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THE LIMITING ABSORPTION PRINCIPLE FOR
ELASTIC WAVE PROPAGATION PROBLEMS
IN PERTURBED STRATIFIED MEDIA R?

SENJO SHIMIZU (&K B

Institute of Mathematics, University of Tsukuba, Tsukuba 305, JAPAN

ABSTRACT. We consider the self-adjoint operator governing the propagation of elas-
tic waves in perturbed stratified media R3 with free boundary-interface conditions. In
this paper we establish the limiting absorption principle for this self-adjoint operator
in appropriate Hilbert space. The proof of the limiting absorption principle is based
on the division theorem which is proved by means of eigenfunction expansions for
the self-adjoint operator governing the propagation of elastic waves in unperturbed
stratified media R3.

1. Introduction

In this paper we consider propagation problems of elastic waves in perturbed
stratified media R® with free boundary-interface conditions.

The object of this work is to establish a limiting absorption principle for the
self-adjoint operator governing the propagation of elastic waves. The limiting ab-
sorption principle implies some significant spectral-properties of the self-adjoint
operator and gives a method of selecting steady-state solutions for the propagation
problems of elastic waves.

The limiting absorption principle for acoustic wave propagation problems is stud-
ied by several authors. For example Ben-Artzi and Dermenjian and Guillot [2],
Dermenjian and Guillot [3], [4], Weder [13] for stratified media, Phillips [9], Wilcox
[14] for exterior domain.

Concerning elastic wave propagation problems, Dermenjian and Guillot [5]

proved the limiting absorption principle in perturbed half space R3 by using so-
called division theorem which is one of their main results. In this paper we shall
prove the limiting absorption principle for elastic wave propagation problems in
_perturbed stratified media R? using a corresponding division theorem. We prove
the division theorem by using the representation of solutions by Lopatinski analysis
and the eigenfunction expansion theorem established by [11]. Dermenjian and
Guillot used the representation of solutions due to Dunford and Schwartz [6].

We start with the mathematical formulation of the elastic wave propagation
problem in perturbed stratified media R3.
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Let  be an exterior domain in R?® = {z = (2',23) = (21, %2, 23);z; € R} whose
boundary 92 is compact. A(z) and p(z) denote Lamé functions in €, and p(z)
denotes a density function in 2. We assume that

(1.1) 0 <m < A(z)(resp. u(z),p(z)) <M  for a.e.x €1,

where

_ A1(z), _ pi(z), _ pi(z) for z€ QNR3,
Alz) = { Aao(), wa) = { pa(2), ple) = { pa(z) for z€QNRE,

and

(/\1,H17P1) for z € R‘g—’ le > L’
(A2, piz,p2) for z € RY, |z| > L.

12 Q@) = {
Here R® = {z € R3, z3 < 0}, R} = {z € R?, 23 > 0}, L is a fixed large real
number, A;, Az, p1, fi2 are certain quantities called the Lamé constants and p;, p,
are densities (cf. Figure 1).

T3

A2

Figure 1 Perturbed Stratified Medium R?3

Let u(t,z) =* (u1(t, z), u2(t, ), u3(t,z)) € R? be the displacement vector at time ¢
and position z. The propagation problem of elastic waves in the perturbed stratified
medium R3 is formulated as the following mixed problem:

(1.3) szﬁl‘_(tm)__l_zg:ia u(t,z) =0 cn
' a2 p(z) j=1 Oz s ,

(1'4) u(t’$)|9n{x3=_o} = u(taw)'gn{x3=+0} ’

(1.5) UkS(U(tax))IQn{z;,:—o} = 0k3(u(t’w))|nn{z3=+o} )

(1.6) Z ok (u(t, z))vjlaa = 0,
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0
(L7) u(0,2) = f(z), 5(0,2) = g(a),
where .
(1.8) okj(w) = AUV - u)bkj + 2u(-)ex;(u),
are symmetric stress tensors,
oy 1 (Oug  Ouj
(19) 6];](11,) = 5 (3—3;] + a—g}];—) y

are symmetric strain tensors, and v = (v1,v,v3) denotes the exterior normal at
point z € ). (1.4) and (1.5) are called free interface conditions, (1.6) is called an
free boundary condition, and (1.7) is called an initial condition. Here ‘“free’ means
Neumann type, and these free interface and boundary conditions are appeared in
practical situations.

Solutions to (1.3)-(1.7) with finite energy are associated with a Hilbert space
and a self-adjoint operator as follows. Let

3
(1.10) (Au)y = —;)% ; a%akj(u).
Here (Au)y has another expression

1 - 9

(1.11) (Au) = =30 le ‘a?j‘(ckjlh(‘)iflh(u)),
where ci i (k,j,1,h =1,2,3) are éalled the stress-strain tensors given by
(1.12) crjth(+) = A()6k;jbun + pu(-)ékn 1,
with the properties
(1.13) ckjtn(+) = cin() = cnkj(-)

and 6; is the Kronecker delta. By the condition (1.1), Lamé functions satisfy the
conditions

(1.14) 3M(z) +2u(z) >0, u(z)>0, for aexel,
so we have from Korn’s inequality the following stability condition:
(1.15) Z ijlh(’)slh-s_kj > CZ |3kj|2; c>0

k, 5,1,k k,j

for all complex symmetric matrices (sk;), skj = sjx € C (cf. [8], [10]).
The Sobolev spaces on ) are defined by

(1.16) H™(Q,C%) = {u € C*; D*u € L¥(Q,C?), for |a| < m},

where m is a non-negative integer and the multi-index notation is used for deriva-
tives. H™ ({2, C?) is a Hilbert space with inner product

(1.17) (U0 = / )" Du(z)- D%u(z)de,

2 ja|<m

_ . _ 3 —
where u - 0 denotes the usual scalar product in C3: u - = Y k=1 UkTk-
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Definition 1.1. u € H}(Q,C?) N {Au € L*(Q, C?)} is said to satisfy the general-
ized free boundary-interface condition if and only if one has

(1.18) /Q (Au)eTp(c)de - /9 (A@)(V - u)(V - 5) + 2pu(x)er;(wer;(B))d = 0

for every v € H'(Q,C?).
We introduce the Hilbert space

(1.19) H = L*(Q, C?, p(z)dz),

with inner product

(1.20) (u,v)n = /Qu -vp(z)dz.

Theorem 1.2. The following operator A in H with domain:
(1.21)
D(A) = {u € H(Q,C*) N {Au € L*(Q, C*)}; u satisfles
the generalized free boundary-interface condition (1.18)},

and action defined by
(1.22) Au= Au, ue€ D(A)

is a non-negative self-adjoint operator.

For a proof of Theorem 1.2 see [11].

Every u € D(A) satisfies the free interface conditions (1.4) and (1.5), and the free
boundary condition (1.6), so the mixed problem (1.3)-(1.7) may be reformulated as
the problem of finding a function u : R — H such that

d%u
(123) @ + Au = 0, fOI' Vt € R,
du
(1.24) u©) =f, —(0)=g

The operator A is non-negative and the spectral theory for self-adjoint operators
implies that (1.23) and (1.24) has a (generalized) solution given by

(1.25) u(t) = (costA'lf) f+ (A—% sintA%) g, teR.

Let E(u, K,t) be the restriction of the energy of u to a measurable subset K of {2

(1.26)

Dok p(z)dz

ot

E(u,K,t) = % (;/K

124
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k,j=1

2 1
+]|AZu|?

H

+ 2. /KWW uf? + Zu(x)lek,-(wP)d””)

du

dt

If f € D(A%), g € H, then u € D(A%), ¢ € H and E(u, K,t) < co. In this case
u(t) is called a solution with finite energy.

In order to state our main theorem, we introduce several function spaces.

Let s1,52 be two real numbers. Let L%°1:°2(§), C?) be the space of all measurable
C? valued functions on 2 defined by

1.27 L%%1%2(Q, C3?) = {u; (1 + 22 + 22 F(1+23)Fu(z) € L? Q,C*},
1 2 3

with the norm
(1.28) llf.s;,5, = /(1 + 2} +25)" (1 + 23)*u(z) - u(z)de.
Q

We consider weighted Sobolev spaces H™*1:*2(Q), C?®) defined for any integer m > 0
by

(1.29) H™%1:52(Q C?) = {u; D*u € L¥*1%2(Q,C?), |a| < m},
with the norm

(1.30) el g0 = D I1D%ullf oy r
loe|<m

We introduce

| (1.31) HY*0%2(Q, A, C?) = {u € HY**2(Q,C?); Au € L¥1°2(Q,C*)},
with the norm

(1.32) ol ey = Nl + 1Al o, oo

Finally let

(1.33)
Hl;—81,—82(Q,A7 03) — {u = Hl;_sl,-SZ(Q,A’ C3);
u satisfy the generalized free boundary-interface condition (1.18)}.

Let R(z) be the resolvent of A. Then the limiting absorption principle which is our
main result can be stated as follows:
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Main Theorem. Suppose s; > % and sy > % And suppose p; = p3. If w(> 0) is
not an eigenvalue for A, then the following two limits exist in the uniform operator

topology of B(L%*®1:°2(Q2, C3), HL—*1:—%2(Q), A, C?)):

(1.34) R*(w)= lim R(2).
+Imz>0

The remainder of this paper is organized as follows. In Section 2, we consider
the plane stratified media R? with the planer interface z3 = 0, which is defined by

()‘17”17p1) for z3 < 07

(’\(373)’ /1(-’133)7P($3)) = { ()\2 7 PZ) for z3 > 0.

The self-adjoint operator Ay governing the propagation of elastic waves in this
unperturbed media is defined. A is considered as a perturbation of Ag. We recall
eigenfunction expansions for Ay and state the limiting absorption principle for A,.
Section 3 is devoted to the proof of the division theorem for Ay. Finally in Section
4, we prove the limiting absorption principle for A, and give some properties of the
spectrum of A.

2. Eigenfunction Expansions and the Limiting Absorption Principle for
4o

In this section, we consider the plane stratified medium R® with the planar
interface 3 = 0, which is defined by

(Myp1,p1) for z3 <0,
(A2, p2,p2) for =z3>0.

(2.1) (o, aazs)plen)) = {

Here A1, A2, p1, p2 are certain quantities called the Lamé constants and p;, p2 > 0
are the densities.

T3
A

II A2 M2 P2

- &' = (21, 22)

Figure 2 Unperturbed Stratified Medium R?

The propagation problem of elastic waves in this unperturbed stratified medium
is formulated as the following mixed initial and interface value problem:

o

(2.2) =

(t,z) + Aou(t,z) =0,

126
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(2.3) u(t, z)|,m o = u(t, )| =0 >
(24) 0k3u(t7x)|13=—0 = ak3u(t1x)|x3=+0’
(2.5) u(0,z) = f(z), %(O,x) = g(z),
where

M) ule) g HEs)
(2.6) Aou = o) V(V - u) p(xg)A .

We introduce the Hilbert space
(2.7) Ho = L*(R?, C3, p(z3) dz)
with inner product

(u,v)3, =,/ u-vp(z3z)dz.
R3

Proposition 2.1. The following the operator A, on Hy with domain

D(40) = {u € F*(RY, C*) @ H*(RY., C*);
u satisfies the interface conditions (1.2) and (1.3)

in the sense of trace on z3 = 0}
and action defined by
(28) Aou = .Aou, u € D(AO)

is a non-negative self-adjoint operator on H,.

Eigenfunction expansions for Ay was developed in [11]. We give a brief review
of the structure and properties of eigenfunctions and the expansion theorem.
Let n' = (n1,72) € R? be the dual variables of z' = (z;,z;) and let F,. denote
the partial Fourier transformation with respect to z'. Let
)

1 [m -m O
(2.9) U= milmom 0], Cc=
TH\o o |y

where U and C are unitary matrices and |n'| = (n? + %)% (cf. [5], [7]).

OO =

0
0
1

S = O

Proposition 2.2. We have
(2.10) Agu = F'UC(Ag(n') ® Ad(n'))(UC) ' Fpru for u € D(4,),

where Ag(n') and A3(n') are non-negative self-adjoint operators in L?(R, C2,
p(zs)dzs) and L?(R,C, p(z3) dz3) defined respectively as follows:
y
zg=+40 }

D (4 = { (%) e 'R0 0 B2 (R, )

d
(1)
T3=—0 0 n d.’l,'g

d
u|x3=—0 = u|z3=+0 b Bé (77,7 E) u
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A, -4y () 1 (—u,,,i:g +O 20l =il I+ w2 ) ()
,d$3 ) 2 ’

uz) e\ - A+ g Oy HulnP ) v
(o A (w) _ [k il uy
BO n, 57— - .y 8 d ,
dzs Ug in'|A (A + 2;4)31—3 Ug
D (A3(n") = {u € H*(R-) ® H*(R4);

d
u|1:3=—0 = u[1:3=+07 B(2) ("7,7 Zi—.'l:—:;) u

d
(1)
1:3=—0 ° 77 dx3

2 (.1 @ __ﬁéz_u B2
AO (n,dl':;)u_ pdil?g + plnl U,
d d
B2 (ny—— ) u=po—u,
0 (n’d$3)u I’degu”

where A = \(z3), p = p(z3) and p = p(z3).
The Lopatinski determinant A(n',¢) for Aj(n') is given as follows:

A(n',¢) = In'|°Dis(2),

where Dis(z) is given in [11 (3.2)] as D(z). The squares of propagation sppeds of
shear (SV, SH) and pressure (P) waves are given by

i +2p;

: Hi 2
(2.11) 2 == & =
9 pi

(:=1,2),

respectively. Dis(z) has the only one real zero cg; when either Dis(cZ ) > 0 or
Dis(c2, ) = 0 under some restriction if ¢, < ¢s, (see [11 Theorem 6.5]). If ¢, < cs,,
then we must replace Dis(c2 ) by Dis(c2,). Then the zero of A(7',() is c&|n/|?
and the origin of the Stoneley wave with speed cst propagating along the interface
z3 = 0 in the elastic space R3.

Let n = (n1,72,€) = (', ). C2|’7|2 (7 € M = {s1,p1,82,p2}) and ¢;|n|* (k € N =
{s1,52}) are the eigenvalues of Al(n') and A%(n ), respectively. We obtain explicit
expression of generalized eigenfunctions 1] J(:cg, n), ! t(zs,m) ( € M) for Al(n")
and 9 (z3,1) (k € N) for AZ(n') (see [11 (4.9)-(4.20), (4.21)-(4.22), (5.8)-(5.13),
respectively]). v

Using these generalized eigenfunctions for A}(n') and A2(n'), we define general-
ized eigenfunctions for Ay as follows:

(212) 1/)1](.’17 77) l(£1171+1221]2)UC(¢1](x3 77) EB 01 Xl) ] € Ma

(213)  US(an) = 5o S UCW (.)€ Ora), G €M,
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(2.14) ¥k (z,n) = ’(“"1*“"2>UC(02X2@¢2k(a:3, ), keN,

where O, xn denotes the n X n zero matrix.
Now we define the Fourier transform of f € H with respect to these generalized

eigenfunctions: f — (flj, flj, f;;c%

(2.15) fi5(n) =Lim. » ¢ﬁ($,n)*f(w)p(fvs)dw, jeM,
e18)  m=tim [ e @), e
(2.17) F3x(n) =1Rgrori-/| <n Ya(z,n)* f()p(es) dz, k€N,

We then have the eigenfunction expansion theorem.

Theorem 2.3. We assume that the real zero of A(n'; () exists.
(1) FOI‘f, g€ HO;

e1))  Go=Y ([ Fo-Ema [ #5035 do

JEM

+Z/ fzk(n g2k(77)d77

keN

(2) For f € Ho,

@19 =i [ (denfio e i) a

. R—oo
JEM

R—oo
kEN

+ l.i.m./ zb;l:,c(x,n)fi(n) dn.
In|<R

(3) For f € D(4,),
(2.20)

= jGMlRi;’IglO‘ /,,”SR( Sl (2, m) 5 (n) + el P (e, m ()

+ Y Lim / Y (2, n)fE (1) dn.

(4) We define the mappings by
;5 : Mo > f — fij(n) € (RS, C*)(€ > 0),€ LA(R2, C*)(€ < 0), j € M,

5t Ho s f - fSHn) € I*(R3,CP), j e M,
L Hy > f — fh(n) e LA(R3,C?) (¢ > 0),e L*(R2,C3)(£<0), k € N,



SENJO SHIMIZU

and put
ot f = (stitjf’ Z(P‘f}f, st;tk )
JEM jEM keN
Then we have
(2.21) R($%) = L*(R3,C%) @ L% (R?,C%) @ L%(R3, C?).
This theorem implies that $* are unitary operators in Hy, and that the systems

of generalized eigenfunctions {1/)i*;, ;big]t, v+ }iem ren and {¢1; 1/)15;, YortieM keN
are complete, respectively.

Let Ro(z) be the resolvent of Ay. By using Theorem 2.3 and the operational
calculus, we have for f and g in C{°(R3,C3?) and z € C \ [0, 00),

(2.22)
(Ro(2)f, )0
= —;——;—_—ffj(n)-éﬁ(n)dwr —~,-2—f1,‘(n) 54 (n) dn
JEM 1CJI77I z R® €50’
N et AOREAGE )
b 3 cklnlz 2k 2k

By changing to polar coordinates and using continuity properties of Cauchy type
integrals, we get
(2.23)

lim (Ro(2)f,9),

Z—w

+Imz>0

_y (izzf/ g 50 T aSs o [ f%@ ’7)

JEM
OO
+ +3 fSt gSt dS’df +p J J d
48 (55 L, g 0 T o AT
Fax(n) - 95 (n
+ Z (:ti £ fzk(n) gzk(n) dSk + p.v. 2k2(| )|2 Zk( ) 17 )
kEN Inl= R} n
where dS j, dS', dSk denote the surface element of the spheres |n| = ﬁ , 0’| = c%——f
£ respectively. Now we define generalized trace operators assoc1ate wit
nl = Ck ly. N defi lized d with
Ayp. For any w > 0, put
(224) B = {n e Ry, b= L2},
: J
(2.25) Efj(w) = {n €R’, |n'| = ‘/—, € R}
w
(2.20) Bfw) = {ne R, il £} ,

then we have

130
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Proposition 2.4. Suppose s; > % and sy > % For any w > 0 there exist general-
ized trace operators

(2.27) le(w) L%*1:%2(R3 C3) — LZ(E (w)),
(2.28) (W) : L3022 (R3, C%) — [Y(ES(w)),
(2.29) T (w) : L¥0*2(R3, C?) - L}(EL (w)),
such that for any f € C§°(R3,C3):

(2.30) @) = ), Inl = Y2,

(2.31) ) = £, I = @, (eR,
(2.32) @) = fim), Inl= ﬂ
Furthermore for any f € L?*(R3, C3)

(2.33) 175 Nl 282 (wyy < M@ f llogor 9
(2.34) 1735 @) fll L2t wyy < M)l Fllossr,00
(2.35) 1735 @)l 2 0y S M) Flloson,o00

where M(w) is a continuous function on (0, 0o).
Then we have the limiting absorption principle for Ay.

Theorem 2.5. Suppose s; > 7 and s, > 5. Then for any w > 0, the following
two limits exist in the uniform operator topo]ogy of B(L*°1*2(R3,C3), H%~ %1~
(R?, C?)):
(2-36) Ry(w)= lim Ro(2).
+Imz>0
Finally we conclude this section with the following proposition.

Proposition 2.6. Suppose s; > % and sy > 3. Let w > 0 and f € L%*1%2(R3
,C?). Then the following Statements are equ1valent

(2.37) Rf(w)f = Ry (w)f,

(2.38) Im /Ra R (w)f - fp(z3)dz =0,

(2.39) Im / B Toles)de =0,

(2.40) Yo=Y @) =Y mhw@)f =0,
JEM JEM keEN

(2.41) Z Tl;(“’)f Z 71 t("-’)f Z Tzk(w)f = 0

JEM JEM keN
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3.. The Division Theorem for A

This section is devoted to the division theorem for Ay. This theorem states
that if the generalized traces of f € L%°1°2(R3 C?) vanish on EL (W), Eff(w),
and E k(w) then the function v = RE(w)f has a better decay at 1nﬁn1ty than is
expected from Theorem 2.4. The division theorem plays a role corresponding to
radiation condition or uniqueness theorem such as Rellich theorem.

The proof of the division theorem is done along the line of proof by Dermenjian
and Guillot [5]. They proved the division theorem for their problem using represen-
tations of solutions due to Dunford and Schwartz [6 Theorem XIII. 3.16]. But we
prove our division theorem using the integral representation of solutions by means

of Lopatinski analysis.
Let us recall (2.10). For any z € C \ [0, 00) let

(3.1) Ry(z) = (A(n)—2)7",  Ri(2)=(4(n")—2)"
Suppose s1 > 5, s3> 1, and f € L¥*1%2(R?, C?). Let
(3.2) 9(n',z3) = "(91(n', 23), 92 (7', 23)) = (UC) ™' Fs f (', z3),

where g1(n',z3) and g2(n',z3) are 2 x 1 and 1 x 1 vectors, respectively. Thus we
have

(3.3) g(n',z3) € L***2(R?, C?)

and '

(34)  ((UC)'FuRy(w)f) (n',25) = Ry*(w)er(n',z3) & ReE(w)g2(n', z3).
Then we have the following theorem.

Theorem 3.1. Suppose s; > %, sy > 3, and p; = p;. Let f € L%%%2(R3,C?)
and w be a strictly positive number such that

(3.5) Yo=Y miiw)f =) miw)f=0.

JEM JEM keN
Then we have
(3.6) R (w)f = Ry (w)f € L%+ ~1%2(RY, C?),
and
(3.7) IRS (@) flos1—1,65 < M) fllo,o1,525

where M(-) is a positive continuous function on (0, 0o) dependmg only on sy, ss,
and $;. Here $5 is a real number such that

(38) 89 < 89 — 1.
This theorem is called division theorem for Ag. The proof of this theorem will
be a consequence of (3.4) and Propositions 3.2-3.4 below.

Remark 1. Continuity of M(-) is useful in proving that the positive eigenvalues of
A can accumulate only at 0 and +oo.

Remark 2. If py # p2, we have (3.6) with s3 < —1 by (3.17) below. So we cannot
use this result to prove Main Theorem, because s, is negative.

132
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3.1 The Division Theorem for A2(n')
Let

(3.9) va(n', 23,2) = Ry(2)g2(n', z3).

v2(n', z3,2) has a meaning for z € C \ [0,00). v2(n',z3,w) will be defined as the
limit of vy(n', z3,2) as z tends to w such that Imz > 0; that is,

(3.10) U2(77’7x3,w) = R(2)+(w)g2(77,7$3)'

Then we have

Proposition 3.2. Suppose s; > %, Sg > -;—, and p; = py. Let f € L%*%2(R3 C?)
and w be a strictly positive number such that

(3.11) Y orh(@)f=0 or ) rp(w)f=0.

kEN kEN
Then
(312)  wa(y-w) = Ryt (w)ge = Ry~ (w)g2 € L*(R®, (1 + 22)° ¥ dy'das)
and
(313) ||'U2(', "w)||L2(R3,(1+:B§)6_lfdn’dza) S M(w)”f“()asl;327

where M(-) is a positive continuous function on (0, 00) depending only on §, and §
is a real number such that § < sy — % :

Remark. The assertion of the first half of (3.12) follows immediately from Propo-
sition 2.6.

Proof. The explicit integral representation of solution vy(n', z3,2) is given in [11
(5.4) and (5.5)]. So we have the explicit expression of v2(n', z3,w) by exchanging
Z, Tgyy Tsy tO W,

Z
112
€sy *I}EE}., Tsy —Izlgr% = — '
mz>0 mz> 31
(3.14) .
Z
— 1 - T 22
s, = lim 75, = lim  [— —[n'|?,
Imz>0 Imz>0 82
respectively.

Consider the case where the condition ), .y 7k (w)f = 0 is satisfied. We also
prove (3.12) and (3.13) for v{(n', z3,w). The other cases can be handled similarly.

By (2.32), (2.17) and (2.14), the condition ),y 7o%(w)f = 0 can be rewritten
as follows:

2%

oo w
(8.15) > / b (3, m)92(n', y3)p(ys) dys = 0 for |n| = o
ke /oo
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In more detail, we have by (5.8)-(5.10) in [11],
. 0 . "'ieﬂ Ys
(3.16) {/ e*er¥s _ 'A—,(—n—)(l’wﬁlﬁu - chzzfsz)

lewy 2 | '
/ A' (2p1631€31)}g2(77 ay3) dy3 =0.

By substituting (3.16) multiplied by e~*:1%3 into vi(n’, z3,w), we obtain
(3.17) vz (7', ws,W)

€5, T 1,93 _ —1€s; T3 1€s, Y !
202 531/ (e 178788198 _ ¢ 13t 3)92(77,y3)dy3

o
pifa P it [T g y)dye, o <0
’ 0

If py = pa, then the second term of the right-hand side of (3.17) is equal to 0,
because A'(n',w) has no zero. Thus we may only estimate the first term of the
right-hand side of (3.17).

Let x1(|n'), x2(In), x3(|n'|) be the characteristic function of (0, cﬁ) (L“7 Viw)

Csq ) Csy

(‘{—l@,oo), respectively. Consider the case where x;(|n'|)v!(n',z3,w). The other
01 .

cases can be handled similarly.
In the case where x1(|n'|)v! (7, z3,w), we have 0 < |p'| < ‘/_ , 80 €, > 0. From
the inequalities

(3.18) et ®e — eiuate] <20, [Mes —ys|T for 0y <1

and
g 1

(3.19) / (1443 SCA+a)™ for 0<a<s—s-7,
—oo

it follows that

(3.20) bxa(In' o’ (7', 23, w)|* < CET2(1 + 23)7||g2ll5.,

for a such that 0 < a < s3 — % — «. Thus

(3.21)

I
Ix1(In"No" (', 23,0 )”Lz(R-'i (1+22)°~ 3 dy' dzs)
1 1

<Cllalf,, | [ @+adyioean ) | [ —
R_ o<y <X - 3
1 ,/E — ||

Consequently if ¥ > 0 and § < & < s3 — 1 — 7 then we obtain (3.12) and (3.13) for
0<n| <X

__C’

This completes the proof of proposition 3.2. O
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3.2 The Division Theorem for A}(n')
Let

(3.22) vi(n',23,2) = Ry(2)g1(n’,-)(zs),

where z € C\ [0,00). v1(n', 23,w) will be defined as the limit of v,(n’,z3,2) as 2
tends to w such that Imz > 0; that is,

(3.23) vi(n', z3,w) = Ry (w)g1(n', -)(z3).

Let x4(|n'|) and x5(|n']) be the characteristic functions of (0, 00)\ [% — £, g + 6]
and (ﬁ —g, X 4 6), respectively. Then we have the following propositions.

cst ) cst

Proposition 3.3. Suppose s; > 1, s3 > 1, and p; = p;. Let f € L%%:°2(R3, C3)
and w be a strictly positive number such that

(3.24) Z Tl-*'j(w)fz 0 or Z T (w)f =0.

JEM JEM
Then we have

(3.25)
Xa(In"Dvi(s+,w0) = xa(ln' DRy (w)g1 = xa(In') Ry~ (w)ga
€ L*(R®,C?, (1 + 22)° " 2dnp'dzs).

Proposition 3.4. Suppose s; > %, Sg > %, and p; = py. Let f € L%1%2(R3, C?)
and w be a strictly positive number such that

(3.26) Z Tlsjt(w)f =0.

JEM
Then we obtain
(3.27) xs(I'oi(,,w) € H 7 (R}, LH75(R, C?, day)).
From Propositions 3.2-3.4, we have

(3.28) x5 (17" (R (w)g1(n',-) & Rt (w)ga(n', ))(3)
€ Hsl—l(Ri"nga_%(R, Cz,dxli))’

moreover

(3.29)
F (UO)xs(In' (R * ()g1(n', ) @ Ry (w)ga(n',-))(2) € LB "1~ 3(R?, CP).

Thus Theorem 3.1 will be a consequence of Propositions 3.2-3.4 and (3.4).
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4. The Limiting Absorption Principle for A

In this section we give a proof of the limiting absorption principle for A along
the line of proof by Dermenjian and Guillot for their problem [5]. The key part of
the proof is the following proposition.

Proposition 4.1. For every f € L%°%2(Q,C®) and z € J*(a,b) \ [a, b], we have

(4.1) , |1R(2)flls=s61,~52 < Cllflloso1,525

where [a, b] is any compact interval in (0, 00) which does not contain any eigenvalue

of A and

(4.2) J*(a,b) = {z € C; Rez € [a,}], Imz € [0,1]}.

Proof. We prove this proposition by contradiction. Fourth steps are needed.
Step 1. Suppose that (4.1) is false. Then there exist sequences {fn}n>1 in
L%1:52(Q, C3) and {zn}n>1 in J*(a,b) \ [a,b] such that

(4'3) ||fn||0;31y32 =1, n21,
(4.4) |R(0) fall dimermen > 1y 12 L.
It follows that there exists a subsequence such that

(4.5) lim z, = w € [a, b],

n—oo

we denote it by the same symbol (cf. [14]). Put

R(zn)fn
4.6 Up = , n>1
(46) [TCRE P——

In
4.7 F, = , n>1.
(1) TCIA —
Then we have
(4.8) un, € D(A), n>1,
(4'9) ”un“»A;—sh—Sz =1, n21,
1

(410) ”Fn“0;31,82 < E’ n 2 1a
(4.11) (A-z)u,=F,, n>1
From (4.9) and (1.32)
(412) oy sy < 1.

Since {ty}n>1 is a bounded sequence in H%~*1:=%2(Q, C?), by Rellich theorem, we
choose a subsequence of {us},>1 that we denote by the same symbol such that
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{tn}n>1 converges to a limit, denoted by u in L%~%1:=%2(Q, C3), where s} > s;
and sj > sq. From (4.5), (4.10) and (4.11), it follows that

(4.13) Au = wu
in the distribution sense. So we get
(4.14) Au € L¥™07%2(Q, C%).
Then we deduce from Korn’s inequality
(4.15) u € HY=*0=%(Q, A4, C?).
Step 2. In Step 2 and 3, we shall show that u belongs to D(A).

Let ¢(z) be a function in C*°(R3) such that ¢(z) = 1 for |z| > L+ 2 and = 0
for |z| < L 4 1. Since ¢u(z) is defined on 2 N {|z| > L}, we put

(4-16) #1513(¢u)|z3=—0 = #2613(¢u)|x3=+0 = hq,
(4-17) M1523(¢U)|x3=—0 = #2523(¢U)|z3=+o = hg,
(4-18) 033(¢u)|x3=—0 = 033(¢U)|z3=+0 = ha,
where

(4.19) h="*(hy,hg,h3) € H%(RZ,C3), supph C{z e R*; L+ 1< |z| < L +2}.

It follows from Lemma 5.1 in Dermenjian and Guillot [5] that there exists an ex-
tension @ of h belongs to H2(R?, C?) such that

(4.20) #1€13(%)]s5=—0 = p2€13(1)|za=+0 = b1,
(421) #1623(ﬁ)|x3=—0 = M2523(ﬂ)|x3=+0 = h27
(4.22) 033(@)|cs=—0 = 033(%)|ss=+0 = s,
and

(4.23) suppii C {z € R*;L < |z| < L +3}.
Putting

(4.24) u' = du — 4,

the support of u' is contained in {z € R?;|z| > L}. u' in H15_311”SI2(Q,.A,C3)
satisfies generalized free boundary-interface condition (1.18) for every v in

HY5192(Q, C3). We have

(4.25) u' = Ro(zn)(Ao — 2z5)u' for n>1,
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From (4.24), (4.5), (4.10), (4.11) and (4.13),
(4.26) (Ag — zn)ul, — (Ao —w)u'
= ¢(Ap = 2n)tn + CV¢ - Vuy, + upndod — (Ao — 2,
— ¢(Ag —w)u — CV¢-Vu—udop + (Ag —w)i
= ¢F, +CV¢ - V(up —u) + (up — u)Aod + (2n — w)i ‘
converges to 0 as n — oo in L%°1:%2(R3, C?) because the supports of V¢, Agé and
u are compact.
From the sequence {z,}n>1 there exists a subsequence we denote by the same

symbol such that either Imz,, > 0 or Imz, < 0. Suppose that Imz, > 0. It follows
from (4.25) and (4.26) that

(4.27) u' = Rf (w)(Ap — w)u'

in H%~*1:=%(R3, C3) by Theorem 2.4.
Step 3. We shall show

(4.28) ) rE)(A —whu'] = D i (@)[(Ay — w)v]
JEM JEM
= Z 7 (w)[(Ag — w)u'] = 0.
kEN

Then it follows from Theorem 4.1 that u' € L?(R?, C3) taking sj > 1 and s} > 1.
Thus u belongs to L%(Q, C3, p(z)dz).

We denote by < -,- >, the duality between L3519 (Q,C3, p(z)dz) and
L%%1:%2(Q, C3, p(z)dz). From Proposition 2.6 and (4.27) it is sufficient to show
that

(4.29) I= <R;,*[(Ao —w)u'], (Ao — w)u'>p = (!, (Ao —whu'),

is a real number. Remark that the support of (Ap —w)u' is contained in |z| < L+2.
Let x be a function x(z) € C§°(R3?,R) such that x(z) =1 for |z| < L+ 2. Then

we have

(4.30) I=<xu', Agu' >, —w|xu'|.

Thus it is sufficient to show that < x@', Agu’ >, is real. Since u' satisfies the
generalized free boundary-interface condition, we have

3
) ox | , Ox
(4.31) IZ/RE (,\I(V.ur)(uf’Vx)-l-m kélekj(u') (uka + Jawk)) dz
/ aX i ox
MoV )@, VX) + 2 Z( 5“)) &

+/R3 (A (V- u)* + 24 Z IxekJ(U)IZ) dz

k,j=1

Aa|X(V - u")? + 2¢5 Z Ixeri(u')? | de,
k,j=1
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where the third and fourth terms of the right-hand side of (4.31) are real numbers.
Note that the first and second terms of the right-hand side of (4.31) are integrated

on
suppVx € {z e R}, L +2 < |z| < L +3}.
Consider < xu, Au >,. From (4.13) and (4.15), we have
J =< xt, Au >,=< x@,wu >,= w|yul’.
On the other hand

J=(/_+A;>(N@W‘MWLMD+%@)§:QAM%AMO da

k,j=1

_ _ 2 _ Ox , _ Ox
_/R3 AMz)(V-u)(a, Vyx) + u(z) Z erj(u) (uk67j+uja—xk-> dz + G,

k,j=1
where G is a real number. On the support of Vy, we have
A1, p1 = € suppVyx NR3
O SO oy
2, p2 T €suppVxNRL.

So we obtain I is real, because J is real.
Step 4. Finally we prove

[|ull 45— 51,—5, = 1.
On the sequence
Un =¢un_ﬁ+(1_¢)un+aa

(1 — ¢)u, converges to (1 — ¢)u in HLi—*1:=2(Q, A C?), and du, — & converges to

du — @ in H»=*1=92(Q C?). So we have
ltn — tmllA;—s1,—s2 < [|($n — @) = (um — @)]|.45-s1,-s,
+ (1 = é)(un — um)|l4;—s1,-s,

—0 as n,m — oo.

- Thus

ullas—ss,—0r = B [unlas—sy,sp = 1.

This completes the proof of Proposition 4.1. O

Proposition 4.2. Let f € L%**2(Q,C?) and z € J*(a,b) \ [a,b]. Then the

mapping
T:z— R(2)f

is uniformly continuous in HH=1=%2(Q, A C?3).
This proposition can be proved similarly in [4, Section 3 Proposition 2].
Proof of Main Theorem. The mapping
T:z— R(2)f
is extended from J*(a,b)\ [a,b] to J*(a,b), because of the completeness of

HY=s1,=92(Q A C3?) and of Proposition 4.2.
Therefore we prove Main Theorem. 0O

Finally by Theorem 3.1 and Main Theorem, we have some properties of the

spectrum of A.
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Theorem 4.3.

1. A has no continuous singular spectrum.
2. If [a,b] is a compact interval contained in (0,00), A can only have a finite

number of eigenvalues in [a, b], and each of these eigenvalues has a finite multiplicity.
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