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\S 1. Introduction

In this article, we study the problem of the asymptotic completeness for N-body
Stark Hamiltonians with long-range potentials. The results which are obtained in this
article are due to the joint works [AT1,2] with Professor Hideo Tamura.

We consider a system of $N$ particles moving in a given constant electric field $\mathcal{E}\in$

$\mathrm{R}^{d},$ $\mathcal{E}\neq 0$ . Let $m_{j},$ $e_{j}$ and $r_{j}\in \mathrm{R}^{d},$ $1\leq j\leq N$ , denote the mass, charge and
position vector of the j-th particle, respectively. The particles under consideration
are supposed to interact with one another through the pair potentials $V_{jk}(r_{j}-r_{k})$ ,
$1\leq j<k\leq N$ . Then the total Hamiltonian for the system is given by

$\tilde{H}=\sum_{1\leq j\leq N}\{-\frac{1}{2m_{j}}\triangle_{r_{j}}-e_{j}\mathcal{E}\cdot r_{j}\}+V$,

where $\xi\cdot\eta=\sum_{j=1}^{d}\xi_{j\eta}j$ for $\xi,$ $\eta\in \mathrm{R}^{d}$ and

$V= \sum_{1\leq j<k\leq N}V_{j}k(\Gamma j-rk)$
.

As usual, we consider the Hamiltonian $\tilde{H}$ in the $\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}- \mathrm{o}\mathrm{f}_{- \mathrm{m}\mathrm{a}\mathrm{S}}\mathrm{s}$ frame. We equip $\mathrm{R}^{d\cross N}$

with the metric $\langle r,\tilde{r}\rangle=\sum_{j1}^{N}=$ mrj. $\tilde{r}_{j}$ for $r=(r_{1}, \ldots, r_{N})$ and $\tilde{r}=(\tilde{r}_{1}, \ldots,\tilde{r}_{N})\in$

$\mathrm{R}^{d\cross N}$ and denote $|r|=\langle r,$ $r)^{1/2}$ . Let $X$ and $X_{\mathrm{c}\mathrm{m}}$ be the configuration spaces for the
inner motion of the particles and the center of mass motion, respectively:

$X= \{r\in \mathrm{R}^{d\cross N}|\sum_{1\leq i\leq N}m_{j}r_{j}=0\}$ ,

$X_{\mathrm{c}\mathrm{m}}=\{r\in \mathrm{R}^{d\cross N}|r_{j}=r_{k}$ for $1\leq j<k\leq N\}$ .

$X$ and $X_{cm}$ are mutually orthogonal and $\mathrm{R}^{d\cross N}=X\oplus X_{cm}$ . We denote by $\pi$ :
$\mathrm{R}^{d\cross N}arrow X$ and $\pi_{\mathrm{c}\mathrm{m}}$ : $\mathrm{R}^{d\cross N}arrow X_{\mathrm{c}\mathrm{m}}$ the orthogonal projections onto $X$ and $X_{\mathrm{c}\mathrm{m}}$ ,
respectively, and write $x=\pi r$ and $x_{\mathrm{c}\mathrm{m}}=\pi_{\mathrm{c}\mathrm{m}}r$ for $r\in \mathrm{R}^{d\cross N}$ , and

$E= \pi(\frac{e_{1}}{m_{1}}\mathcal{E},$
$\ldots,$

$\frac{e_{N}}{m_{N}}\mathcal{E})$ , $E_{\mathrm{c}\mathrm{m}}= \pi_{\mathrm{c}\mathrm{m}}(\frac{e_{1}}{m_{1}}\mathcal{E},$

$\ldots,$
$\frac{e_{N}}{m_{N}}\mathcal{E})$ .
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Then $\tilde{H}$ is decomposed into
$\tilde{H}=H\otimes Id+Id\otimes T_{\mathrm{c}\mathrm{m}}$ on $L^{2}(X)\otimes L^{2}(X_{Cm})$ ,

where $Id$ are the identity operators,

$H=- \frac{1}{2}\triangle-\langle E, x\rangle+V$ on $L^{2}(X)$ ,

$T_{\mathrm{c}\mathrm{m}}=- \frac{1}{2}\triangle_{\mathrm{c}\mathrm{m}}-\langle E_{\mathrm{c}\mathrm{m}}, X_{\mathrm{c}\mathrm{m}}\rangle$ on $L^{2}(X_{\mathrm{C}}\mathrm{m})$ ,

and $\triangle$ (resp. $\triangle_{\mathrm{c}\mathrm{m}}$ ) is the Laplace-Beltrami operator on $X$ (resp. $X_{\mathrm{c}\mathrm{m}}$ ). When
$|E|\neq 0$ , which is equivalent to saying that $e_{j}/m_{j}\neq e_{k}/m_{k}$ for at least one pair $(j, k)$ ,
$H$ is called an $N$ -body Stark Hamiltonian in the center-of-mass frame.

A non-empty subset of the set $\{1, \ldots, N\}$ is called a cluster. Let $C_{j},$ $1\leq j\leq m$ ,
be clusters. If $\bigcup_{1\leq j\leq m}c_{j}=\{1, \ldots , N\}$ and $C_{j}\cap C_{k}=\emptyset$ for 1 $\leq j<k\leq m$ ,
$a=\{C_{1}, \ldots, C_{m}\}$ is called a cluster decomposition. We denote by $\#(a)$ the number
of clusters in $a.\tilde{A}$ is the set of all cluster decompositions and $A=\{a\in\tilde{A}|\#(a)\geq 2\}$ .
We let $a,$

$b\in\tilde{A}$ . If $b$ is obtained as a refinement of $a$ , that is, if each cluster in $b$ is a
subset of a cluster in $a$ , we say $b\subset$ $a$ , and its negation is denoted by $b\not\subset a$ . Any $a$ is
regarded as a refinement of itself. If, in particular, $b$ is a strict refinement of $a$ , that
is, if $b\subset a$ and $b\neq a$ , we denote by $b\subseteq a$ . We identify the pair $\alpha=(j, k)$ with the
$(N-1)$-cluster decomposition $\{(j, k),$(1) $, \ldots, (j)\wedge, \ldots, (k)\wedge, \ldots, (N)\}$ .

Next we define for $a\in\tilde{A}$ the two subspaces $X^{a}$ and $X_{a}$ of $X$ by

$X^{a}= \{r\in X|\sum_{cj\in}m_{jj}r=0$ for each cluster $C$ in $a\}$ ,

$X_{a}=\{r\in X|r_{j}=r_{k}$ for each pair $\alpha=(j, k)\subset a\}$ .

For $\alpha=(j, k),$ $X^{\alpha}$ is the configuration space for the relative position of j-th and
k-th particles. Hence we can write $V_{\alpha}(x^{\alpha})=V_{jk}(r_{j}-r_{k})$ . These spaces are mutually
orthogonal and span the total space $X=X^{a}\oplus X_{a}$ , so that $L^{2}(X)$ is decomposed as
the tensor product $L^{2}(X)=L^{2}(X^{a})\otimes L^{2}(X_{a})$ . We also denote by $\pi^{a}$ : $Xarrow X^{a}$ and
$\pi_{a}$ : $Xarrow X_{a}$ the orthogonal projections onto $X^{a}$ and $X_{a}$ , respectively, and write
$x^{a}=\pi^{a}x$ and $x_{a}=\pi_{a}x$ for a generic point $x\in X$ . The intercluster potential $I_{a}$ is
defined by

$I_{a}(x)= \sum_{a\alpha\not\subset}V_{\alpha}(X^{\alpha})$
,

and the cluster Hamiltonian

$H_{a}=H-I_{a}=- \frac{1}{2}\triangle-\langle E, x\rangle+V^{a}$ , $V^{a}(x^{a})= \sum_{a\alpha\subset}V_{\alpha}(X^{\alpha})$
,

governs the motion of the system broken into non-interacting clusters of particles.
Let $E^{a}=\pi^{a}E$ and $E_{a}=\pi_{a}E$ . Then the cluster Hamiltonian $H_{a}$ acting on $L^{2}(X)$ is
decomposed into

$H_{a}=H^{a}\otimes Id+Id\otimes T_{a}$ on $L^{2}(X^{a})\otimes L^{2}(X_{a})$ ,
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where $H^{a}$ is the subsystem Hamiltonian defined by

$H^{a}=- \frac{1}{2}\triangle^{a}-\langle E^{a}, x^{a}\rangle+V^{a}$ on $L^{2}(X^{a})$ ,

$T_{a}$ is the free Hamiltonian defined by

$T_{a}=- \frac{1}{2}\triangle_{a}-\langle E_{a},$
$x_{a}$ ) on $L^{2}(X_{a})$ ,

and $\triangle^{a}$ (resp. $\triangle_{a}$ ) is the Laplace-Beltrami operator on $X^{a}$ (resp. $X_{a}$ ).

We use the following convention for smooth cut-off functions $F$ with $0\leq F\leq 1$ ,
which is often used throughout the discussion below. For sufficiently small $\delta>0$ , we
define

$F(s\leq u)=1$ for $s\leq u-\delta$ , $=0$ for $s\geq u$ ,
$F(s\geq u)=1$ for $s\geq u+\delta$ , $=0$ for $s\leq u$ ,

$F(s=u)=1$ for $|s-u|\leq\delta$ , $=0$ for $|s-u|\geq 2\delta$

and $F(u_{1}\leq s\leq u_{2})=F(s\geq u_{1})F(s\leq u_{2})$ . To clarify the dependence on $\delta>0$ in
the definition of $F$ , we sometimes write $F_{\delta}$ for $F$ .

The problem of the asymptotic completeness is to show whether or not the ranges
of the wave operators

$W_{a}^{\pm}=s- \lim_{\infty tarrow\pm}\exp(itH)Ua(t)(P^{a}\otimes Id)$ , $a\in\tilde{A}$ , (1.1)

span the continuous subspace of the full Hamiltonian $H$ :

$L_{c}^{2}(H)= \sum_{a}\oplus RanW^{\pm}a$ . (1.2)

Here $U_{a}(t)$ is a propagator associated with the cluster Hamiltonian $H_{a}$ , which is
$\exp(-itH_{a})$ in the short-range potential case, and $P^{a}$ : $L^{2}(X^{a})arrow L^{2}(X^{a})$ is the
eigenprojection associated with the subsystem Hamiltonian $H^{a}$ . It can be easily seen
that (1.2) holds if and only if the time evolution of any scattering state $\psi\in L_{c}^{2}(H)$ is
asymptotically represented as

$\exp(-itH)\psi=\sum_{a\in\overline{A}}Ua(t)(P^{a}\otimes Id)\psi_{a}^{\pm}+o(1)$
as $tarrow\pm\infty$ (1.3)

with some $\psi_{a}^{\pm}\in L^{2}(X)$ . We note that each summand $U_{a}(t)(P^{a}\otimes Id)\psi_{a}^{\pm}$ describes
the motion of the particles in which those in the clusters in $a$ form a bound state and
the centers of masses of the clusters move freely. Thus, the asymptotic completeness
is to show that the time evolution of any scattering state $\exp(-itH)\psi$ can be asymp-
totically represented by a superposition of such states. This article is to prove this
property for long-range $N$-body Stark Hamiltonians.
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There are mainly two methods to prove the asymptotic completeness for N-body
quantum systems, that is, the stationary method and the time-dependent method.
First we consider the case when $E=0$ . When pair potentials decay like $O(|x^{\alpha}|^{-1}-\epsilon)$

at infinity with $\epsilon>0$ , the asymptotic completeness of three-body systems was first
proved by Faddeev [F] by the stationary method, and his method was extended by
Ginibre-Moulin [GM], Hagedorn [Ha] and so on. But it had been difficult to use this
method for arbitrary $N$-body systems. In the meantime, the asymptotic completeness
of three-body systems was first proved by Enss [E1] by the time-dependent method.
Inspired by the work, the asymptotic completeness of arbitrary $N$-body systems was
first proved by Sigal-Soffer [SS1] for a large class of short-range pair potentials, and al-
ternative proofs have been given by Graf [Grl], Kitada [K1,2], Tamura [T1], Yafaev [Y]
and Zielinski [Z]. When pair potentials are long-range, V.Enss [E1,2] first proved
the asymptotic completeness of three-body systems with pair potentials decaying
like $O(|x^{\alpha}|^{-\nu})$ at infinity for some $\nu>\sqrt{3}-1$ . This result has been extended by
Derezitski [D2] and Zielinski [Z] to arbitrary $N$-body systems. The case of poten-
tials decaying more slowly has been dealt with by G\’erard [G2] and Wang [Wa1,2] for
three-body systems.

In the case when $E\neq 0$ and pair potentials are short-range, the asymptotic com-
pleteness of three-body systems has been proved by Korotyaev [K] by the stationary
method, and by Tamura [T2] by the time-dependent method. For arbitrary N-body
systems, it has been proved by Tamura [T4] and $\mathrm{M}\emptyset 1\mathrm{l}\mathrm{e}\mathrm{r}[\mathrm{M}\emptyset]$ by the tilne-dependent
method. Thus we consider the long-range case.

The asymptotic behavior of $\exp(-itH)\psi$ depends on the values of $e_{j}/m_{j}$ . If
$e_{j}/m_{j}\neq e_{k}/m_{k}$ for any $j\neq k$ , then each pair cluster has a non-zero reduced charge.
Hence the particles are expected to be scattered along the direction of $\mathcal{E}$ without
forming bound states and also the solution $\psi(t)$ has a single channel as the asymp-
totic state. On the other hand, if, for example, $e_{j}/m_{j}=e_{k}/m_{k}$ for some pair $(j, k)$ ,
then the pair cluster $(j, k)$ has a zero reduced charge and these particles may escape
to infinity, forming a bound state at some energy. Therefore the solution $\psi(t)$ has
scattering channels associated with such bound states as the asymptotic state. Thus
the asymptotic behavior of the solutions is different according to the values of $e_{j}/m_{j}$ .
We shall discuss the matter more precisely.

We state the precise assumption on the pair potentials. Let $c$ be a maximal element
of the set $\{a\in A|E^{a}=0\}$ with respect to the relation $\subset$ . As is easily seen, such a
cluster decomposition uniquely exists and it follows that $E^{\alpha}=0$ if $\alpha\subset c$ , and $E^{\alpha}\neq 0$

if $\alpha\not\subset c$ . Thus the potential $V_{\alpha}$ with $\alpha\not\subset c$ (resp. $\alpha\subset c$) describes the pair interaction
between two particles with $e_{j}/m_{j}\neq e_{k}/m_{k}$ (resp. $e_{j}/m_{j}=e_{k}/m_{k}$ ). If, in particular,
$e_{j}/m_{j}\neq e_{k}/m_{k}$ for any $j\neq k$ , then $c$ becomes the $N$-cluster decomposition. We
make different assumptions on $V_{\alpha}$ according as $\alpha\not\subset c$ or $\alpha\subset c$ . We assume that:

$(V)cV_{\alpha}(x^{\alpha})\in C^{\infty}(X^{\alpha})$ is a real-valued function and has the decay property

$\partial_{x^{\alpha}}^{\beta|}V_{\alpha}(X^{\alpha})=o(|_{X^{\alpha}}|-(\rho+\beta|))$, $|x^{\alpha}|arrow\infty$ ,

with $0<\rho\leq 1/2$ for $\alpha\not\subset c$ and with $\sqrt{3}-1<\rho\leq 1$ for $\alpha\subset c$ ,

or
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(1.5)

$(V)_{D}V_{\alpha}(x^{\alpha})\in C^{\infty}(X^{\alpha})$ is a real-valued function and has the decay property

$\partial_{x^{\alpha V_{\alpha}(x)}}^{\beta\alpha}=O(|X^{\alpha}|^{-}(\rho+|\beta|)/2)$ $\alpha\not\subset c$ , $\partial_{x^{\alpha V_{\alpha}(x)}}^{\beta\alpha}=o(|x^{\alpha}|^{-}(\rho+|\beta|))$ $\alpha\subset c$

for some $\sqrt{3}-1<\rho\leq 1$ .

Under these assumptions, all the Hamiltonians defined above are essentially self-
adjoint on $C_{0}^{\infty}$ . We denote their closures by the same notations. Throughout this ar-
ticle, the notations $c$ and $\rho$ are used with the meanings described above. If $V_{\alpha}$ satisfies
these decay assumptions, then $V_{\alpha}$ is called a long-range potential. To formulate the
result precisely, we define the modified wave operators. We assume that $a\subset c$ . Then
the subsystem operator $H^{a}$ does not have a constant electric field, that is, $E^{a}=0$ .
Hence it may have bound states in $L^{2}(X^{a})$ . We denote by $P^{a}$ : $L^{2}(X^{a})arrow L^{2}(X^{a})$ the
eigenprojection associated with $H^{a}$ . We also denote the direction of $E$ by $\omega=E/|E|$

and write $z=\langle x,\omega$ ). We should note that $z=\langle x_{a}, \omega\rangle$ because $\omega^{a}=0$ . We set $x_{||}=z\omega$

and $X\perp=x-x_{||}$ , and write $x_{a,\perp}=\pi_{a}x_{\perp}$ . Then we can write $x_{a}=(x_{a,\perp}, x_{||})$ . We
also write $p_{a}=(p_{a,\perp},p_{1}|)$ for the coordinates dual to $x_{a}=(x_{a,\perp}, x_{||})$ and denote by
$D_{a}=-i\nabla_{a}=(D_{a,\perp}, D_{||})$ the corresponding velocity operator. If we write $\partial_{||}=\omega\partial_{z}$ ,
we see that $D_{||}=-i\partial_{||}$ and $D_{a,\perp}=D_{a}-D_{||}$ . Let $I_{a}^{c}$ be the intercluster interaction
obtained from $H^{c}$ :

$I_{a}^{C}(x)=I_{a}^{c}(_{X}c)= \sum_{\alpha\subset C,\alpha\not\subset a}V\alpha(X^{\alpha})$
.

First, we assume that $(V)_{G}$ is fulfilled. We set the time-dependent Hamiltonian

$H_{aG}(t)=H_{a}+I_{a}^{c}(D_{a}t)+I_{c}( \frac{E}{2}t^{2})$ on $L^{2}(X)$ . (1.4)

The three operators on the right side of (1.4) commute with one another. This can
be easily seen, if we take account of the fact that $I_{a}^{c}(p_{a}t)=I_{a}^{c}(\pi^{c}pat)$ . Thus the
propagator $U_{aG}(t)$ generated by $H_{aG}(t)$ , that is, $\{U_{aG}(t)\}t\in \mathrm{R}$ is a family of unitary
operators such that for $\psi\in D(H_{aG}(\mathrm{o})),$ $\psi t=U_{aG}(t)\psi$ is a strong solution of $id\psi_{t}/dt=$

$H_{ac}(t)\psi t,$ $\psi 0=\psi$ , is represented by

$U_{aG}(t)= \exp(-itHa)\exp(-i\int_{0}^{t}\{I_{a}^{c}(D_{a}s)+I_{c}(\frac{E}{2}s^{2})\}ds)$ .

With these notations, the Graf-type modified wave operators are defined by

$W_{aG}^{\pm}=s- \lim_{\infty tarrow\pm}\exp(itH)UaG(t)(P^{a}\otimes Id)$ , $a\subset c$ , (1.6)

which was introduced by Graf [Gr2] for two-body systems (see also [Zo] and $[\mathrm{J}\mathrm{O}2]$ ).
We can easily prove that if these wave operators exist, their ranges are all closed and
mutually orthogonal

Ran $W_{aG}^{\pm}\perp RanW_{bG}^{\pm}$ , $a\neq b$ ,

and they have the intertwining property $\exp(itH)W_{aG}\pm=W_{aG}^{\pm}\exp(itH_{a})$ for $t\in$ R.
If $V_{\alpha}(x^{\alpha})$ decays like $V_{\alpha}(x^{\alpha})=O(|x^{\alpha}|^{-\nu}),$ $\nu>1/2$ , for $\alpha\not\subset c$ and like $V_{\alpha}(x^{\alpha})=$
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$O(|x^{\alpha}|^{-\nu}),$ $\nu>1$ , for $\alpha\subset c,$ $V_{\alpha}$ is called a short-range potential. For the class of
short-range pair potentials, the ordinary wave operators

$W_{a}^{\pm}=s- \lim_{\infty tarrow\pm}\exp(itH)\exp(-itH_{a})(P^{a}\bigotimes_{-}Id)$

exist without the modifiers $I_{a}^{c}(D_{a}t)$ and $I_{c}(Et^{2}/2)$ . The asymptotic completeness of
the ordinary wave operators has been also proved by Korotyaev [Ko] and Tamura [T2]
for three-body short-range systems and by Tamura [T4] and $\mathrm{M}\emptyset 1\mathrm{l}\mathrm{e}\mathrm{r}[\mathrm{M}\emptyset]$ for N-body
short-range systems. However it is known that the ordinary wave operators do not
always exist for the long-range potentials which satisfy $(V)_{G}$ (see Jensen-Ozawa $[\mathrm{J}\mathrm{O}2]$

and Ozawa [O] $)$ . Therefore, if $(V)_{G}$ is fulfilled, we need introduce the Graf-type mod-
ifiers (1.5).

One of the main results is the following theorem.

Theorem 1.1. (The Asymptotic Completeness) Assume that $(V)_{G}$ is $f\mathrm{u}$lfilled.
Let $c$ be as above. Then the Graf-typ$e$ wave operators $W_{aG}^{\pm},$ $a\subset c$ , exist, $h\mathrm{a}\mathrm{v}e$ the
intertwining property and are asymptotically complete

$L^{2}(X)= \sum_{\subset ac}\oplus RanW^{\pm}ac$
.

(1.8)

Next, we assume that $(V)_{D}$ is fulfilled. We set the time-dependent Hamiltonian

$H_{aD}(t)=H_{a}+I_{a}^{c}(D_{a}, \perp^{t)}+I_{c}(D_{a,\perp}t+\frac{E}{2}t^{2})$ on $L^{2}(X)$ , (1.7)

and denote by $U_{aD}(t)$ the propagator which is generated by $H_{aD}(t)$ . Since $D_{a,\perp}$

commutes with $H_{a}$ , the three operators on the right-hand side of (1.7) commute with
one another. We note that $I_{a}^{c}(Da,\perp^{t)}=I_{a}^{C}(D_{a}t)$ for $I_{a}^{c}(p_{a,\perp}t)=I_{a}^{C}(\pi^{c}p_{a},\perp t)=I_{a}^{c}(p_{a}t)$ .
Then $U_{aD}(t)$ is explicitly represented by

$U_{aD}(t)= \exp(-itHa)\exp(-i\int_{0}^{t}\{I_{a}^{c}(Da,\perp^{s})+I_{c}(D_{a,\perp S}+\frac{E}{2}s^{2})\}ds)$ .

With these notations, the Dollard-type modified wave operators are defined by

$W_{aD}^{\pm}=s- \lim_{\infty tarrow\pm}\exp(itH)UaD(t)(P^{a}\otimes Id)$, $a\subset c$ . (1.9)

It can be easily proved that if these wave operators exist, their ranges are all closed
and they have the intertwining property $\exp(itH)W_{aD}\pm=W_{aD}^{\pm}\exp(itH_{a})$ for $t\in$ R.
We should note that it is known that both the ordinary wave operators and the
Graf-type modified wave operators do not always exist for the long-range potentials
which satisfy $(V)_{D}$ (see $[\mathrm{J}\mathrm{O}2]$ for the case of two-body systems). Therefore, if $(V)_{D}$

is fulfilled, we need introduce the Dollard-type modifiers (1.8).

Another main result is the following theorem.
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Theorem 1.2. (The Asymptotic Completeness) $Ass\mathrm{u}\mathrm{m}e$ that $(V)_{D}$ is fulfilled.
Let $c$ be as above. Then the Dollard-type wave operators $W_{aD}^{\pm},$ $a\subset c$ , exist, $ha\iota\prime e$ the
intertwining property and are asymptotically complete:

$L^{2}(X)= \sum_{a\subset c}$ ORan $W_{aD}^{\pm}$ .

For simplification, we consider the $tarrow\infty$ case only. The $tarrow-\infty$ case can be
treated similarly.

\S 2. Preliminaries

In this section, we recall the known results. First we introduce some notations. We
define $S_{0}(x)$ by

$S_{0}(x)=\{q\in C^{\infty}(X)||\partial_{x}^{\beta}q(X)|\leq C_{\beta}\langle_{X}\rangle-|\beta|\}$ ,

where we write $\langle x\rangle=(1+|x|^{2})^{1}/2$ . Let $\omega=E/|E|$ be the direction of $E$ . We denote
the coordinate $z\in \mathrm{R}$ by $z=\langle x, \omega\rangle$ , so that $H$ is written as $H=-\triangle/2-|E|z+V$ .
We should note that

$\langle z\rangle^{-}1/2\nabla(H+i)^{-1},$ $\langle z\rangle^{-1}\nabla\nabla(H+i)^{-1}$ : $L^{2}(X)arrow L^{2}(X)$

are bounded.

Now we state the recent result of Herbst-Skibsted [HS] and $\mathrm{H}\mathrm{e}\mathrm{r}\mathrm{b}\mathrm{s}\mathrm{t}- \mathrm{M}\emptyset 1\mathrm{l}\mathrm{e}\mathrm{r}$-Skibsted
[HMSI], which is concerned with the spectral properties for $\mathit{1}\mathrm{V}$-body Stark Hamilto-
nians.

Theorem 2.1. $Ass\mathrm{u}\mathrm{m}e$ that $(V)_{G}$ or $(V)_{D}$ is satisfied. Let $D=-i\nabla$ and $A=$
$\langle$

$\omega,$ $D)=-i\partial_{z}$ . Then
(1) $Hh$as no bound states.
(2) Let $R>0$ be fixed and let $\Pi$ : $Xarrow X$ be an orthogonal projection such that
$\square E\neq 0$ . Then

$||F_{\epsilon}(H=\lambda)F(|\Pi_{X|}\leq R)||arrow 0$ , $\epsilonarrow 0$ ,

$\mathrm{u}$niformly in $\lambda\in \mathrm{R}$ . In particular,

$||F_{\epsilon}(H=\lambda)F(|X^{\alpha}|\leq R)||arrow 0$ , $\epsilonarrow 0$ ,

for $\alpha\not\subset c$ .
(3) Let $0<\sigma<|E|$ . Then one can take $\epsilon>0$ so small (uniformly in $\lambda\in \mathrm{R}$) that

$F_{\epsilon}(H=\lambda)i[H, A]F_{\epsilon}(H=\lambda)\geq\sigma F_{\epsilon}(H=\lambda)^{2}$ .

The above theorem plays a basic role in studying the propagation properties of
$\exp(-itH)$ . In particular, the uniformity in high energies $\lambda\gg 1$ in the statement (2)
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is important. This makes it possible to take $A$ as a conjugate operator in the form
inequality in (3).

Next we recall the almost analytic extention method due to Helffer and Sj\"ostrand
$[\mathrm{H}\mathrm{e}\mathrm{S}\mathrm{j}]$ , which is useful in analyzing operators given by functions of self-adjoint oper-
ators. For two operators $B_{1}$ and $B_{2}$ , we define

$ad_{B_{1}}^{0}(B_{2})=B_{2}$ , $ad_{B_{1}}^{n}(B_{2})=[ad_{B^{-1}}^{n_{1}}(B_{2}), B_{1}]$ , $n\geq 1$ .

For $m\in \mathrm{R}$ , let $\mathcal{F}^{m}$ be the set of functions $f\in C^{\infty}(\mathrm{R})$ such that

$|f^{(k)}(_{S})|\leq C_{k}\langle s\rangle^{m-k}$ , $k\geq 0$ .

If $f\in \mathcal{F}^{m}$ with $m\in \mathrm{R}$ , then there exists $F\in C^{\infty}(\mathrm{C})$ such that $F(s)=f(s)$ for
$s\in \mathrm{R},$ $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}F(\zeta)\subset\{\zeta\in \mathrm{C}||Im\zeta|\leq d’(1+|Re\zeta|)\}$ for some $d’>0$ and

$|\overline{\partial}_{\zeta}F(\zeta)|\leq C_{M}\langle\zeta\rangle^{m-1}-M|Im\zeta|^{M}$ , $M\geq 0$ .

Such a function $F(\zeta)$ is called an almost analytic extension of $f$ . Let $B$ be a self-
adjoint operator. If $f\in \mathcal{F}^{-m}$ with $m>0$ , then $f(B)$ is represented by

$f(B)= \frac{i}{2\pi}\int_{\mathrm{C}}\overline{\partial}_{\zeta}F(\zeta)(B-\zeta)^{-}1d\zeta$ A $d\overline{\zeta}$ . (2.1)

For $f\in \mathcal{F}^{m}$ with $m\in \mathrm{R}$ , we have the following formulas of the asymptotic expansion
of the commutator:

$[B_{1}, f(B)]= \sum_{n=1}^{M-1}\frac{(-1)^{n-1}}{n!}ad^{n}(BB1)f(n)(B)+R_{M}$ , (2.2)

$R_{M}= \frac{1}{2\pi i}\int_{\mathrm{C}}\overline{\partial}_{\zeta}F(\zeta)(B-\zeta)-1ad^{M}B(B_{1})(B-\zeta)^{-}Md\zeta$ A $d\overline{\zeta}$ . (2.3)

$R_{M}$ is bounded if there exists $k$ such that $m+k<M$ and $ad_{B(B_{1}}^{M}$ ) $(B+i)^{-k}$ is
bounded. For the proof, see [G2].

We often use the following lemma in later sections. The lemma is more or less
known (see, for example, Lemma 3.2 of [SS2]). On account of limited space, we omit
its proof. For the proof, see [AT1,2].

Lemma 2.2. Let $f_{j}\in C_{0}^{\infty}(\mathrm{R}),$ $1\leq j\leq 2$ , and let $g\in \mathcal{F}^{0}$ . Assume that $B$ is a
self-adjoint operator such that $ad_{B}^{j}(H)(H+i)^{-1},1\leq j\leq 2$ , are boun$ded$ from $L^{2}(X)$

into itself Then
(1) $[f_{1}(H), g(B/t)]=[f_{1}(H), B/t]g’(B/t)+O(t^{-2})$ .
(2) $[[f_{1}(H), B], f_{2}(B/t)]=O(t^{-1})$ .
Moreover, let $A$ be as in Theorem 2.1 and $Q=\langle x\rangle$ or $z(=\langle x, \omega\rangle)$ . Then
(3) $[(H+i)^{-1}, fi(A/t)]=O(t^{-1})$ , $[(H+i)^{-1}, f_{1}(Q/t^{2})]=O(t^{-1})$ .
(4) $[f_{2}(H), f1(A/t)]=O(t^{-1})$ , $[f_{2}(H), f1(Q/t^{2})]=O(t^{-1})$ .
(5) $[Q, f_{1}(A/t)]=O(t^{-1})$ , $[f_{2}(Q/t^{2}), f_{1}(A/t)]=O(t^{-3})$ .
(6) $(H+i)[f_{1}(H), f2(Q/t^{2})]=O(t^{-1})$ .
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\S 3. Propagation estimates

In this section, we prove some propagation estimates which mean that the solution
$\exp(-itH)\psi$ concentrates asymptotically on a classical Stark trajectory as $tarrow\infty$ .
Throughout this section, we assume that $(V)_{G}$ or $(V)_{D}$ is fulfilled.

We begin by fixing some new notations. We define a conical neighborhood of
$\omega=E/|E|$ by $\Gamma(\omega, \epsilon_{1}, r)=\{x\in X|\langle\omega, x/|x|)\geq 1-\epsilon_{1}, |x|>r\}$ for $\epsilon_{1}>0$ and $r>0$ .
We denote by $\mathrm{D}_{H(t)}$ the Heisenberg derivative with respect to the time-dependent
Hamiltonian $H(t):\mathrm{D}_{H(t)}\Phi(t)=\partial_{t}\Phi(t)+i[H(t), \Phi(t)]$ . Throughout the discussion
below, we always denote by $f\in C_{0}^{\infty}(\mathrm{R})$ a non-negative smooth function with a
compact support. We use the notations $||$ $||$ and $( , )$ for the $L^{2}\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\backslash$ and scalar
product in $L^{2}(X)$ , respectively. We also denote by $B(t),$ $t\geq 1$ , operators having the
following properties: (1) $f(H)B(t)f(H):L^{2}(x)arrow L^{2}(X)$ is bounded; (2)

$\int_{1}^{\infty}|(B(t)f(H)\exp(-itH)\psi, f(H)\exp(-itH)\psi)|dt\leq C’||\psi||2$ , $\psi\in L^{2}(X)$ .

First we need the following proposition, which implies that the acceleration of the
particles is finite if the total energy is finite.

Proposition 3.1. There exists $M\gg 1$ dependent on $f$ such that:
(1) For $\psi\in L^{2}(X)$ ,

$\int_{1}^{\infty}\frac{dt}{t}||F(\frac{\langle x\rangle}{t^{2}}=M)f(H)\exp(-itH)\psi||2\leq C||\psi||^{2}$ .

(2) For $\psi\in S(X),$ $S(X)$ being the Schwartz space over $X$ ,

$\int_{1}^{\infty}\frac{dt}{t}||F(\frac{\langle x\rangle}{t^{2}}\geq M)f(H)\exp(-itH)\psi||^{2}<\infty$.

Proof. This proposition can be also proved in the same way as in the proof of Theorem
4.3 of [SS2] (see also [A]). We take the propagation observables

$\Phi_{1}(t)=-F(\frac{\langle x\rangle}{t^{2}}\geq M)$ and $\Phi_{2}(t)=-(\frac{\langle x\rangle}{t^{2}}-M)F(\frac{\langle x\rangle}{t^{2}}\geq M)$

to prove (1) and (2), respectively. The detailed proof is omitted. $\square$

Next we prove the following proposition, which means that the particles are accel-
erated along the direction $\omega$ with an at least positive acceleration which is less than
$|E|$ .

Proposition 3.2. Let $0<\nu<|E|$ and $L>0$ . Then for any $\psi\in L^{2}(X)$ ,

$\int_{1}^{\infty}\frac{dt}{t}||F(-L\leq\frac{z}{t^{2}}\leq\frac{\nu}{2})f(H)\exp(-itH)\psi||2\leq C||\psi||^{2}$ .

To prove this proposition, we need the two lemmas below. On account of limited
space, we omit the proofs of these lemmas. For the proofs, see [AT1,2].
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Lemma 3.3. Let $\nu$ be as above and $K>0$ . Then

$\int_{1}^{\infty}\frac{dt}{t}||F(-I\acute{\mathrm{t}}\leq\frac{A}{t}\leq\nu)f(H)\exp(-itH)\psi||^{2}\leq C||\psi||^{2}$ .

Lemma 3.4. Let $\nu$ and $L$ be as above. Then there exists $K\gg 1$ such that

$F( \frac{A}{t}\leq-K)F(-L\leq\frac{z}{t^{2}}\leq\frac{\nu}{2})(H+i)^{-1}=O(t^{-1})$ .

Proof of Proposition 3.2. The proof is done in exactly the same way as in the proof
of Theorem 4.2 of [SS2], by virtue of Lemmas 3.3 and 3.4. We omit the detail (see
$[\mathrm{A}\mathrm{T}1,2])$ . $\square$

The next proposition is the most important propagation estimate, which means
that the particles asymptotically concentrate in any conical neighborhood of $\omega$ .

Proposition 3.5. Let $M$ be as in Proposition 3.1 and $\nu$ be as in Proposition 3.2.
Fix $\epsilon_{1}>0$ and $r>0$ . Assume that $q\in S_{0}(X)$ vanishes in $\Gamma(\omega, \epsilon_{1}, r)$ . Then

$\int_{1}^{\infty}\frac{dt}{t}||F(\frac{z}{t^{2}}\geq\frac{\nu}{2})F(\frac{\langle x\rangle}{t^{2}}\leq M)qf(H)\exp(-itH)\psi||^{2}\leq C||\psi||^{2}$ .

To prove the above proposition, we have only to prove the following lemma. The
proof is essentially the same as that of Proposition 7.3 of [T2] (see also $[\mathrm{M}\emptyset]$ and [A]).
We omit the detail (see $[\mathrm{A}\mathrm{T}1,2]$ ).

Lemma 3.6. Let $\tilde{q}(x)=(\langle x\rangle-z)\langle_{X}\rangle-1$ . Let $M$ be as in Proposition 3.1 and $\nu$ be
as in Proposition 3.2. Then

$\int_{1}^{\infty}\frac{dt}{t}||F(\frac{z}{t^{2}}\geq\frac{\nu}{2})F(\frac{\langle x\rangle}{t^{2}}\leq M)\tilde{q}f(H)\exp(-itH)\psi||^{2}\leq C||\psi||^{2}$.

By the above propositions, we conclude the following propagation properties.

Proposition 3.7. Let $M,$ $\nu$ and $q\in S_{0}(X)$ be as above. Let $\Phi(t)$ denote one of the
following three operators

$F( \frac{\langle x\rangle}{t^{2}}\geq M)$ , $F( \frac{z}{t^{2}}\leq\frac{\nu}{2})$ , $F( \frac{z}{t^{2}}\geq\frac{\nu}{2})F(\frac{\langle x\rangle}{t^{2}}\leq M)q$ .

Then
$s- \lim_{tarrow\infty}\Phi(t)f(H)\exp(-itH)=0$ .

Proof. We calculate the Heisenberg derivative of $\Phi(t)$ . Then the support of $\nabla\Phi(t)$

or $\partial_{t}\Phi(t)$ lies in the forbidden region of the propagator $\exp(-itH)$ in the sense of

101



Propositions 3.1, 3.2 and 3.5. Hence these propositions imply the existence of the
strong limit

$s- \lim_{tarrow\infty}\exp(itH)\Phi(t)f(H)\exp(-itH)$ . (3.1)

In fact, taking $f_{1}\in C_{0}^{\infty}(\mathrm{R})$ such that $f_{1}f=f$ and noting that $\langle x\rangle^{1/2}[q, f_{1}(H)]$ is
bounded, we have $[\Phi(t), f_{1}(H)]=O(t^{-1})$ by Lemma 2.2. Hence, to prove (3.1), it
suffices to show the existence of the strong limit $s-\mathrm{l}\mathrm{i}\mathrm{m}tarrow\infty\tilde{W}(t)$ , where

$\tilde{W}(t)=\exp(itH)f1(H)\Phi(t)f(H)\exp(-itH)$ .

By Propositions 3.1, 3.2 and 3.5, we have

$|(\varphi,\tilde{W}(_{S_{1})\psi)(}-\varphi,\tilde{W}(s_{2})\psi)|=o(1)||\varphi||,$
$s_{1},$ $s_{2}arrow\infty$ ,

for $\varphi,$ $\psi\in L^{2}(X)$ . This implies that $\{\tilde{W}(t)\psi\}_{t\geq}1$ is a Cauchy sequence and hence
the existence of (3.1) is proved. By Propositions 3.1, 3.2 and 3.5 again, we see that
for $\psi\in S(X)$ , there exists a subsequence $\{t_{n}\}_{n\in \mathrm{N}}$ with $t_{n}arrow\infty$ such that

$\lim_{narrow\infty}\Phi(t_{n})f(H)\exp(-itnH)\psi=0$ , (3.6)

where the choice of subsequence $\{t_{n}\}_{n\in \mathrm{N}}$ depends on $\psi$ . By (3.1) and (3.2), we have
for $\psi\in S(X)$ ,

$\lim_{tarrow\infty}\Phi(t)f(H)\exp(-itH)\psi=0$ .

Thus the proposition follows by density argument. $\square$

\S 4. The asymptotic clustering

In this section, we introduce an auxiliary time-dependent Hamiltonian which ap-
proximates the full Hamiltonian $H$ asymptotically and study the relation between
$\exp(-itH)$ and the propagator generated by such a time-dependent Hamiltonian.
Then we may prove the asymptotic clustering which is the key step to prove the as-
ymptotic completeness of the modified wave operators. Throughout this section, we
assume that $(V)_{G}$ or $(V)_{D}$ is fulfilled.

Let $q_{c}\in S_{0}(x)$ be such that $q_{c}=1$ in $\Gamma(\omega, \epsilon_{1}, |E|/3)$ , and $q_{C}=0$ outside
$\Gamma(\omega, 2\epsilon_{1}, |E|/4)$ . Let $\tilde{q}_{c}\in S_{0}(X)$ be such that $\tilde{q}_{c}=1$ in $\Gamma(\omega, 2\epsilon_{1}, |E|/4)$ , and $\tilde{q}_{c}=0$

outside $\Gamma(\omega, 3\epsilon_{1}, |E|/5)$ . By definition, it follows that $\tilde{q}_{c}q_{c}=q_{c}$ . We define

$\varphi_{c}(t, x)=F(\frac{\langle x)}{t^{2}}\leq M)F(\frac{z}{t^{2}}\geq\frac{|E|}{3})q_{c}(X)$ , (4.1)

$W_{c}(t, x)=W_{c}(t, x^{C}, x_{c})=F( \frac{z}{t^{2}}\geq\frac{|E|}{4})\tilde{q}_{c}(x)I_{C}(X)$ . (4.2)

We should note that $\varphi_{c}(t, x)I_{c}(x)=\varphi_{c}(t, X)W_{C}(t, x)$ . By assumption, $W_{c}$ obeys the
estimate

$|\partial_{t}^{m}\partial_{x}^{\beta}W_{C}(t, x)|\leq C_{m\beta}\langle t\rangle^{-m}(\langle t\rangle+\langle x\rangle^{1/}2)-\rho-|\beta|$ . (4.3)
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We consider the time-dependent Hamiltonian

$H_{c}(t)=H_{c}+W_{\mathrm{c}}(t)$ , $W_{c}(t)=W_{c}(t, x)$ ,

and denote by $U_{c}(t)$ the propagator generated by $H_{c}(t)$ , that is, $\{U_{c}(t)\}_{t\geq}1$ is a family
of unitary operators such that for $\psi\in D(H_{c}(1)),$ $\psi_{t}=U_{c}(t)\psi$ is a strong solution of
$id\psi_{t}/dt=H_{c}(t)\psi_{t},$ $\psi_{1}=\psi$ .

By the almost analytic extension method, we see that $\mathrm{f}\mathrm{o}\mathrm{r}.f\in C_{0}\infty(\mathrm{R})$ ,

$\mathrm{D}_{Hc(t)}f(H_{C}(t))=\frac{d}{dt}\{f(H_{c}(t))\}=O(t-1-\rho)$ , (4.4)

due to (4.3). In virtue of this estimate (4.4), we obtain the analogue of Propositions
3.1, 3.2, 3.5 and 3.7. Since the proofs are similar to those of theirs, we omit the proofs.
Proposition 4.1. There exists $M\gg 1$ dependent on $f$ such that:
(1) For $\psi\in L^{2}(X)$ ,

$\int_{1}^{\infty}\frac{dt}{t}||F(\frac{\langle x\rangle}{t^{2}}=M)f(H_{\mathrm{C}}(t))Uc(t)\psi||^{2}\leq C||\psi||^{2}$ .

(2) For $\psi\in S(X),$ $S(X)$ being the Schwartz space over $X$ ,

$\int_{1}^{\infty}\frac{dt}{t}||F(\frac{\langle x)}{t^{2}}\geq M)f(H_{C}(t))U_{c}(t)\psi||^{2}<\infty$.

Proposition 4.2. Let $0<\nu<|E|$ and $L>0$ . Then for any $\psi\in L^{2}(X)$ ,

$\int_{1}^{\infty}\frac{dt}{t}||F(-L\leq\frac{z}{t^{2}}\leq\frac{\nu}{2})f(H_{c}(t))U_{C}(t)\psi||^{2}\leq C||\psi||^{2}$ .

Proposition 4.3. Let $M$ be as Proposition 4.1 and $\nu$ be as Proposition 4.2. Fix
$\epsilon_{1}>0$ and $r>0$ . Assume that $q\in S_{0}(X)$ vanishes in $\Gamma(\omega, \epsilon_{1}, r)$ . Then

$\int_{1}^{\infty}\frac{dt}{t}||F(\frac{z}{t^{2}}\geq\frac{\nu}{2})F(\frac{\langle x\rangle}{t^{2}}\leq M)qf(H(Ct))U_{C}(t)\psi||^{2}\leq C||\psi||^{2}$.

Proposition 4.4. Let $M,$ $\nu$ and $q\in S_{0}(x)$ be as above. Let $\Phi(t)$ denote one of the
following $t$hree operators

$F( \frac{\langle x\rangle}{t^{2}}\geq M)$ , $F( \frac{z}{t^{2}}\leq\frac{\nu}{2})$ ,

Then

$F( \frac{z}{t^{2}}\geq\frac{\nu}{2})F(\frac{\langle x\rangle}{t^{2}}\leq M)q$ .

$S- \lim_{tarrow\infty}\Phi(t)f(H_{C}(t))Uc(t)=0$ .

Next we show the existence of the following two strong limits, the first limit being
often called the Deift-Simon wave operator (see [Grl], [SS1], [Z] and [A]).
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Theorem 4.5. Let the notations be as above. Then there exist the following $st$rong
limits:

$s- \lim_{tarrow\infty}UC(t)*(\exp-itH)$ , $s- \lim_{\infty tarrow}\exp(itH)U_{C}(t)$ .

Proof. By Proposition 3.7, we have only to prove the existence of the strong limit

$s- \lim_{tarrow\infty}UC(t)*\varphi_{C}(t, X)f(H)\exp(-itH)$. (4.5)

Taking $f_{1}\in C_{0}^{\infty}(\mathrm{R})$ such that $fif=f$ and noting $\varphi_{c}(t, X)(W_{c}(t, x)-I_{C}(x))=0$ , we
see that

$f_{1}(H_{C}(t))\varphi_{\mathrm{C}}(t, X)-\varphi_{c}(t, X)fi(H)=^{o(}t^{-1})$ ,

in virtue of the almost analytic extension method. From this fact, the existence of
(4.5) can be proved by the same argument in the proof of the existence of (3.5) (see
the proof of Proposition 3.7).

Next we note that for $\epsilon>0$ small enough and $\psi\in L^{2}(X)$ , there exists $f\in C_{0}^{\infty}(\mathrm{R})$

such that
$||\{Id-f(H_{c}(t))\}U\mathrm{C}(t)\psi||=O(\epsilon)$

uniformly in $t\geq 1$ , which is proved in virtue of (4.4). Now we take $M$ as in Proposition
4.1 for this $f$ and define $\varphi_{c}(t, x)$ by (4.1) with this $M$ . Then, in virtue of Proposition
4.4, we have only to prove the existence of the strong limit

$s- \lim_{\infty tarrow}\exp(itH)\varphi_{C}(t, X)f(H_{c}(t))U_{C}(t)$ ,

which may be proved in the same way as that of (4.5). $\square$

By the existence of the first strong limit in the above proposition, we obtain the
following theorem immediately.

Theorem 4.6. (The Asymptotic Clustering) Let the notation be $a6^{}$ above. Then
for $\psi\in L^{2}(X)$ , there exists $\psi_{c}\in L^{2}(X)$ such that

$\exp(-itH)\psi=U_{c}(t)\psi_{C}+o(1)$ as $tarrow\infty$ .

\S 5. Proof of Theorem 1.1

In this section, we complete the proof of Theorem 1.1. Throughout this section, we
assume that $(V)_{G}$ is fulfilled. By Theorem 4.6, the proof is now reduced to studying
the propagation properties of the propagator $U_{c}(t)$ generated by the time-dependent
Hamiltonian $H_{c}(t)$ .

As in \S 1, we define the time-dependent Hamiltonian $H_{cG}(t)$ by

$H_{cG}(t)=H_{c}+I_{c}( \frac{E}{2}t^{2})=H_{c}+W_{c}(t,$ $\frac{E}{2}t^{2})$ (5.1)

and denote by $U_{cG}(t)$ the propagator generated by $H_{cG}(t)$ . We note that $U_{cG}(t)$ is
represented by

$U_{cG}(t)= \exp(-itH_{c})\exp(-i\int_{0}^{t}I_{C}(\frac{E}{2}S^{2)d)}S$ . (5.2)

First, we replace $U_{c}(t)$ by $U_{cG}(t)$ .
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Proposition 5.1. There exist the $st$rong limits

$s- \lim_{\infty tarrow}U_{Cc}(t)^{*}Uc(t)$ , $s- \lim_{tarrow\infty}UC(t)*UcG(t)$ .

To prove this proposition, we need the following lemma. By virtue of the condition
$(V)_{G}$ , we should note that we may refine the estimate (4.3) as follows:

$|\partial_{t}^{m}\partial_{x}^{\beta}W_{C}(t, X)|\leq C_{m\beta}\langle t\rangle-m(\langle t\rangle+\langle x\rangle^{1}/2)^{-}2(\rho+|\beta|)$ . (5.3)

On account of limited space, we omit the proof of the lemma below. For the proof,
see [AT1,2].

Lemma 5.2. Assum$e$ that $\psi\in S(X)$ . Then
(1) $||(x_{c}-Et2/2)U_{c}(t)\psi||=O(t)$ .
(2) $||(x_{c}-Et2/2)U_{cG}(t)\psi||=O(t)$ .
(3) $||x^{c}U_{c}(t)\psi||=O(t)$ .
(4) $||_{X^{C}U_{C}}c(t)\psi||=O(t)$ .

Proof of Proposition 5.1. We prove the existence of the first strong limit only. We
may prove that of the second strong limit similarly. Since $S(X)$ is dense in $L^{2}(X)$ ,
it suffices to show the limit exists for $\varphi\in S(X)$ . Since $I_{c}(Ei^{2}/2)=W_{\mathrm{c}}(t, Et^{2}/2)$ for
$t\geq 1$ , we have

$\frac{d}{dt}(U_{cG}(t)^{*}U_{c}(t)\varphi)=U_{0}^{G}(t)^{*}i(W_{c}(t,$ $\frac{E}{2}t^{2})-W_{c}(t, x))U_{C}(t)\varphi$

$=U_{cG}(t)^{*}i \int_{0}^{1}\langle(\nabla Wc)(s(\frac{E}{2}t^{2})+(1-s)X),$ $( \frac{E}{2}t^{2}-x)\rangle ds$

$\cross U_{c}(t)\varphi$ .

Then by (5.3) and Lemma 5.2, we see that for $\varphi\in S(X)$ , the right-hand side is of
$O(t^{-2\rho-1})$ , which is integrable since $-2\rho-1<-1$ . Thus the proposition follows by
Cook’s method. $\square$

The following proposition is an immediate consequence of Theorem 4.5 and Propo-
sition 5.1.

Proposition 5.3. There exist the following strong limits:

$s- \lim_{\infty tarrow}U_{CG(}t)*(\exp-itH)$ , $s- \lim_{tarrow\infty}\exp(itH)U_{cG}(t)$ .

If we write
$\Theta(t)=\exp(-i\int_{0}^{t}I_{c}(\frac{E}{2}S^{2})ds)$ ,

we may write $U_{cG}(t)=\Theta(t)\exp(-itH_{c})$ . Thus it follows from the existence of the
first strong limit in Proposition 5.3 that for any $\psi\in L^{2}(X)$ ,

$\exp(-itH)\psi=\Theta(t)\{\exp(-itH^{c})\otimes\exp(-itT_{C})\}\psi C+o(1)$ , $tarrow\infty$ , (5.4)
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with some $\psi_{c}\in L^{2}(X)$ . Then the proof of Theorem 1.1 is reduced to analyzing the
asymptotic behavior as $tarrow\infty$ of $\exp(-itH^{c})$ .

We now use the asymptotic completeness for the subsystem Hamiltonian $H^{c}$ with-
out constant electric fields (see [D2] and [Z]). For $a\subset c$ , we define

$H_{a0}^{c}(t)=H_{aa}^{c}+I^{c}(Dat)=H^{a}\otimes Id+Id\otimes(\tau_{a}c+I_{a}^{c}(D_{a}t))$ on $L^{2}(x^{C})=L^{2}(X^{a})\otimes L2(X^{c})a$
’

and denote the propagator $U_{a0}^{c}(t)$ generated by $H_{a0}^{C}(t)$ as

$U_{a0}^{C}(t)= \exp(-itH_{a}^{C})\exp(-i\int_{0}^{t}I_{a}^{c}(D_{a^{S}})dS)$ on $L^{2}(x^{C})$ ,

where $H_{a}^{c}=H^{c}-I_{a}^{c}$ is the cluster Hamiltonian obtained from $H^{c}$ and $T_{a}^{c}=-\triangle_{a}^{c}/2$

acts on $L^{2}(X_{a}^{c})$ . Then we have the following theorem by virtue of [D2].

Theorem 5.4. Assum$e$ that $(V)_{G}$ is fulfilled. Then the modified wave operators

$\Omega_{a}^{c}=s-\lim_{\infty tarrow}\exp(itH^{c})UC(a0)t(P^{a}\otimes Id):L^{2}(Xc)arrow L^{2}(x^{C})$

exist for all $a\subset c$ , and are asymptotically complete, that is,

$L^{2}(X^{c})= \sum\oplus Raa\subset Cn\Omega^{C}a$
.

Completion of the proof of Theorem 1.1. Let $H_{aG}(t),$ $a\subset c$ , be defined by (1.4). Then
$H_{aG}(t)$ is decomposed into

$H_{aG}(t)=H_{a0}^{C}(t)\otimes Id+Id\otimes^{\tau}c+W_{C}(t,$ $\frac{E}{2}t^{2})(Id\otimes Id)$ on $L^{2}(X)=L^{2}(X^{C})\otimes L^{2}(x_{c})$ .

The three operators on the right side commute with one another. The propagator
$U_{aG}(t)$ generated by $H_{aG}(t)$ is also represented by

$U_{aG}(t)=\Theta(t)(U_{a0}^{C}(t)\otimes\exp(-itT_{c}))$ on $L^{2}(X)=L^{2}(X^{c})\otimes-L^{2}(x_{C})$ .

In virtue of the existence of the second strong limit in Proposition 5.3, the existence
of $W_{aG}^{+}$ defined by (1.6) can be proved by showing the existence of the strong limit

$s- \lim_{tarrow\infty}UcG(t)*U_{aG}(t)(P^{a}\otimes Id)=s-\lim_{\infty tarrow}\{\exp(itH^{c})U_{a0}c(t)(P^{a}\otimes Id)\}\otimes Id$

$=\Omega_{a}^{c}\otimes Id$ on $L^{2}(X)=L^{2}(x^{C})\otimes L^{2}(x_{C})$ ,

which follows from the existence of $\Omega_{a}^{c}$ . On the other hand, by (5.4. ) and Theorem
5.4, we have with $\psi_{c}=\sum_{j:\mathrm{f}\mathrm{i}\mathrm{n}}:\mathrm{t}\mathrm{e}\psi_{j}^{c}\otimes\psi_{c}^{j}+O(\epsilon),$ $\psi_{j}^{c}\in L^{2}(x^{\mathrm{C}})$ and $\psi_{c}^{J}\in L^{2}(x_{C})$ ,

$\exp(-itH)\psi=\Theta(t).\mathrm{f}\sum_{\mathrm{i}j.\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}}\exp(-itH^{C})\psi_{j}c\otimes\exp(-itT)\psi_{c}j+O(\epsilon)c$

$= \Theta(t).\sum_{\mathrm{t}j\cdot \mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{e}a}\sum\exp(-itH^{c})(\Omega_{a}c\tilde{\psi}_{aj}\mathrm{C})\otimes-\mathrm{e}\subset C\mathrm{p}\mathrm{x}(-it\tau_{C})\psi^{j}C^{+}o(\epsilon)$

$= \Theta(t).\sum_{\mathrm{e}j.\mathrm{f}\mathrm{i}\mathrm{n}:\mathrm{t}}\sum_{a\subset C}U^{c}0(a)\tilde{\psi}c_{i^{\otimes \mathrm{x}}}a\mathrm{p}\mathrm{e}(-it\tau)\psi_{C^{+}}^{j}O(\epsilon)tC+o(1)$
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for some $\tilde{\psi}_{aj}^{c}\in L^{2}(x^{C})$ , which implies

$|| \psi-.\sum_{\mathrm{i}j.\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}a}\sum_{\subset c}W_{aG(}+\tilde{\psi}_{a}^{C}j\otimes\psi j)C||=O(\epsilon)$ .

Since $\epsilon>0$ is arbitrary and $\sum_{a\subset c}$ ORan $W_{aG}^{+}$ is closed, we have

$\psi\in\sum_{a\subset C}\oplus RanW_{a}^{+}G$ ’

which implies the asymptotic completeness of the wave operators $W_{aG}^{+}$ . The proof of
Theorem 1.1 is now completed. $\square$

\S 6. Proof of Theorem 1.2

In this section, we complete the proof of Theorem 1.2. Throughout this section, we
assume that $(V)_{D}$ is fulfilled. By Theorem 4.6, the proof is now reduced to studying
the propagation properties of the propagator $U_{c}(t)$ generated by the time-dependent
Hamiltonian $H_{c}(t)$ . For this sake, we introduce a family of the unitary operators
$\{T(t)\}_{t\in \mathrm{R}}$ on $L^{2}(X)$ as follows: For $u(x)\in L^{2}(X)$ , we define

$(T(t)u)(X)= \exp(i|E|zt-i\frac{|E|^{2}}{6}t^{3})u(x-\frac{E}{2}t^{2})$ . (6.1)

We also introduce the time-dependent Hamiltonians

$\tilde{H}_{aD}(t)=H_{a}+I_{a}^{c}(Dt)a+I_{C}(D_{a}t-\frac{E}{2}t2)$ ,

$H_{a,S1}(t)=H_{a}+I_{a}^{C}(D_{a}t)+W_{c}(t,$ $0,$ $Dta- \frac{E}{2}t^{2)}$ ,

$H_{c,M0}(t)=H_{c,M}+W_{c}(t,$ $x,$$x_{C}+c \frac{E}{2}t2)$ ,

$H_{a,M1}(t)=H_{a,M}+I_{a}^{C}(D_{a}t)+W_{c}(t,$ $0,$ $D_{a}t+ \frac{E}{2}t^{2})$ ,

for $a\subset c$ , where $H_{a,M}=-\triangle/2+V^{a}(x^{a})$ acts on $L^{2}(X)$ and has no electric
fields. We denote by $\tilde{U}_{aD}(t),$ $U_{a,S1}(t),$ $U_{c,M}0(t)$ and $U_{a,M1}(t)$ the propagators gener-
ated by $\tilde{H}_{aD}(t),$ $H_{a,S1}(t),$ $H_{c,M}0(t)$ and $H_{a,M1}(t)$ , respectively, where $\tilde{U}_{aD}(0)=Id$ ,
$U_{a,S1}(1)=Id,$ $U_{c,M}0(1)=Id$ and $U_{a,M1}(1)=Id$ . Since $\exp(-itH_{a})D_{a}\exp(itHa)=$

$D_{a}-Et$ for $a$ $\subset c,\tilde{U}_{aD}(t)$ is explicitly represented by

$\tilde{U}_{aD}(t)=\exp(-itH_{a})\exp(-i\int_{0}^{t}\{I_{a}^{c}(D_{a}s)+I_{c}(D_{a}s+\frac{E}{2}s^{2})\}ds)$ .
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The family of transformations $\{T(t)\}t\in \mathrm{R}$ was introduced by Jensen-Yajima [JY], by
which Stark Hamiltonians are transformed into Hamiltonians without electric fields
(see also [AH]). In fact, we see by the argument similar to [JY] that

$U_{c}(t)=\tau(t)U_{c},M0(t)T(1)^{-1}$ , $U_{a,S1}(t)=\tau(t)U_{a},M1(t)T(1)^{-1}$ (6.2)

We should note that $V^{a}(x^{a})$ in $H_{a,M}$ does not undergo a change under the transfor-
mation $T(t)$ . In virtue of the relation (6.2), we have only to study the asymptotic
behavior of the propagator $U_{c,M0}(t)$ generated by the time-dependent Hamiltonian
$H_{c,M0}$ . We now apply to $H_{c,M0}$ the result due to $\mathrm{D}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{z}\mathrm{i}^{\text{ノ}}\mathrm{n}$ski [D2] on the asymptotic
completeness for long-range $N$-body quantum systems without electric fields (see also
[Z] $)$ .

Proposition 6.1. Assume that (V) is fulfilled. Then the modified wave operators

$\Omega_{a,M1}=s-\lim_{tarrow\infty}Uc,M0(t)*Ua,M1(t)(P^{a}\otimes Id)$

exist for all $a\subset c$ , and are asymptotically complet $\mathrm{e}$, that is,

$L^{2}(X)= \sum\oplus a\subset cRan\Omega a,M1$
.

The condition $\rho>\sqrt{3}-1$ in the assumption (V) is essentially used to prove this
proposition only. We go back to the original propagator $U_{c}(t)$ . Since $T(t)$ commutes
with $P^{a}\otimes Id$ for $a\subset c$ , the following theorem is obtained as an immediate consequence
of Proposition 6.1.

Theorem 6.2. $Ass$um$e$ that (V) is fulfilled. Then the modified wave operators

$\Omega_{a,S1}=s-\lim_{tarrow\infty}UC(t)*U_{a,s}1(t)(P^{a}\otimes Id)$

exist for all $a\subset c$ , and are asymptotically $co\mathrm{m}$plete, that is,

$L^{2}(X)= \sum_{a\subset c}\oplus Ran\Omega a,s1$
.

We also need the following lemmas to analyze the propagators $\tilde{U}_{aD}(t)$ and $U_{a,S1}(t)$ .

Lemma 6.3. Let $\psi\in S(X)$ . Then as $tarrow\infty$ ,
(1) $||(D_{a}-Et)\tilde{U}_{a}D(t)\psi||=O(1)$ .
(2) $||(D_{a}-Et)Ua,s1(t)\psi||=O(1)$ .

Proof. Since

$\mathrm{D}_{\overline{H}_{aD}}((t)Da-Et)=0$ , $\mathrm{D}_{H_{a,S1}(}t)(Da-Et)=0$ ,

(1) and (2) are obtained by integration. $\square$
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Lemma 6.4. Let $\psi\in S(X)$ and $q_{c}(x)\in S_{0}(x)$ be as in \S 4. Set $\phi_{c}(t, x)=q_{c}(x/t^{2})$

for $t\geq 1$ . Then as $tarrow\infty$ ,
(1) $||(1-\phi_{C}(t, \mathrm{o}, Dta-Et^{2}/2))\tilde{U}_{aD}(t)\psi||=O(t^{-1})$ .
(2) $||(1-\phi C(t, 0, Dat-Et^{2}/2))U_{a,s1}(t)\psi||=O(t^{-1})$ .

Proof. Since $\phi_{c}(t, Et^{2}/2)\equiv 1$ for $t\geq 1$ and $|\nabla\phi_{c}(t, X)|\leq Ct^{-2}$ , the lemma follows
from Lemma 6.3. $\square$

By these lemmas, we have the next proposition.
Proposition 6.5. There exist the strong limits

$s- \lim_{tarrow\infty}\tilde{U}aD(t)^{*}Us1(a,)t$ , $s- \lim_{\infty tarrow}U_{a,s1}(t)^{*}\tilde{U}aD(t)$ .

Proof. We write $\tilde{\phi}_{a}(t)=\phi_{\mathrm{c}}(t, \mathrm{o}, D_{a}t-Et^{2}/2)$ . By Lemma 6.4, we have only to prove
the existence of the limits

$\lim_{tarrow\infty}\tilde{U}_{aD}(t)*\tilde{\phi}a(t)U_{a,S1}(t)\psi$ ,

$\lim_{tarrow\infty}U_{a,S}1(t)^{*}\tilde{\phi}_{a}(t)\tilde{U}_{a}D(t)\psi$

for $\psi\in S(X)$ . Since
$\partial_{t}\tilde{\phi}_{a}(t)+i\{\tilde{H}D(at)\tilde{\phi}_{a}(t)-\tilde{\phi}a(t)HS1(a,t)\}$

$=-t^{-2}\langle(D_{a}-Et),$ $( \nabla q_{c}a)(\frac{D_{a}}{t}-\frac{E}{2})\rangle$ ,

we have the proposition in virtue of Lemma 6.3. $\square$

We replace $\tilde{U}_{aD}(t)$ by the propagator $U_{aD}(t)$ defined by (1.8). We need the following
proposition.

Proposition 6.6. There exist the $\mathrm{s}$trong $\lim$its
$s- \lim_{tarrow\infty}UaD(t)^{*}\tilde{U}_{a}D(t)$ , $s- \lim_{tarrow\infty}\tilde{U}aD(t)^{*}U_{a}D(t)$ .

Proof. Noting that $I_{a}(D_{a^{S}})=I_{a}(D_{a,\perp^{s)}}$ , we have only to prove that as $tarrow\infty$ ,
$\int_{0}^{t}\{I_{c}(p_{a}s+E_{S^{2}}/2)-I_{c}(Pa,\perp s+Es^{2}/2)\}dS$ converges locally uniformly in $p_{a}$ . We
write

$I_{c}(p_{a^{S+}} \frac{E}{2}s\mathrm{I}2-Ic(p_{a,\perp^{s+}}\frac{E}{2}S^{2})=\int_{0}^{1}\langle(\partial_{||c}I)(p_{||^{S\mathcal{T}}}+pa,\perp s+\frac{E}{2}S^{2}),p_{||}s\rangle d_{\mathcal{T}}$ .

We note that

$\partial_{s}\{I_{c}(p_{||^{S\mathcal{T}}}+pa,\perp^{s}+\frac{E}{2}S^{2})\}$

$= \langle(\partial_{||}I_{C})(p_{||}s\tau+pa,\perp s+\frac{E}{2}S^{2}),p_{||}\tau+ES\rangle$

$+ \langle(\partial_{\perp}I_{c})(p_{||^{S\tau}}+pa,\perp s+\frac{E}{2}S^{2}),Pa,\perp\rangle$

$= \langle(\partial_{||}I_{C})(p_{||}s\mathcal{T}+p_{a},\perp^{s+}\frac{E}{2}s^{2}),$ $Es\rangle+O(s^{-(\rho})1+)$
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holds locally uniformly in $p_{a}$ and uniformly in $0\leq\tau\leq 1$ . Here we used the fact
that $(\nabla Ic)(p||s\mathcal{T}+p_{a,\perp}s+E_{S^{2}}/2)=O(s^{-}(1+\rho))$ holds locally uniformly in $p_{a}$ and
uniformly in $0\leq\tau\leq 1$ . Hence we have

$\langle(\partial_{||c}I)(p_{||^{S\mathcal{T}}}+p_{a},\perp^{s}+\frac{E}{2}S^{2}),p_{||^{S}}\rangle$

$= \frac{\langle p_{||},\omega\rangle}{|E|}\partial_{S}\{I_{c}(p_{||^{S\mathcal{T}+}}pa,\perp s+\frac{E}{2}S^{2})\}+O(s^{-})(1+\rho)$ .

This implies the proposition. $\square$

Combining the above two propositions, we have the following proposition.

Proposition 6.7. There exist the strong limits

$s- \lim_{tarrow\infty}U_{aD}(t)^{*}U_{a},s1(t)$ , $s- \lim_{\infty tarrow}U_{a,s1}(t_{})*UaD(t)$ .

We should note that these operators commute with $P^{a}\otimes Id$ . Indeed, we decompose
$H_{aD}(t)$ and $H_{a,S1}$ on $L^{2}(X)=L^{2}(X^{a})\otimes L^{2}(X_{a})$ into

$H_{aD}(t)=H^{a}\otimes Id+Id\otimes T_{aD}(t)$ , $H_{a,S1}(t)=H^{a}\otimes Id+Id\otimes-T_{a,S1}(t)$ ,

where
$T_{aD}(t)=T_{a}+I_{a}^{c}(Da,\perp^{t)}+I_{c}(0, D_{a,\perp}t+Et^{2}/2)$ ,

$T_{a,S1}(t)=T_{a}+I_{a}^{c}(D_{a}t)+W_{C}(t, 0, Dat-Et^{2}/2)$ .

Thus, if we denote by $\hat{U}_{aD}(t)$ and $\hat{U}_{a,S1}(t)$ the propagators which are generated by
$T_{aD}(t)$ and $T_{a,S1}(t)$ , respectively, we see that

$s- \lim_{tarrow\infty}U_{aD}(t)^{*}U_{a},s1(t)=Id\otimes$ ( $s- \lim_{tarrow\infty}\hat{U}aD(t)^{*}$ \^Ua,Sl $(t)$ ),

$s- \lim_{\infty tarrow}U_{a,s1}(t)^{*}UaD(t)=Id\otimes$ ( $s- \lim_{tarrow\infty}$ \^Ua,sl $(t)^{*}\hat{U}aD(t)$).

Completion of the proof of Theorem 1.2. The existence of the modified wave operators
$W_{aD}^{+}$ with $a\subset c$ is proved by Theorem 4.5, Theorem 6.2 and Proposition 6.7. It follows
from Theorem 6.2 that Ran $W_{aD}^{+}\perp RanW_{b}^{+}D$ if $a\neq b$ .

We shall prove the asymptotic completeness. Let $\psi\in L^{2}(X)$ . By Theorem 4.6,
Theorem 6.2 and Proposition 6.7, we have as $tarrow\infty$ ,

$\exp(-itH)\psi=U_{c}(t)\psi_{c}+o(1)$

$= \sum_{a\subset c}U_{c}(t)\Omega_{a,S}1\psi C+o(a1)$

$= \sum_{a\subset c}Ua,s1(t)\psi_{C}a+o(1)$

$= \sum_{a\subset c}U_{aD}(t)\tilde{\psi}_{c}^{a}+o(1)$

for some $\psi_{c}^{a}\in Ran(P^{a}\otimes Id)$ , where $\tilde{\psi}_{c}^{a}=\lim_{tarrow\infty aD(}Ut)^{*}U_{a},S1(t)\psi^{a}c$ . This implies

$\psi\in\sum_{a\subset c}\oplus RanWaD+$
,

which completes the proof of Theorem 1.2. $\square$
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