono-
mial of degree $k$ . We claim that it’s proportional to some monomial (3.22) with $n_{1}>\ldots>$

$n_{i}\geq 0,$ $m_{1}>\ldots>m_{j}\geq 0$ . If $t(z),$ $u(z)$ each is of the form $\partial^{n}b(z)$ or $\partial^{m}c(z)$ , it is easy
to check that $t(z)^{\pm_{u(}}z)\pm=-u(z)^{\pm}t(z)\pm$ . It follows from Lemma 3.3 that : $t(z)u(Z)v(z)$ $:=$

$-u(z)t(Z)v(z)$ : for any element $v(z)\in O(b, c)$ . This shows that : $u_{1}(z)\cdots u_{k}(z)$ : is equal to
$(-1)^{\sigma}$ : $u_{\sigma(1)}(Z)\cdots u_{\sigma(}k)(Z)$ : for any permutation $\sigma$ of 1, ..., $k$ .

Let $O’$ be the linear span of the monomials (3.22). We now show that $A$ $\mathrm{o}_{k}B\in O’$ for any $k$

and any two monomials $A,$ $B$ ; hence $O(b, c)=O’$ . We will do a double induction on the degrees
of $A$ and $B$ . Case 1: let $A=t(z),$ $B=:u(Z)v(z)$ : with $t(z),$ $u(z)$ each monomial of degree 1,
and $v(z)$ of any degree. If $v(z)=1$ , then by (3.23) $t(w)0_{k}$ : $u(w)v(z):\in 0’$ . By induction on
the degree of $v(z)$ and applying Lemma $3.2(\mathrm{i}\mathrm{i})$ , we see that $t(w)0_{k}$ : $u(w)v(w):\in O’$ . This shows
that $A$ $\mathrm{o}_{k}B\in O’$ for $A$ of degree 1, $B$ of any degree. Now case 2: suppose $A=:t(z)u(z)’.$ ,
$B=v(z)$ , where $t(z)$ is of degree 1 and $u(z),$ $v(Z)$ of any degree. By induction on the degree of
$u(z)$ , it’s clear from Lemma $3.2(\mathrm{i})$ that this case reduces to case 1.

Finally we must show that the mononlials (3.22) are linearly independent. Define a map
$O(b, c)arrow\wedge$ by $u(z)\vdash\Rightarrow u(-1)1$ . We see that this map gives a 1-1 correspondence between the
set of monomials (3.22) and a basis $\mathrm{o}\mathrm{f}\wedge$ . This completes the proof. $\square$ .

Exercise 3 Let $j(z)=:c(z)b(z)$ :. Show that $j(z)j(w)=(z-w)^{-2}+:j(z)j(w)$ : by di-
rect computation (Hint: $Eqn$ . (3.14) is a good guide.). Use Lemma 2.8 to conclude that
$[j(m),j(n)]=n\delta_{n+m,0}$ . Construct a canonical basis of $O(j)$ , the $QOA$ generated by $j(z)$ in
$O(b_{C},)$ .

Let $M(\kappa, 0)$ be the Verma module of the Virasoro algebra with highest weight $(\kappa, 0)$ and
vacuum vector $v_{0}$ . Let $M(\kappa)$ be the quotient of $l\mathcal{V}I(\kappa, \mathrm{o})$ by the submodule generated by $L_{-1}v_{0}$ .
Let $O_{\kappa}(L)$ be the QOA generated by $L(z)=\Sigma L_{n}z^{-n-2}$ in $QO(M(\kappa))$ .

Proposition 3.5 (see $[\mathit{3}][l\mathit{2}]$) The $QOAO_{\mathrm{i}},.(L)$ is commutative. It has a basis consisting of
monomials

: $\partial^{n_{1}}L(z)\cdots\partial^{n_{i}}L(Z)$ : (3.24)

with $n_{1}\geq\ldots\geq n_{i}\geq 0$ .

Proof: A direct computation gives

$[L(z)+, L(w)]$ $=$ $\frac{\kappa}{2}(z-w)^{-}4+2L(w)(z-w)^{-}2\partial L(+w)(z-w)^{-1}$

$[L(z)^{-}, L(w)]$ $=$ $- \frac{\kappa}{2}(w-z)^{-4}-2L(w)(w-z)-2+\partial L(w)(w-Z)-1$ . (3.25)
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But we also have $L(z)L(w)=[L(z)^{+}, L(w)]+:L(z)L(w)$ :, and $L(w)L(z)=-[L(z)^{-}, L(w)]+$ :
$L(z)L(w)$ :. Combining these with (3.25), it is obvious that $\langle L(z)L(w)\rangle$ and $\langle L(w)L(z)\rangle$

represent the same rational function. Thus $L(z)$ commutes with itself as a quantum operator.
By Lemma 3.1, $O_{\kappa}(L)$ is commutative.

Let $O’$ be the linear span of the monomials (3.24) with $n_{1},$ $..,$
$n_{i}\geq 0$ unrestricted. To show

$O’$ is closed under all the products (hence $O_{\kappa}(L)=O’$ ), we apply induction and Lemma 3.2 as
in the case of $O(b, c)$ above. We now show that we can restrict to those monomials (3.24) with
$n_{1}\geq,$ $\ldots\geq n_{i}\geq 0$ , and that the resulting monomials form a basis. First by direct computation,
we see (see Lemma 4.2 of [24]) that $O_{\kappa}(L)$ is a $Vir$-module defined by the action $(L(n)=L_{n-1})$

$L(n)\cdot u(Z)=L(Z)\mathrm{o}_{n}u(z)$ . (3.26)

Since $O_{\kappa}(L)$ is spanned by the monomials (3.24), and because $L(-n-1) \cdot u(z)=\frac{1}{n!}$ : $\partial^{n}L(\mathcal{Z})u(z)$ :
for $n\geq 0$ , it follows that the module is cyclic. Thus we have a unique onto map of Vir-modules
$M(\kappa)arrow O_{\kappa}(L)$ sending $v_{0}$ to 1. But $M(\kappa)$ has a PBW basis consisting of $L(-n_{1}-1)\cdot\cdot,$ $L(-ni-$
$1)v_{0},$ $n_{1}\geq,$ $.,$ . $\geq n_{i}\geq 0$ . This shows that the monomials (3.24) with $n_{1}\geq,$ $..,$

$\geq$

.
$n_{i}\geq 0$ span

$O_{\kappa}(L)$ . Now define a map $O_{\kappa}(L)arrow M(\kappa)$ by $u(z)rightarrow u(-1)v_{0}$ . This is the lnverse to the
previous map, hence it must map a basis to a basis. $\square$

Let $(\mathrm{g}, B)$ be any Lie algebra with an invariant symmetric bilinear form $B$ , possibly degen-
erate. Let $\hat{\mathrm{g}}$ be the affinization of $(\mathrm{g}, B),$ $\mathrm{i}\mathrm{e}.\hat{\mathrm{g}}=\mathrm{g}[t, t^{-1}]\oplus \mathrm{C}$ with bracket:

$[Xt^{n}, Yt^{m}]=[X, Y]t^{n}+m+n\delta_{n+m,0}B(x, Y)$ (3.27)

and $\mathrm{C}$ being central. Let $M$ be any $t\mathrm{g}[t]$ locally finite $\hat{\mathrm{g}}$-module in which $1\in\hat{\mathrm{g}}$ acts by the
scalar 1. Denote by $X(n)$ the operator representing $Xt^{n}$ , and define the currents:

$X(z)= \sum_{n\in \mathrm{Z}}x(n)_{Z}-n-1$
(3.28)

for $X\in \mathrm{g}$ . Let $O$ be the QOA generated by all the currents in $QO(M)$ .

Proposition 3.6 The $QOAO$ is commutative. It is spanned by the monomials
: $\partial^{n_{1}}X_{1}(Z)\cdots\partial nixi(Z)$ :, with $n_{1},$

$\ldots,$
$n_{i}\geq 0_{\rangle}X_{1},$

$\ldots,$
$X_{i}\in \mathrm{g}$ .

Proof: For $X,$ $Y\in \mathrm{g}$ , we have
$[X(z)^{+}, Y(w)]$ $=$ $B(x, Y)(z-w)^{-}2+[x, Y](w)(Z-w)^{-}1$

$[X(\mathcal{Z})^{-,Y(}w)]$ $=$ $-B(X, Y)(w-Z)-2+[x, Y](w)(w-z)-1$ . (3.29)

It follows that the currents are pairwise commuting quantum operators, and hence $O$ is com-
mutative.

To prove the second statement, it’s enough to show that for any integer $n$ and any two
monomials $A,$ $A’$ above, $A$ $\mathrm{o}_{n}A’$ is a linear sum of those monomials. This follows by induction
on the degrees of $A,$ $A’$ ( $\mathrm{i}\mathrm{e}$ . the number $X$ occuring in $A,$ $A’$ ) and by applying Lemma 3.2. $\square$

There is a vast literature closely related to the study of the algebra $O$ above. For a small
sample, see for example $[20][35][32][12][23][22]$ .
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4 BRST cohomology algebras

Definition 4.1 A conformal $QOA$ with central charge $\kappa$ is a pair $(O, f)$ , where $O$ is a commu-
tative $QOA$ equipped with a homomorphism $f$ : $O_{\mathrm{i}},.(L)arrow O$ such that for every homogeneous
$u(z)\in O$ ,

$fL(z)u(w)=\cdots+||u||u(w)(Z-w)-2+\partial u(w)(Z-w)^{-}1+:fL(\mathcal{Z})u(w)$ : (4.30)

where “
$\ldots$

” denotes the higher order polar terms. In other words, $fL(z)\circ_{1}u(z)=||u||u(w)$

and $fL(z)\mathrm{o}_{0^{u}(}Z)=\partial u(z)$ . For simplicity, we sometimes write $f$ : $O_{\kappa}(L)arrow O_{f}$ or simply
$O_{\kappa}(L)arrow O$ , to denote a conformal $QOA.$ A homomorphism $(O, f)\prec^{h}(O’, f’)$ of conformal
QOAs is a homomorphism of QOAs $h:Oarrow O’$ such that $h\mathrm{o}f=f’$ .

Recall that $M$ is a positive energy $Vir$ -module of central charge $\kappa$ if for every $v\in M$ , we
have $L_{n}\cdot v=0$ for $n>>0$ , and $L_{0}$ acts diagonalizably. It’s easy to show that $M$ is a positive
energy $Vir$-module iff there’s a quantum operator $X(z)\in QO(M)$ which commutes with itself
and has the OPE

$X(z)x(w)= \frac{\kappa}{2}(Z-w)-4+2X(w)(\mathcal{Z}-w)-2+\partial X(w)(z-w)^{-}1+:X(z)X(w):$ . (4.31)

Lemma 4.2 Let $X(z)\in QO(M)$ define a positive energy $Vir$ -module. Then every subalgebra
of $QO(M)$ containing $X(z)$ is naturally a positive energy $V_{i}r$ -module defined by $L_{n}\cdot u(z)=$

$X(z)0_{n+}1u(z)$ .

Lemma 4.3 Let $O$ be a commutative $QOA$ generated by a set $S\subset QO(M)$ , and let $X(z)\in O$

have $OPE$ (4.31). Suppose for all $u(z)\in S$ ,

$X(z)u(w)=\cdots+||u||u(w)(z-w)^{-}2+\partial u(w)(z-w)^{-}1+:X(z)u(w)$ :. (4.32)

Then there’s a unique homomorphism $f$ : $O_{\kappa}(L)arrow O$ such that $fL(z)=X(z)$ . Moreover $(O, f)$

is a conformal $QOA$ with central charge $\kappa$ . In particular, every positive energy $Vir$ -module $M$

has a canonical $O_{\kappa}(L)$ -module structure.

We refer the interested readers to section 4 of [24] $\mathrm{f}\mathrm{o}1$ the complete proofs.

Consider, as an example, $O(b, c)$ . For a fixed $\lambda$ , let

$X(z)=(1-\lambda):\partial b(Z)c(z)-\lambda$ : $b(Z)\partial c(Z)$ : (4.33)

and $S=\{b(z), C(z)\}$ . Then we have, by direct computation [13],

$X(z)b(w)$ $=$ $\lambda b(w)(_{Z}-w)-2+\partial b(w)(Z-w)^{-}1+:x(_{Z)(w)}b$ :
$X(_{Z})C(w)$ $=$ $(1-\lambda)c(w)(z-w)^{-2}+\partial C(w)(Z-w)-1+:x(_{Z)_{C(w)}}$ :

$X(z)x(w)$ $=$ $\frac{\kappa}{2}(z-w)^{-}4+2x(w)(z-w)^{-}2+\partial x(w)(z-w)-1+:x(_{Z)X}(w):(4.34)$
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where $\kappa=-12\lambda^{2}+12\lambda-2$ . It follows that we have a conformal QOA $f_{\lambda}$ : $O_{\kappa}(L)arrow O(b, c)$ .

Similarly $id:O_{\hslash}(L)arrow O_{\kappa}(L)$ is itself a conformal QOA. Thus by definition, it is the initial
object in the category of conformal QOAs with central charge $\kappa$ .

Exercise 4 In the previous exercise, we define $j(z)=:c(z)b(z)$ : which has $||j||=1$ . Compute
the generating function $\sum_{n}dimO(j)[n]q^{n}$ .

Exercise 5 Use Lemma 4.3 to classify the homomorphisms $f:O_{\kappa}(L)arrow O(j)$ .

Exercise 6 Show that $O(j)$ coincides with the subalgebra $O(b, c)^{0}$ of all elements of $u(z)\in$

$O(b, c)$ with $|u|=0$ . (Hint: Compute the generating function for the graded dimensions of
$O(b, c)0$ . Alternatively for the readers who know it, you can use the so-called boson-fermion
correspondence.)

Exercise 7 Use the last two exercises to classify the (for each $\lambda$) the homomorphisms $f$ :
$O_{\kappa}(L)arrow O(b, C)$ .

4.1 The BRST construction

It is evident that if $(O, f),$ $(O’, fJ)$ are conformal QOAs on the respective spaces $V,$ $V’$ with
central charges $\kappa,$

$\kappa’$ , then $(O\otimes O’, f\otimes f’)$ is a conformal QOA on $V\otimes V’$ with central charge
$\kappa+\kappa’$ . From now on we fix $\lambda=2$ which means that $(O(b, C),$ $f\lambda)$ now has central charge-26.
Let $(O, f)$ be any conformal QOA with central charge $\kappa$ and consider

$C^{*}(O)=O(b, c)\otimes O$ (4.35)

$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}*\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{s}$ the total first degree. For simplicity, we write $\hat{f}=f_{\lambda}\otimes f$ .

Proposition 4.4 For every $(O, f)$ , there is a unique homogeneous element $J_{f}(z)\in C^{*}(O)$ with
the following properties:
(i) (Cartan identity) $J_{f}(Z)b(w)=\hat{f}L(w)(z-w)^{-}1+:J_{f}(z)b(w):$ .
(ii) (Universality) If $(O, f)arrow(O’, f’)$ is a homomorphism of conformal QOAs, then the induced
homomorphism $C^{*}(O)arrow C^{*}(O’)$ sends $J_{f}(Z)$ to $J_{f’}(Z)$ .

Proof: Since the category of conformal QOAs with central charge $\kappa$ has $(O_{\kappa}(L), id)$ as the initial
object, if we can show that there is a unique $J_{id}$ satisfying property (i), then (ii) implies that
the same holds for every other object in that category.

Property (i) implies $|J_{id}|=1=||J_{id}||$ . Let’s list a basis of the degree $(1, 1)$ subspace of
$C(O_{\kappa}(L))$ given by Propositions 3.4, 3.5: : $c(z)L(z)$ :, : $b(z)C(z)\partial_{C}(Z)$ :, $\partial^{2}c(z)$ . Take a linear
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combination of these elements and compute its OPE with $b(z)$ . Requiring property (i), we
determine the coefficients of the linear combination and get

$J_{id}(z)=:c(Z)L(Z):+:b(Z)C(Z)\partial c(\mathcal{Z}):$ . (4.36)

Now given a conformal QOA $(O, f)$ , the induced map $f^{*}$ : $C^{*}(o_{\kappa}(L))arrow C^{*}(O)$ sends $J_{id}(z)$ to
$J_{j}(z)=:c(z)fL(z)$ $:+:b(z)C(z)\partial_{C}(Z)$ :. This completes our proof. $\square$ .

It follows from property (i) that

$\hat{f}L(z)=J_{f}(_{\mathcal{Z}\mathrm{I}^{0}(}\mathrm{o}bz)=[Q_{f}, b(Z)]$ (4.37)

where $Q_{f}={\rm Res}_{z}J_{f}(z)$ .

Lemma 4.5 [$\mathit{1}\mathit{8}\mathit{1}[7\mathit{1}[\mathit{9}\mathit{1}$ Given $f$ : $O_{\kappa}(L)arrow O$ , we have

$J_{f}(w) \mathrm{o}0Jf(w)=\frac{3}{2}\partial(\partial^{2}C(w)c(w))+\frac{\kappa-26}{12}\partial^{3}c(w)c(w)$ (4.38)

Thus $Q_{f}^{2}=0$ iff $\kappa=26$ .

Proof: $\mathrm{W}\mathrm{e}’ 11$ drop the subscripts for $J_{f},$ $Q_{f}$ and write $fL(z)$ as $L(z)$ . Since $J(w)0_{0^{J(w}})$ is the
coefficient of $(z-w)^{-1}$ in the OPE $J(\approx)J(w)$ , we can extract this term from the OPE. Now
$J(z)J(w)$ is the sum of 4 terms:

(i) $c(z)L(_{Z)}c(w)L(w)$

$(i_{i}.)$ $c(_{Z})L(_{Z}):b(w)C(w)\partial c(w)$ :
(iii) : $b(\approx)C(Z)\partial C(z):c(w)L(w)$

(iv) : $b(z)C(Z)\partial C(z)::b(w)C(w)\partial c(w):$ . (4.39)

Extracting the coefficient of $(z-w)^{-1}$ (which is done by applying Lemma 3.2 repeatedly) in
each of these 4 OPEs, we get respectively (surpressing $w$ ):

(i) $2 \partial ccL+\frac{\kappa}{12}\partial^{3}cC$

(ii) $c\partial cL$

(iii) $c\partial cL$

(iv) $\underline{\frac{3}{9}}\partial(\partial^{2}Cc)-\frac{13}{6}\partial^{3}Cc$ (4.40)

Thus (4.38) follows. Now $2Q^{2}=[Q, Q]={\rm Res}_{w}[Q, J(w)]={\rm Res}_{w}J(w)\mathrm{o}0J(w)$, which is zero iff
$\kappa=26$ . $\square$

Given $f$ : $O_{26}(L)arrow O,$ $[Q_{f}, -]=J_{f}(z)0_{0}$ is a derivation of the QOA $C^{*}(O)$ (Lemma 2.2).
For $\kappa=26$ , which we assume from now on, $[Q_{f}$ , - $]$ becomes a differential on $C^{*}(O)$ and we have
a cochain complex

$[Q_{f}, -]$ : $c*(O)arrow C^{*+1}(o)$ . (4.41)
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It is called the BRST complex associated to $f$ : $O_{26}(L)arrow O$ . Its cohomology will be denoted
as $H^{*}(O)$ . All the operations $0_{n}$ on $C^{*}(O)$ descend to the cohomology. However, all but one is
trivial.

Theorem 4.6 $[\mathit{3}\mathit{3}]l\mathit{3}7\mathit{1}[\mathit{2}\mathit{6}\mathit{1}$ The $\mathrm{T}/Vick$ product $0_{-1}$ induces a graded commutative associative
product on $H^{*}(O)$ with unit element represented by the identity operator. Moreover, every co-
homology class is represented by a quantum operator $u(z)$ with $||u||=0$ .

Exercise 8 Check that 1 represents the unit of the commutative algebra $H^{*}(O)$ . Show that for
all $n\neq-1_{f}0_{n}$ is homologically trivial, $ie$ . if $u(z),$ $v(z)$ represent two cohomology classes, then
$u(z)\mathrm{o}_{n}v(z)=[Q_{f}, t(z)]$ for some $t(z)$ . (Hint: Recall that $\partial A(w)=[Q_{f}, b(w)]\mathrm{o}_{0}A(w)$ and
$||A||A(w)=[Q_{f}, b(w)]\mathrm{o}_{1}A(Z).)$

4.2 Batalin-Vilkovisky Algebras

Let $A^{*}$ be a $\mathrm{Z}$ graded commutative associative algebra. For every $a\in A$ , let $l_{a}$ denote the linear
map on $A$ given by the left multiplication by $a$ . Recall that a (graded) derivation $d$ on $A$ is a
homogeneous linear operator such that $[d, l_{a}]-l_{da}=0$ for all $a$ . A BV operator $[34][31][15]\triangle$

on $A^{*}$ is a linear operator of degree-l such that:
(i) $\triangle^{2}=0$ ;
(ii) $[\triangle, l_{a}]-l_{\Delta a}$ is a derivation on $A$ for all $a,$

$\mathrm{i}\mathrm{e}$ . $\triangle$ is a second order derivation.

A BV algebra is a pair $(A, \triangle)$ where $A$ is a graded commutative algebra and $\triangle$ is a BV
operator on $A$ . The following is an elementary but fundamental lemma:

Lemma 4.7 $[\mathit{2}\mathit{1}]l\mathit{1}\mathit{5}\mathit{1}[\mathit{3}\mathit{0}]$ Given a $BV$ algebra $(A, \triangle)$ , define the $BV$ bracket $\{$ , $\}$ on A by:

$(-1)^{|u|\{\}}u,$$v=[\triangle, l_{u}]v-l_{\Delta}uv$ .

Then $\{$ , $\}$ is a graded Lie bracket on $A$ of degree $- \mathit{1}_{f}ie$ .

$\{u, v\}+(-1)^{\mathrm{t}|u|}-1)(|v|-1)\{v,u\}=0$

$(-1)^{(||1)(|t}u-|-1)\{u, \{v,t\}\}+(-1)^{(|t|)(||)}-1v-1\{t, \{u, v\}\}+(-1)^{\langle 1v}|-1)(|u|-1)\{v, \{t, u\}\}=0$

By property (ii) above, it follows immediately that for every $u\in A,$ $\{u$ , - $\}$ is a derivation on
$A$ . Thus a BV algebra is a special kind of an odd Poisson algebra which, in mathematics, is
also known as a Gerstenhaber algebra [14]. It’s important to note that $A^{1}$ is canonically a Lie
algebra and that each $A^{p}$ is an $A^{1}$ -module.

Exercise 9 Let $\mathrm{g}$ be an Lie algebra, $\wedge^{*}\mathrm{g}$ its exterior algebra and $\delta$ the Chevalley-Eilenberg
differential $on\wedge^{*}\mathrm{g}$ . Check that $(\wedge^{*}\mathrm{g}, \delta)$ is a $BV$ algebra. Show $that\wedge^{\mathrm{l}}\mathrm{g}$ is canonically isomorphic
to $\mathrm{g}$ as a Lie algebra.
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Exercise 10 More generally, let $B$ be any commutative algebra and $f$ : $\mathrm{g}arrow DerB$ be a Lie
algebra homomorphism (making $B$ a $\mathrm{g}$ -module). Consider the Lie algebra homology complex
$\wedge^{*}\mathrm{g}\otimes B$ . Show that the Chevalley-Eilenberg differential is a $BV$ operator on this complex.

Given $f$ : $O_{26}(L)arrow O$ , consider the linear operator $\triangle_{f}*$. $C^{*}(O)arrow C^{*-1}(O),$ $u(z)\vdash\Rightarrow$

$b(z)\circ 1u(z)$ .

Theorem 4.8 [26] The operator $\triangle_{J}$ descends to the cohomology $H^{*}(O)$ . Morever, it is a $BV$

operator on the commutative algebra $H^{*}(O)$ . Thus $H^{*}(O)$ is naturally a $BV$ algebra.

For complete proofs of the two theorems above, see section 4 of [24]. The theorems were originally
proved in [26] in the context of vertex operator algebras. (For related versions of Theorem 4.8,
see $[15][31][19][16].)$

Program 4.9 Study $H^{*}(O\otimes \mathit{0}^{J})$ as a bifunctor from pairs of conformal QOAs to $BV$ algebras.
In particular, fix $O$ and study $H(O\otimes-)$ as a functor from conformal QOAs to $BV$ algebras.
An automorphism group of $O$ acts by natural automorphisms on the functor $H(O\otimes -)$ .

4.3 Modules

Consider $f$ : $O_{26}(L)arrow O$ , and an $O$-module $M$ equipped with the structure homomorphism
$g:Oarrow QO(M)$ . The homomorphism $g$ induces $g^{*}$ : $C^{*}(O)arrow QO(\wedge\otimes M)$ . We write $g^{*}\overline{J}_{f(}Z$ )
as $J_{f,g}(z)$ , its residue as $Q_{f,g}$ , and the $C^{*}(O)-\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{l}\mathrm{e}\wedge\otimes M$ as $C^{*}(O, M)$ . By Lemma 4.5, $Q_{f,g}$

turns $C^{*}(O, M)$ into a complex whose cohomology is denoted as $H^{*}(O, M)$ . It turns out that
$H^{*}(O, M)$ is a module over the BV algebra $H^{*}(O)$ in a suitable sense. This will be the topic of
a future paper.

Let $N$ be a positive energy $V_{i}r$-module of central charge 26. By Lemma 4.3, we have a
canonical homomorphism $g:O_{26}(L)arrow QO(N)$ . This $\mathrm{m}\mathrm{a}\mathrm{k}\mathrm{e}\mathrm{s}\wedge\otimes N$ into a $C^{*}(o_{26}(L))- \mathrm{m}o$ dule
with BRST differential $Q_{id,g}$ . On the other hand, $\wedge\otimes N$ is by definition the space of semi-infinite
cochains $C^{\frac{\infty}{2}+*}(Vir, N)$ of $Vir$ with coefficients in $N$ (see $[7][9]$ ). The differential of this cochain
complex is denoted by $d_{N}$ , and its cohomology as $H^{\frac{\infty}{2}+*}(Vir, N)$ . It’s easily seen that we have
$d_{N}=Q_{id,g}[9]$ . It follows that we have

$H^{*}(O_{26}(L\mathrm{I}, N)\cong H^{\frac{\infty}{2}}+*(Vir, N)$ . (4.42)

Now given a conformal QOA $(O, f)$ and an $O$-module $M$ equipped with the homomorphism
$g$ : $Oarrow QO(M)$ , we can regard $M$ as an $O_{26}(L)$-module via $g\mathrm{o}f$ : $O_{26}(L)arrow QO(M)$ . It
follows that $(C^{*}(O, M),$ $Q_{J,g})=(C^{*}(O_{26}(L), M),$ $Q_{id,0}gf)=(C^{\frac{\infty}{2}+*}(Vir, M),$ $d_{M})$ as complexes.

Recall the linear isomorphism $O(b, c)\sim\prec\wedge,$ $u(z)rightarrow u(-1)1$ (see proof of Lemma 3.4). Given
a conformal QOA $(O, f)$ , we have $C^{*}(O)=O(b, c)\otimes Oarrow\sim\wedge\otimes O$ . Call this map $k$ . We claim
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that the differential induced $\mathrm{o}\mathrm{n}\wedge\otimes O$ via $k$ coincides with the semi-infinite differential $d_{O}$ . We
must check that $J_{f}(z)\mathrm{o}_{0}(u(z)\otimes v(z))\vdash^{k}+d_{O}(u(-1)1\otimes v(z))$ .

Let $a(z)=:b(z)C(z)\partial_{C}(Z)$ :. It acts only on $\wedge$ , and hence $a(z)\circ_{0}(u(z)\otimes v(z))=[a(0), u(z)]\otimes$

$v(z)rightarrow^{k}a(\mathrm{o})u(-1)1\otimes v(z)$ . Use Lemma 2.6 to compute the OPE $c(z)fL(Z)(u(w)\otimes v(w))$ and
get $c(z)fL( \mathcal{Z})\mathrm{o}_{0}(u(z)\otimes v(z))=\sum(c(Z)\mathrm{o}_{n}u(z))\otimes(fL(z)0_{-n}-1v(z))$ . It’s also easy to check,
using $\mathrm{e}\mathrm{q}\mathrm{n}$ . $(2.4)$ , that under $O(b, c)arrow\wedge$ , we have $c(z)\mathrm{o}_{n}u(Z)\vdash+c(n)u(-1)1$ . It follows that

$J_{f}(z)\circ_{0}(u(z)\otimes v(z))rightarrow^{k}$ $\sum c(n$ I $u(-1)1\otimes L(-n-1)\cdot v(z)+a(0)u(-1)1\otimes v(z)$

$=d_{O}(u(-1)1\otimes v(z))$ . (4.43)

The last equality follows from the definition of $d_{O}$ . Thus $\mathrm{w}\mathrm{e}’ \mathrm{v}\mathrm{e}$ shown that

Lemma 4.10 Given a conformal $QOA(O, f)$ and an $O$ -module $M$ equipped with homomor-
phism $g:Oarrow QO(M)$ , we have
(i) $(C^{*}(O), Qf)\cong(C^{\frac{\infty}{2}+*}(V_{i}r, O),$ do).
$(ii)(c*(O, M),$ $Q_{f},g)=(C^{\frac{\infty}{2}+*}(Vir, l\nu I),$ $d_{M})$ .

5 Moonshine Cohomology

$\mathrm{W}\mathrm{e}’ 11$ now construct a functor $\mathrm{M}$ using the Moonshine VOA of rank 24 and the BRST construc-
tion above. This will be a functor from the category of conformal QOAs of central charge 2 to
the category of BV algebras $(\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{g}\mathrm{r}\mathrm{a}\ln 4.9)$ . In particular, it assigns a Lie algebra $\mathrm{M}^{1}(O)$ to
every such conformal QOA $O$ . As a special case, if $0$ is the conformal QOA corresponding to
the unimodular rank 2 hyperbolic lattice $II_{1,1}$ (see below), then $\mathrm{M}^{1}(O)$ is Borcherds’ Monster
Lie algebra.

Let (V, 1, $\omega,$ $Y(-,$ $z)$ ) be the Moonshine VOA as studied by $\mathrm{F}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{k}\mathrm{e}1- \mathrm{L}\mathrm{e}\mathrm{p}_{\mathrm{o}\mathrm{w}\mathrm{S}}\mathrm{k}\mathrm{y}$-Meurman and
Borcherds $[10][4][11]$ (see Definitions 8.10.1-8.10.18 of [11]). It’s now known that
(i) The Fischer-Griess Monster finite group $F_{1}$ is the automorphism group of the VOA $V$ .
(ii) $\sum dimV[n]q^{n-1}=j(q)-744$ where $j(q)$ is the Dedekind-Klein j-function.
(iii) $Y(\omega, z)$ defines a unitarizable $Vir$-module structure on $V$ .

Proposition 5.1 (see $[\mathit{2}\mathit{5}f$) Let $(U, 1,\omega, Y(-, Z))$ be a $VOA$ of rank $\kappa$ . Let $O(U)$ be the linear
space of vertex operators, $\dot{i}e$ . $O(U)=\{Y(a, z)|a\in U\}$ . Then $O(U)\subset QO(U)$ is a conformal
$QOA$ with $O_{\kappa}(L)arrow O(U),$ $L(z)\vdash*Y(\omega, z).$ IVIoreover, $O(U)$ has an $O(U)$ -module structure
$O(U)arrow QO(O(U))$ defined by $u(Z)-\# 1^{\wedge}\mathrm{t}(Z),$ \^u $(n)\cdot v(Z)=defu(z)\mathrm{o}_{n}v(Z)$ .

Proof: By Lemma 2.6 above and Proposition 8.10.5 of [11], we have
$\sum\langle$ $Y(u,$ $w)$ o $Y($n $v,$ $w)\rangle$ $(z-w)-n-1=\langle Y(Y(u, z-w)v, w)\rangle$ . Thus $O(U)$ is closed under all the
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products $0_{n}$ . We also see that $O(U)$ has an $O(U)$-module structure as claimed. By Proposition
8.10.3 of [11], $O(U)$ is commutative. By definition, $Y( \omega, z)=\sum\omega(n)z-n-1$ satisfies, for all $u$ ,
$Y(\omega(\mathrm{o})u, z)=\partial Y(u, z),$ $\omega(1)u=||u||u,$ $\omega(\underline{9})\omega=\frac{\kappa}{2}\omega$ . By Lemma 4.3, this means that $O(U)$ is
a conformal QOA as claimed. $\square$

It follows immediately that the linear bijection $Uarrow O(U),$ $arightarrow Y(a, z)$ is an isomorphism
of $O(U)$-modules. It’s also clear that any automorphism of the VOA $U$ yields an automorphism
of the conformal QOA $O(U)$ . In the case of the Moonshine VOA $V$ , it follows that
(iv) $O(V)$ is a conformal QOA of central charge 24, in which $F_{1}$ acts by automorphisms.

Thus for any conformal QOA $0$ of central charge 2, we can consider the BRST QOA
$C^{*}(O(V)\otimes O)$ . We denote its cohomology as $\mathrm{M}^{*}(O)$ , which by Theorem 4.8 is a BV alge-
bra. We call $\mathrm{M}^{*}(O)$ the Moonshine cohomology of $O$ . If $M$ is an $O$-module, then $V\otimes M$ is
naturally an $O(V)\otimes O$-module. It follows from the preceeding section that $C^{*}(O(V)\otimes^{o}, V\otimes M)$

is a cochain complex. We denote its cohomology as $\mathrm{M}^{*}(O, M)$ , which we call the Moonshine
cohomology of $(O, M)$ . It follows from (iv) above that $F_{1}$ is a group of automorphisms of both
$\mathrm{M}^{*}(O)$ and $\mathrm{M}^{*}(O, M)$ (Program 4.9).

5.1 Vanishing Theorem

A $Vir$-module is tame if it’s graded dimensions are finite. A $Vir$-module is hermitean if it’s
a direct sum of a tame positive energy modules equipped with an invariant nondegenerate
hermitean form. A hermitean $Vir$-module is unitarizable if its hermitean form is positive definite.
Unless specified otherwise, $Vir$ -modules and conformal QOAs from now on are assumed to have
the first degree $|\cdot|\equiv 0$ .

Theorem 5.2 For any conformal $QOAO$ of central charge 2, and any $O$ -module $M,$ $\mathrm{M}^{p}(O)$ ,
$\mathrm{M}^{p}(O, M)$ vanish for all $p\neq 0,1,2$ , or 3.

Theorem 5.3 Let $r$ be a real number with $1<r<25$ . Let $P$ and $N$ be positive energy Vir-
modules of central charges $26-r,$ $r$ respectively. Assume $P$ is unitarizable. Then $H^{\frac{\infty}{2}+p}(Vir,$ $P\otimes$

$N)$ vanishes for all $p\neq 0,1,2$ , or 3.

Proof: By the unitarizability of $P$ , it’s a direct sum of irreducible modules $L(26-r, h),$ $h\geq 0$ ,
with suitable multiplicities. Thus it’s enough to do the case $P–L(26-r, h)$ .

Recall that $N$ is a $Vir$-module of central charge $r$ , in which $L_{0}$ acts diagonalizably. Since
every cohomology class in $H^{\frac{\infty}{2}+*}(V_{\dot{i}\Gamma}, L(26-r, /\mathrm{t})\otimes N)=0$ is represented by an element of
zero weight, we may assume, without loss of generality, that $L_{0}$ only has real eigenvalues in
$N$ . Thus any irreducible module $L(r, k)$ occuring in the composition series of $N$ must have
real $k$ . $i^{\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{m}}$ the structure of the Verma modules, $L(r, k)=M(r, k)$ unless $k=0$ , and
$L(26-r, h)=M(26-r, h)$ for $h>0$ .
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By our reduction theorem on semi-infinite cohomology [27], for $k\neq 0$ or $h>0$ , we have
$H^{\frac{\infty}{2}+p}(Vir, L(26-r, h)\otimes L(r, k))=0$ for $p\neq 1,2$ . It’s easy to verify that
$H^{p}(O_{26}(L), L(26-r, \mathrm{O})\otimes L(r, 0))$ is zero if $p\neq 0,3$ , and one dimensional if $p=0,3$ . Thus if $N$

is a module of finite length, then $H^{\frac{\infty}{2}+p}(Vir, L(24, \mathrm{o})\otimes N)=0$ for $p\neq 0,$
$..,$

$3$ . Every finitely
generated positive energy $Vir$-module of central charge $r$ has finite length. Now any $\mathrm{m}o$dule is a
direct limit of finitely generated modules, and direct limit is exact with respect to cohomology.
If follows that $H^{\frac{\infty}{2}+p}(Vir, L(24, \mathrm{o})\otimes N)=0$ for $p\neq 0,$

$..,$
$3$ . This completes the proof. $\square$

Proof of Theorem 5.2: Specialize Theorem 5.3 to the case $r=2,$ $P=O(V)$ (which is
unitarizable), $N=O$ , and applying Lemma 4.10, we see that $\mathrm{M}^{p}(O)$ vanishes for all $p\neq$

$0,1,2$ , or 3. For $N=M$ , we have a similar statement for $\mathrm{M}^{p}(o, M)$ . $\square$

6 Moonshine cohomology and the Monster Lie algebra

Let $M$ be a positive energy $Vir$-module. Let $Vir_{\pm}$ be respectively the subalgebras spanned by
the $L_{n},$ $\pm n>0$ . Define the physical space associated to $M$ :

$\mathrm{P}(M)=M[1]^{Vir}+/N(M)$ (6.44)

where $N(M)=(Vir_{-}\cdot M)\cap M[1]^{Vir}+$ . If $M$ is a hermitean module of central charge 26, then
there are two natural linear maps lノ i : $\mathrm{P}(M)arrow H^{\frac{\infty}{2}+i}(Vir, M),$ $i=1,2$ , given respectively by
$vrightarrow c(-1)v,$ $v\}\Rightarrow C(-2)c(-1)v$ (see [26] section 2.4 for details). To emphasize their dependence
on $M,$ $\mathrm{w}\mathrm{e}’ 11$ refer to these maps as $\nu_{1},$ $\nu_{2}$ for the module $M$ . Let $O$ be a conformal QOA. Suppose
the $V_{i}r$-module structure $f$ : $O_{\kappa}(L)arrow QO(O)$ on $O$ , given by Lemma 4.2, is hermitean. Then
it makes sense to consider the maps $\nu_{1},$ $\nu_{2}$ for $O$ .

If $u(z)\in O^{Vi_{\Gamma}}+\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}$ it’s easy to show using commutativity that
$u(z)00fL(z)=fL(z)\mathrm{o}_{0(Z)}u-\partial u(\mathcal{Z})=0$. This implies that

$u(z)\mathrm{o}0(fL(z)\mathrm{o}_{n}v(z))=fL(z)\mathrm{o}_{n}(u(z)\mathrm{o}0v(z))$ . (6.45)

For $v(z)\in O^{Vi_{\Gamma}}+$ , this shows that $u(z)\mathrm{o}_{0^{v}}(z)\in O^{Vi\mathrm{r}}+$ . For $v(z)\in N(O)$ , it shows that
$u(z)\mathrm{o}0v(Z)\in N(O)$ . Using commutativity, we show that $u(z)\mathrm{o}_{0}v(Z)+v(Z)00u(z)=\partial A(z)$ for
some $A(z)$ . Thus $0_{0}$ is a skew symmetric product on $O^{Vi\Gamma}+\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{l}\mathrm{o}N(O)$ , and it also factors
through $N(O)$ . The fact that $u(Z)0_{0}$ is a derivation of the product $v(z)\mathrm{o}_{0}t(Z)$ says exactly that
the skew symmetric operation $0_{0}$ on $\mathrm{p}(O)$ satisfies that Lie algebra Jacobi identity. Thus $\mathrm{p}(O)$

is a Lie algebra with bracket $0_{0}$ . $\mathrm{W}\mathrm{e}’ 11$ use the convention that $-u(z)\mathrm{o}0v(Z)$ is the Lie bracket
of $u(z)$ with $v(z)$ .

If $O$ has central charge 26, then the maps $\nu_{i}$ together with Lemma 4.10 yield two new
maps (which we also call $\nu_{i}$ ), $\nu_{i}$ : $\mathrm{P}(O)arrow H^{i}(O)$ . The bracket in $H^{1}(O)$ can be written as
$\{A(z), B(z)\}=(-1)^{|A|}(b(Z)0_{0^{A(z}}))\mathrm{o}_{0}B(Z)$ . (see [24] section 5 for details). Thus,

$\{\nu_{1}u(Z), \nu_{1}v(z)\}$ $=$ $\{c(\mathcal{Z})u(_{Z)}, C(_{Z)}v(z)\}$
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$=$ $-u(z)00(_{C}(\mathcal{Z})v(z))$

$=$ $\nu_{1}(-u(Z)\mathrm{o}_{0^{v}}(z))$ . (6.46)

Thus $\nu_{1}$ is a Lie algebra homomorphism. Since $H^{2}(o)$ is canonically a $H^{1}(O)$-module, it becomes

a $\mathrm{p}(O)$-module via $\nu_{1}$ . But we also have

$\{\nu_{1}u(Z), \nu 2v(Z)\}=\nu 2(-u(z)\mathrm{o}_{0}v(Z))$ . (6.47)

Thus $\nu_{2}$ is a $\mathrm{p}(O)$-module homomorphism from the adjoint module $\mathrm{p}(O)$ to $H^{2}(O)$ . To em-
phasize their dependence on the QOA $O,$ $\mathrm{w}\mathrm{e}’ 11$ refer to those homomorphisms as $\nu_{1\prime}\nu_{2}$ for the
$QOAO$ . To summarize,

Lemma 6.1 Given a hermitean $Vir$ -module $M$ of central charge 26, $we’ ve$ two linear maps $\nu_{i}$ :
$\mathrm{P}(M)arrow H^{\frac{\infty}{2}+i}(Vi.r, M)=H^{i}(O_{26}(L), M)\mathrm{z}\dot{i}=1,2\rangle g_{\dot{i}}ven$ by $u-,$ $c(-1)u,$ $u\vdash+c(-2)c(-1)v$

respectively. Given a hermitean conformal $QOAO$ of central charge $\mathit{2}\mathit{6}_{2}we’ ve$ a Lie algebra
homomorphism and a module homomorphism $\nu_{i}$ : $\mathrm{p}(O)arrow H^{i}(O),$ $i=1,2$ , given by $u(z)\vdasharrow$

$c(z)u(Z)\prime u(z)-t\partial c(z)c(z)u(z)$ respectively.

Let $\Lambda$ be any rank 2 hyperbolic even $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}_{1\mathrm{a}1}$
. lattice, and $(V_{\Lambda}, 1_{\Lambda},\omega_{\Lambda,\Lambda}Y(-, Z))$ be the canoni-

cal rank 2 VOA associated to $\Lambda[11]$ . The $Vir$-module $O(V_{\Lambda})\cong V\Lambda$ is a direct sum of the so-called
Fock modules, which are hermitean. By the lemma above, we have $\nu_{i}$ : $\mathrm{p}(O(V)\otimes O(V_{\Lambda}))arrow$

$H^{i}(O(V)\otimes o(V\Lambda))=\mathrm{M}i(O(V_{\Lambda})),$ $i=1,2$ .

Theorem 6.2 The homomorphisms $\nu_{1},$ $\nu_{2}$ for the $QOAO(V)\otimes O(V_{\Lambda})$ are isomorphisms; and
$we’ ve$

$\mathrm{M}^{p}(O(V_{\Lambda}))=\{$

$\mathrm{C}1$ if $p=0$
$\nu_{1}\mathrm{P}(O(V)\otimes^{o}(V\Lambda))$ if $p=1$ .
$\nu_{2}\mathrm{P}(O(V)\otimes o(V\Lambda))$ if $p=2$ .
$\mathrm{C}\partial^{2_{C}}(_{Z)(Z)C(z}\partial c)$ $\dot{i}fp=3$

$0$ otherwise.

(6.48)

Corollary 6.3 Let $\Lambda$ be the unimodular lattice $II_{1,1}$ . Then $\mathrm{M}^{1}(O(V_{\Lambda}))$ is canonically isomor-
phic to the Monster Lie algebra, and $\mathrm{M}^{2}(O(V_{\Lambda}))$ to the adjoint module.

Proof: By definition [5], the Monster Lie algebra has as its underlying space $\mathrm{P}(V\otimes V_{\Lambda})$ , and its
bracket $[u, v]=-{\rm Res}_{z}Y(u, z)v$ . Now $\mathrm{p}(O(V)\otimes O(l/_{\Lambda}^{\mathit{7}}))\cong \mathrm{p}(V\otimes V_{\Lambda})$ follows from Proposition
5.1. $\square$

The rest of this paper is devoted to proving and generalizing the theorem above.

108



6.1 Hyperbolic lattices

Let $\Lambda$ be a rank $r\leq 26$ even integral Lorentzian lattice, and $(V_{\Lambda}, 1_{\Lambda},\omega_{\Lambda,\Lambda}Y(-, Z))$ the canonical
rank $r$ VOA associated to $\Lambda[11]$ . This VOA has rank $r$ . Let $O$ be any conformal QOA of central
charge $26-r$ such that it’s unitarizable as a $V_{i}r$-module.

Theorem 6.4 Under the above assumptions the homomorphisms $\nu_{1},$ $\nu_{2}$ for the $QOAO\otimes O(V\Lambda)$

are $isomorphi_{S}mS$ , and

$H^{p}(o\otimes o(V_{\Lambda}))=$ (6.49)

Theorem 6.2 is clearly an immediate consequence when $r=2$ and $O=O(V)$ . By Lemma 4.10,
Theorem 6.4 is equivalent to

Theorem 6.5 Under the above assumptions the linear maps $\nu_{1},$ $\nu_{2}$ for the module $O\otimes V_{\Lambda}$ are
bijections, and

$H^{\frac{\infty}{2}+p}(Vir, \mathit{0}\otimes V_{\Lambda})=$

’

$Hom_{V}ir(L(26-r, \mathrm{o}),$ $\mathit{0})$ if $p=0$
$\nu_{1}\mathrm{P}(o\otimes V_{\Lambda}\mathrm{I}$ if $p=1$ .
$\nu_{2}\mathrm{P}(O\otimes V_{\Lambda})$ if $p=2$ . (6.50)
$c(-3)c(-2)c(-1)H_{\mathit{0}}m_{V}ir(L(26-r, \mathrm{o}),$ $\mathit{0})$ if $p=3$
$0$ otherwise.

$\mathrm{Y}$

We now proceed to prove this. Let $\mathrm{R}^{k,l}$ be the standard pseudo-euclidean space of signature
$(k, l)$ . The inner product is written as $\alpha\cdot\alpha$ . Given $\alpha\in \mathrm{R}^{k,l}$ , let $F_{k,l}(\alpha)$ be the standard
representation of the Heisenberg algebra with generators $j^{a}(n)$ and relations $[j^{a}(n),jb(m)]=$

$n\delta_{n+0}m,\eta^{ab}id$ ( $a,$ $b=1,$ $..,$ $k+l,$ $n,$ $m\in \mathrm{Z},$ $\eta=$ diag( $+,$ $..,$
$+$ , -, ..-) with $k+\mathrm{a}\mathrm{n}\mathrm{d}l$ -). Here

the $j^{a}(0)$ acts by the scalar $\alpha^{a}$ . The canonical generator of the module is denoted by $|\alpha\rangle$ . We
now regard each $F_{k,l}(\alpha)$ as a $Vir$-module in which $Vir$ acts by $L(z)= \frac{1}{2}$ : $j^{a}(z)jb(Z):\eta^{ab}$ . This
module has the standard hermitean folm [9].

Theorem 6.6 $f\mathit{9}$] For any $\alpha\in \mathrm{R}^{25,1}$ , the linear maps $\nu_{1},$ $\nu_{2}$ for the module $F_{25,1}(\alpha)$ are
bijections, and

$H^{\frac{\infty}{2}+p}(Vir, F25,1(\alpha))=$

’

$\delta_{\alpha,0}\mathrm{C}1\otimes|0\rangle$ if $p=0$
$\nu_{1}\mathrm{P}(F_{25,1}(\alpha))$ if $p=1$ .
$\nu_{2}\mathrm{P}(F_{25,1}(\alpha))$ if $p–2$ . (6.51)
$\delta_{\alpha,0}\mathrm{C}c(-3)_{C}(-2)C(-1)1\otimes|0\rangle$ if $p=3$
$0$ otherwise.
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For a proof, see the original reference.

Denote the highest vector of the $Vir$-modules $L(\prime_{1^{\wedge}},, h)$ or $l\mathrm{t}’I(\kappa, h)$ by $|\kappa,$ $h\rangle$ .

Lemma 6.7 For any $h\geq 0$ and $\beta\in \mathrm{R}^{\gamma\cdot-1,1}$ , the linear maps $\nu_{1},$ $\nu_{2}$ for the module
$L(26-r, h)\otimes F_{r-1,1}(\beta)$ are bijections, and

$H^{\frac{\infty}{2}+p}(Vir, L(26-r, h)\otimes F_{\Gamma}-1,1(\beta))=\{$

$\delta_{h,0}\delta_{\beta},0\mathrm{C}1\otimes|26-r,$ $0\rangle\otimes|\beta\rangle$ if $p=0$
$\nu_{1}\mathrm{P}(L(26-r, h)\otimes F_{\Gamma-1,1}(\beta))$ if $p=1$ .
$\nu_{2}\mathrm{P}(L(26-r, h)\otimes F_{r-1,1}(\beta))$ if $p=2$ .
$\delta_{h,0}\delta_{\beta},0\mathrm{C}c(-3)c(-2)c(-1)1\otimes|26-r,$ $0\rangle\otimes|\beta\rangle$ if $p=3$
$0$ otherwise

(6.52)

Proof: The case $r=26$ is just Theorem 6.6. So let’s assume $r<26$ . The case $h=0,$ $\beta=0$ can
be easily checked by hand. So let’s assulne that either $h$ or $\beta$ is nonzero. We claim that any
irreducible module $L(26-r, h)$ is direct sulnmand in some $F_{26-\Gamma,0}(\alpha)$ . Choose $\gamma$ so that $\frac{\gamma\cdot\gamma}{2}=h$ ,
and $\mathrm{w}\mathrm{e}’ \mathrm{v}\mathrm{e}$ a homomorphism $M(26-r, /l)arrow F_{26-r,\mathrm{o}(\gamma)}$ with $|26-r,$ $h\rangle$ $\vdasharrow|\gamma\rangle$ . Since $F_{26-\mathrm{r},0}(\gamma)$

is unitarizable, the image must also be unitarizable. Thus it must also be an irreducible direct
summand.

Now observe that both $H^{\frac{\infty}{2}+p}(Vir, -)$ and $\mathrm{P}(-)$ are exact with respect to direct sum. Since
$F_{26-\mathrm{r},0}(\gamma)\otimes F_{\mathrm{r}-1},1(\beta)$ is isomorphic to $F_{25,1}(\alpha)$ for some $\alpha\neq 0$ , we see that Theorem 6.6 implies
(6.52). $\square$

$\mathrm{P}\mathrm{r}o$of of Theorem 6.5: By assumption, $O$ is unitarizable and hence is a direct sum of
$L(26-r, h),$ $h\geq 0$ . On the other hand $\dagger^{\gamma_{\Lambda}}=\oplus_{\beta\in\Lambda 1,1}F_{\mathrm{r}-}(\beta)$ as $Vir$-modules, if we choose
an identification $\mathrm{R}^{\Gamma-1,1}=\Lambda\otimes \mathrm{z}$ R. Now the theorem follows from Lemma 6.7 and the fact
that both $H^{\frac{\infty}{2}+p}(Vir, -)$ and $\mathrm{P}(-)$ are exact with respect to direct sum. $\square$

6.2 Some applications

The BV algebra $H^{*}(O\otimes^{o}(V_{\Lambda}))$ in Theorem 6.4 is graded by $\Lambda$ because as a $Vir$-module, $O(V_{\Lambda})\cong$

$V_{\Lambda}\cong\oplus_{\alpha\in\Lambda}F_{1},1(\alpha)$ is graded by $\Lambda$ . In particular, $\mathrm{w}\mathrm{e}’ \mathrm{v}\mathrm{e}$ a decomposition of the Moonshine
cohomology $\mathrm{M}^{*}(O(V_{\Lambda}))=\oplus_{\alpha\in\Lambda}\mathrm{M}^{*}(O(V_{\Lambda}))_{\alpha}$ . Since each $F_{1,1}(\alpha)$ is tame as $Vir$-module, and
since $O(V)$ is also tame, the graded dimensions $di\uparrow n\mathrm{M}^{*}(O(V_{\Lambda}))\alpha$ (see Theorem 6.2) are in
fact finite. Thus the $\mathrm{M}^{*}(O(V_{\Lambda}))\alpha$ are finite dimensional representations of the group $F_{1}$ . $\mathrm{W}\mathrm{e}’ 11$

compute the dimensions using our results above together with well-known techniques in semi-
infinite cohomology theory (see $[9][27]$ ).

Since each $O(V)\otimes F_{1,1}(\alpha)$ is hermitean, there is an induced nondegenerate hermitean form
on the cohomology $\mathrm{M}^{1}(O(V_{\Lambda}))\alpha$ (see below). We will compute the signature of this hermitean
form and show that it’s positive definite for nonzero $\alpha$ (“no-ghost theorem”). We will restrict

110



ourselves to the case when $\Lambda$ is a rank 2 hyperbolic lattice. How to generalize our computations
to other Lorentzian lattices will becolne clear, and is left as an exercise to the readers.

Since $\mathrm{w}\mathrm{e}’ \mathrm{r}\mathrm{e}$ only interested in $\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{S}\mathrm{i}_{0}\mathrm{n}\mathrm{s}$ and signatures of cohomology, it’s enough to work
with the additive version of our results Theorem 6.5 and Lemma 6.7. We begin by introducing
one other tool: the notion of relative semi-infinite cohomology. We refer to readers to original
references for details.

Let $C^{\frac{\infty}{\Delta^{2}}+*}(Vi_{\Gamma}, M)$ be the subspace of the $Vir$-module $C^{\frac{\infty}{2}+*}(Vir, M)$ annihilated by $b(1)$ and
$L_{0}$ . Because $[d_{M}, b(1)]=L_{0}$ , this subspace is a complex with differential $d_{M}$ . Call this subspace

the relative complex, and its cohomology $H^{\frac{\infty}{\triangle 2}+*}(Vir, M)$ the relative cohomology. Note that if
$M$ is tame and its weight $||\cdot||$ is bounded from below, then $C^{\frac{\infty}{\Delta 2}+*}(Vir, M)$ is finite dimensional.
Relative cohomology is an important tool for studying (absolute) semi-infinite cohomology. For
example, technically to prove Theorem 6.6, $\mathrm{w}\mathrm{e}’ \mathrm{d}$ have to first prove a similar vanishing theorem
for relative cohomology. In this papel, we manage to prove all our results so far without using
it. However for computing dimensions and signatures, relative cohomology is indispensable.

In this section, $\mathrm{w}\mathrm{e}’ 11$ be interested in $H^{\frac{\infty}{\Delta 2}+*}(Vir, V\otimes F_{1,1}(\alpha)),$ $\alpha\in\Lambda$ . For simplicity, $\mathrm{w}\mathrm{e}’ 11$

abbreviate the absolute complex $C^{\frac{\infty}{2}+*}(Vir, V\otimes F_{1,1}(\alpha))$ simply as $C^{\frac{\infty}{2}+*}(\alpha)$ . Similar notations
apply to the absolute cohomology, the relative complex, and the relative cohomology.

Lemma 6.8

$H^{\frac{\infty}{\Delta 2}+p}(_{\mathit{0}})\cong$ (6.53)

Proof: The case $\alpha=0$ is a trivial exercise. There’s a long exact sequence (see [27] for details):

.. . $arrow H^{\frac{\infty}{\Delta^{2}}+p}(\alpha)arrow H^{\frac{\infty}{2}+p}(\alpha)arrow H^{\frac{\infty}{\Delta^{2}}+p-1}(\alpha)arrow H^{\frac{\infty}{\Delta^{2}}+p+1}(\alpha)arrow\cdots$ . (6.54)

Assume $\alpha$ nonzero. By decomposing $V$ in terms of its irreducible submodules $L(24, h)$ and
applying Lemma 6.7 (for $r=2$), we see that the long exact sequence above degenerates and
yields the desired result. $\square$

Corollary 6.9 $\mathrm{M}^{1}(O(V_{\Lambda}))\alpha\cong H^{\frac{\infty}{\Delta^{2}}}(a)+1$ .

Thus to compute the graded dimensions of the Moonshine cohomology in degree 1 (which is a
$\Lambda$-graded Lie algebra) for the conformal QOA $O(1/_{\Lambda})’$ , it’s enough to compute the corresponding
degree 1 relative cohomology. For a tame hermitian $||\cdot||$-graded vector space $M$ , let $ch_{q}M=$

$\Sigma dimM[n]q^{n},$ $sign_{q}M=\Sigma SignM[n]q^{n}$ .

By the Euler-Poincar\’e Principle, we have

$\sum_{i}(-1)^{i}d_{im}H^{\frac{\infty}{\Delta 2}}(\alpha)+i=\sum_{i}(-1)^{i}dimC^{\frac{\infty}{\Delta 2}}(\alpha+i)$ . (6.55)
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Note that $I\iota er\nearrow b(1)=Imb(1)$ . Thus the RHS of (6.55) is just the constant term of the following
q-series:

$ch_{q}V \cdot Ch_{q}F1,1(\alpha)\cdot\sum_{i}(-1)ihb(C1)q\wedge^{i+1}$
$=$ $q(j(q)-744) \cdot q\frac{\alpha\circ}{2}\varphi(q)^{-2}\cdot(-1)q-1\varphi(q)^{2}$

$=$ $-q^{\frac{\circ\alpha}{2}}(j(q)-744)$ (6.56)

where $\varphi(q)=\Pi_{n>0}(1-q^{n})$ . For $\alpha=0$ , the constant term on this RHS is zero–consistent with

the fact that $dimH^{\frac{\infty}{\Delta^{2}}+i}(0),$ $i=0,1,2$ , are respectively 1,2,1. For $\alpha$ nonzero, combining Lemma
6.8, Corollary 6.9, and $\mathrm{e}\mathrm{q}\mathrm{n}$ . (6.55), we get

$dim \mathrm{M}^{1}(o(1/’)\Lambda)_{\alpha}={\rm Res}_{q}q\frac{\alpha 0}{2}-1(j(q)-744)$ . (6.57)

The space $b(1)\wedge^{*}\mathrm{h}\mathrm{a}\mathrm{S}$ a unique hermitean form $\langle\cdot, \cdot\rangle$ such that $\langle 1, c(-3)c(-1)1\rangle=1,$ $b(n)^{\uparrow}=$

$b(-n+2)$ , and $c(n)\mathrm{t}=c(-n-4)[9]$ . This makes each complex $c^{\frac{\infty}{\Delta^{2}}+*}(\alpha)$ a hermitian space
such that the semi-infinite differential $d$ (dropping the subscript) is self-adjoint. By the Euler-
Poincar\’e Principle for signature, we have

$\sum_{1}$.
sign $H^{\frac{\infty}{\triangle 2}+i}( \alpha)=\sum_{i}$ sign $c^{\frac{\infty}{\Delta 2}+i}(\alpha)$ . (6.58)

As before, the RHS here is the constant term of the following q-series:

$S \dot{i}gn_{q}V\cdot signF1,1(q)\alpha\cdot\sum_{*}$.
$sign_{q}b(1)\wedge^{i}+1$ $=$ $q(j(q)-744) \cdot q\frac{\mathfrak{a}\alpha}{2}\lambda(q)^{-}1.-q1\lambda(q)$

$=$ $q^{\frac{\alpha\alpha}{2}}(j(q)-744)$ (6.59)

where $\lambda(q)=\Pi_{n>0}(1-q^{n})(1+q^{n})$ . Thus we conclude that for $\alpha$ nonzero:

sign $H^{\frac{\infty}{\Delta 2}+1}(\alpha)=dimH^{\frac{\infty}{\Delta^{2}}+1}(\alpha)$ (6.60)

which is the statement of the no-ghost theorem. The interested readers should compare our
results with the results of Borcherds [5] on graded dimensions and positive definiteness for the
Monster Lie algebra.

6.3 Remarks

In the light of our results, a number of interesting questions come to mind. We discuss two of
them.

1. Recall that the Virasoro element $\omega$ of the Moonshine VOA $V$ is an $F_{1}$ -invariant element
of $V$ . This means that $Y(\omega, z)$ is an $F_{1}$ -invariant quantum operator, and hence generates an
$F_{1}$-invariant subalgebra in $O(V)$ . It’s easy to show that this subalgebra is isomorphic to $O_{24}(L)$ .
By unitarizability, $O_{24}(L)$ is a direct sumlnand in $O(V)$ as $Vir$-module. Thus for any conformal
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QOA $O$ of central charge 2, the Moonshine cohomology $\mathrm{M}^{*}(O)$ , as a BV algebra, has a canonical
subalgebra $H^{*}(O_{24}(L)\otimes \mathit{0})$ . In particular, the vanishing theorem 5.2 holds for this algebra. Also,
$H^{2}(o_{24}(L)\otimes O)$ is the adjoint module over the Lie algebra $H^{1}(o_{24}(L)\otimes O)$ .

Problem: For any rank two hyperbolic lattice $\Lambda$ , study the $\Lambda$-graded Lie subalgebra
$H^{1}(o_{24()}L\otimes O(V_{\Lambda}))$ of $\mathrm{M}^{1}(O(V_{\Lambda}))$ .

2. Recall that the Monster finite group $F_{1}$ acts naturally on $\mathrm{M}^{*}(O)$ ; thus, $F_{1}$ acts as a group
of invertible natural transformations of $\mathrm{M}^{*}$ as a functor. Since the full automorphism group of
the Moonshine VOA $V$ , hence of the conformal QOA $O(V)$ , is isomorphic to $F_{1}$ , the following
seems quite plausible:

Conjecture: The group of natural automorphisms of the Moonshine cohomology functor
is isomorphic to $F_{1}$ .
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