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Abstract
The present paper deals with the learnabihty of indexed fammilies of uniformly recursive languages by

single inductive inference machines (abbr. IIM) and teams of IIMs from positive and both positive and
negative data. We study the learning power of single IIMs in dependence on the hypothesis space and the
number of anomalies the synthesized language may have. Our results are fourfold. First, we show that
allowing anomalies does not increase the learning power as long as inference from positive and negative data
is considered. Second, we establish an infinite hierarchy in the number of allowed anomalies for learning
from positive data. Third, we prove that every learnable indexed family $L$ may be even inferred with respect
to the hypothesis space $\mathcal{L}$ itself. Fourth, we characterize learning with anomalies from positive data.

Finally, we investigate the error correcting power of team learners, and relate the inference capabilities
of teams in dependence on their size to one another. Again, an infinite hierarchy is established and the
learnabihty is characterized in terms of recursively generable families of finite and non-empty sets.

1 Introduction

Inductive inference is the process of hypothesizing a general rule from eventually incomplete data. Within the
last three decades it received much attention from computer scientists.

The present paper deals with inductive inference of formal languages. Looking at potential applications,
Angluin [1] started the systematic study of learning enumerable families of uniformly recursive languages, hence-
forth called indexed families. First we consider about inferability of indexed family from text with anomalies.
A text of a language $L$ is an infinite sequence of strings that eventually contains all strings of $L$ . Since a text
contains exclusively positive examples concerning the target language, we sometimes refer to text as to positive
data.

An algorithmic learner, henceforth called inductive inference machine (abbr. IIM), takes as input initial
segments of a text, and outputs, from time to time, a hypothesis about the target language. The set $\mathcal{G}$ of all
admissible hypotheses is called hypothesis space. Fbrthermore, the sequence of hypotheses has to converge to a
hypothesis approximately describing the target language. That is, the cardinality of the symmetric difference
of the target language and the language generated by the hypothesis the IIM converges to is required to be
bounded by some a priori fixed number or to be finite, respectively. Hence, the hypothesis synthesized in the
limit is allowed to contain anomalies with respect to the target language. Therefore, we synonymously refer to
approximate inference as to learning with anomalies. If the number of allowed anomalies is equal to zero, then
we just arrive at Gold’s [6] classical definition of learning in the limit (cf. Definition 1).

Approximate inference has been introduced by Blum and Blum [2] in the context of learning recursive
functions. Subsequently, this topic has been studied by various authors (cf., e.g., Case and Smith [4], Kinber and
Zeugmann [10] $)$ . The study of language learning with anomalies goes back to Case and Lynes [3] (cf. Osherson,
Stob and Weinstein [14] for further information). However, the present paper is the first one dealing with the
inferability of indexed families when anomalies are allowed.

Moreover, we study the learnability of indexed families by teams of IIMs. In this setting, originally intro-
$\mathrm{d}\mathrm{u}\mathrm{C}\mathrm{e}\mathrm{d}$ by Smith [17], the learning $\mathrm{t}\mathrm{a}s\mathrm{k}$ has to be realized by a finite collection of IIMs called team. The number
$n$ of IIMs in the collection is referred to as team size. Every team member is receiving the same information,
i.e., it is successively fed a text or informant of the target language, respectively. However, the learning task is
successfully finished if at least $m,$ $m\leq n$ , of the team members learn the target language (cf. Definition 3).
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We study the learnability of approximate and team inference in dependence on the set of admissible hy-
pothesis spaces, the number of allowed anomalies, and the success ratio $m/n$ of teams, respectively.

The results obtained are manifold. First, we show that allowing anomalies does not increase the learning
power as long as inference from positive and negative data is considered. Second, we establish an infinite
hierarchy in the number of allowed anomalies for learning from positive data. Moreover, we show that every
approximately learnable indexed family $L$ may be even properly inferred thereby maintaining the number
of allowed anomalies. The latter result is obtained via a characterization of learning with anomalies. Then
we investigate the error correcting power of team learners, and relate the inference capabilities of teams in
dependence on their size to one another. Again, an infinite hierarchy is established.

2 Preliminaries

Let IN $=\{0,1,2, \ldots\}$ be the set of all natural numbers. We set $1\mathrm{N}^{+}=\mathrm{N}\backslash \{0\}$. By $\Sigma$ we denote any fixed finite
alphabet of symbols. Let $\Sigma^{+}$ be the set of all non-empty strings over $\Sigma$ . Every subset $L\subseteq\Sigma^{+}$ is called a
language. Let $L$ be alanguage, then we use $|L|$ to denote the cardinality of $L$ . Furthermore, let $L$ and $\hat{L}$ be any
two languages, and let $a\in 1\mathrm{N}$; then we write $L=_{a}\hat{L}\mathrm{i}\mathrm{f}\mathrm{f}|L\triangle\hat{L}|\leq a$ . Here $\triangle$ denotes the symmetric difference
of $L$ and $\hat{L}$ , i.e., $L\triangle\hat{L}=(L\backslash \hat{L})\cup(\hat{L}\backslash L)$ . Finally, we write $L=\hat{L}*\mathrm{i}\mathrm{f}\mathrm{f}|L\triangle\hat{L}|$ is finite (abbr. $|L\triangle\hat{L}|\leq*$ ).

Let $L$ be a language and let $t=s_{0},$ $s_{1},$ $s_{2},$ $\ldots$ be an infinite sequence of strings from $\Sigma^{+}$ such that range$(t)=$

$\{s_{k}|k\in 1\mathrm{N}\}=L$ . Then $t$ is said to be a text for $L$ or, synonymously, a positive $pre\mathit{8}entati_{on}$. Let $L$

be a language. By text$(L)$ we denote the set of all positive presentations of $L$ . Let $L$ be a language. Moreover,
let $t$ be a text, and let $x$ be a number. Then $t_{x}$ denote the initial segment of $t$ of length $x+1$ . Let $t$ be a
text and let $x\in 1\mathrm{N}$ . Then we define $t_{x}^{+}=\{s_{k}|k\leq x\}$ . Following Angluin [1], we restrict ourselves to deal
exclusively with indexed families of uniformly recursive languages defined as follows: A sequence $L_{0},$ $L_{1},$ $L_{2},$

$\ldots$

is said to be an indexed. family $\mathcal{L}$ of uniformly recursive languages provided all $L_{j}$ are non-empty and
there is a recursive function $f$ such that for all numbers $j$ and all strings $\mathit{8}\in\Sigma^{*}$ we have

$f(j, s)=\{$ $01,$
’

$\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{S}\mathrm{e}\mathrm{i}\mathrm{f}s\in L_{j}.$
’

Moreover, we set range$(\mathcal{L})=\{L_{j}|j\in \mathrm{N}\}$ for every indexed family $\mathcal{L}=(L_{j})_{j\in}\mathrm{m}$ .
As in Gold [6], we define an inductive inference machine (abbr. IIM) to be an algorithmic device

which works as follows: The IIM takes as its input larger and larger initial segments of a text $t$ and it either
requests the next input, or it first outputs a hypothesis, i.e., a number encoding a certain computer program,
and then it requests the next input (cf., e.g., Angluin [1]).

At this point we have to clarify what hypothesis space we should choose, thereby also specifying the goal of
the learning process. Gold [6] and Wiehagen [18] pointed out that there is a difference in what can be inferred
depending on whether we want to synthesize in the limit grammars (i.e., procedures generating languages) or
decision procedures, i.e., programs of characteristic functions. Case and Lynes [3] investigated this phenomenon
in detail. However, in the context of identification $\mathrm{o}\mathrm{f}$ indexed families, both concepts are of equal power. Since
we exclusively deal with the learnability of indexed families $L=(L_{j})_{j\in}\mathrm{m}$ we always take as the hypothesis space
an enumerable family of grammars $\mathcal{G}=G_{0,1}G,$ $G_{2},$

$\ldots$ over the terminal alphabet $\Sigma$ such that membership in
$L(G_{j})$ is uniformly decidable for all $j\in 1\mathrm{N}$ and all strings $s\in\Sigma^{+}$ . For notational convenience we use $\mathcal{L}(\mathcal{G})$ to
denote $(L(G_{j}))_{j1}\in \mathrm{N}$ . Note that $\mathcal{L}(\mathcal{G})$ constitutes itself an indexed family for all hypothesis spaces $\mathcal{G}$ . When an
IIM outputs a number $j$ , we interpret it to mean that the machine is hypothesizing the grammar $G_{j}$ . Let $\mathcal{L}$ be
an indexed family, and let $a\in 1\mathrm{N}\cup\{*\}$ ; a hypothesis space $\mathcal{G}=(G_{j})_{j\in \mathrm{l}}\mathrm{N}$ is said to be class admissible
( $claSS$ preserving) for $\mathcal{L}$ with respect to $a$ provided that for every $L\in range(\mathcal{L})$ there exists an index $j$

such that $L=_{a}L(G_{j})(range(L)=range(\mathcal{L}(\mathcal{G})))$ .
Let $\sigma$ be a text, and $x\in$ IN. Then we use $M(\sigma_{x})$ to denote the last hypothesis produced by $M$ when

successively fed $\sigma_{x}$ . The sequence $(M(\sigma_{x}))_{x\in}\mathrm{I}\mathrm{N}$ is said to converge in the limit to the number $j$ if and
only if either $(M(\sigma_{x}))_{x\in}1\mathrm{N}$ is infinite and all but finitely many terms of it are equal to $j$ , or $(M(\sigma_{x}))_{x\in}\mathrm{I}\mathrm{N}$ is
non-empty and finite, and its last term is $j$ . Now we are ready to define learning in the limit.

Definition 1. (Gold [6]) Let $L$ be an indexed family, let $L$ be a language, and let $\mathcal{G}=(G_{j})_{j\in}\mathrm{I}\mathrm{N}$ be a hypothesis
space. An $IIMM$ CLIM-TXT-infers $L$ from text with respect to $\mathcal{G}$ iff for every text $t$

for $L$ , there exists a $j\in 1\mathrm{N}$ such that the sequence $(M(t_{x}))_{x}\in \mathrm{I}\mathrm{N}$ converges in the limit to $j$ and $L=L(G_{j})$ .
Furthermore, $MCLIM-\tau X\tau- identifieS\mathcal{L}$ with respect to $\mathcal{G}$ iff, for each $L\in range(\mathcal{L}),$ $M$ CLIM-TXT-

identifies $L$ with respect to $\mathcal{G}$ .
Finally, let CLIM-TXT denote the collection of all indexed families $\mathcal{L}$ for which there are an $IIMM$ and
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a hypothesis space $\mathcal{G}$ such that $MCLIM-\tau X\tau- identifieSL$ with respect to $\mathcal{G}$ .
Since, by the definition of convergence, only finitely many data of $L$ were seen by the IIM up to the

(unknown) point of convergence, whenever an IIM identifies the language $L$ , some form of learning must have
taken place. For this reason, hereinafter the terms infer, leam, and identify are used interchangeably.

In Definition 1, $LIM$ stands for “limit.” Fbrthermore, the prefix $C$ is used to indicate class admissible
learning, i.e., the fact that $L$ may be learned with respect to some suitably chosen class admissible hypothesis
space. The restriction of CLIM to class preserving inference is denoted by $LIM$. That means $LIM$ is
the collection of all indexed families $\mathcal{L}$ that can be learned in the limit with respect to a suitably chosen class
preserving hypothesis space. Moreover, if a target indexed family $\mathcal{L}$ has to be inferred with respect to the
hypothesis space $L$ itself, then we replace the prefix $C$ by $P$, i.e., PLIM is the collection of indexed families
that can be properly learned in the limit. Note that proper learning is sometimes also referred to as exact
learning (cf., e.g., Zeugmann and Lange [19]).
Proposition 1. (Zeugmann and Lange [11]) PLIM-TXT $=LIM$-TXT $=$ CLIM-TXT,

Next, we generalize Definition 1 to learning in the limit with anomalies. That is, now the hypotheses an
IIM converges to are only required to suitably approximating the target languages.
Definition 2. (Case and Lynes [3]) Let $\mathcal{L}$ be an indexed family, let $L$ be a language, let $\mathcal{G}=(G_{j})_{j\in}\mathrm{I}\mathrm{N}$ be
a $hypotheSi_{\mathit{8}}$ space, and let $a\in$ IN $\cup\{*\}$ . An $IIMM$ CLIM$a_{-Tx\tau}$-infers $L$ from text with
$re\mathit{8}pect$ to $\mathcal{G}$ iff for every text $t$ for $L$ , there exists a $j\in 1\mathrm{N}$ such that the $\mathit{8}equence(M(t_{x}))_{x\in}\mathrm{I}\mathrm{N}$ converges
in the limit to $j$ and $L=_{a}L(G_{j})$ .

Furthermore, $MCLIM^{a_{-TX\tau}}$-identifies $L$ with respect to $\mathcal{G}$ iff, for each $L\in range(c),$ $MCLIM^{a}- TX\tau-$

identifies $L$ with respect to $\mathcal{G}$ .
Finally, let CLIM-TXT denote the collection of all indexed families $L$ for which there are an $IIMM$ and

a hypothesis space $\mathcal{G}\mathit{8}uch$ that $MCLIM^{a_{-TX\tau}}$-identifies $\mathcal{L}$ with respect to $\mathcal{G}$ .
Obviously, $\lambda LIM^{0}- TX\tau=\lambda LIM$-TXT for all $\lambda\in\{P, \epsilon, C\}$ .
Finally, we define learning in the limit by a team of IIMs. Team inference has been introduced by Smith

[17] in the context of inferring recursive functions. Subsequently various authors have studied it intensively
(cf., e.g., Pitt [15], Pitt and Smith [16], Jain and Sharma [8, 9]).
Definition 3. (Smith [17]) Let $\mathcal{L}$ be an indexed family, let $L$ be a language, let $\mathcal{G}=(G_{j})_{j}\in \mathrm{N}$ be a $hypothesi\mathit{8}$

space, and let $n,m\in 1\mathrm{N}^{+},$ $m\leq n.$ A team $(M_{\mathit{1}},\ldots,M_{n})$ of IIMs $(m,n)$ CLIM- $TXT-infer\mathit{8}$
$L$ from text with $re\mathit{8}pect$ to $\mathcal{G}$ ifffor every text $t$ for $L$ , there exist at $lea\mathit{8}tm$ team members $M_{k_{1}},$ $\cdots$ ,
$M_{k_{m}}$ and indices $j_{1},$ $\cdots,j_{m}$ such that the corresponding $\mathit{8}equenCes(M_{k_{1}}(t_{x}))_{x\in}\mathrm{I}\mathrm{N},$

$\cdots,$ $(M_{k_{m}}(t_{x}))_{x\in}$ IN converge
in the limit to $j_{1},$ $\cdots,j_{m}$ and $L=L(G_{j_{z}})$ for all $1\leq z\leq m$ , respectively.

Furthermore, $(M_{1}, \cdots, M_{n})(m, n)cLIM$-TXT -identifies $L$ with respect to $\mathcal{G}$ iff, for each $L\in range(\mathcal{L})$ ,
$(M_{1}, \cdots, M_{n})(m, n)CLIM- TX\tau$ -identifies $L$ with $re\mathit{8}pect$ to $\mathcal{G}$ .

Finally, let $(m, n)cLIM$-TXT denote the collection of all indexed families $\mathcal{L}$ for which there are a team
$(M_{1}, \cdots, M_{n})$ of IIMs and a $hypothesi\mathit{8}$ space $\mathcal{G}$ such that $(M_{1}, \cdots M_{n})(m, n)CLIM- TX\tau$ -identifies $\mathcal{L}$ with
respect to $\mathcal{G}$ .

Recently, Meyer [12] extended Pitt’s [15] unification results to the case of learning indexed families from
positive data. In particular, she showed that, for every $p\in(\mathrm{O}, 1]$ the power of probabilistic IIMs learning with
probability $p$ equals the power of $(1,\mathrm{n})$-team learning, where $n$ is the unique integer such that $1/(n+1)<p\leq$
$1/n$ . This result immediately allows the following conclusion.
Proposition 2. For all $m,n\in 1\mathrm{N}^{+},$ $m\leq n$ , we have: $(m, n)cLIM$-TXT $=(1, \lfloor m/n\rfloor)CLIM$-TXT.

Hence, in the following it suffices to deal exclusively with $(1, n)CLIM$-TXT. Furthermore, the proof
technique of Lange and Zeugmann [11] can be directly applied to relate the learning capabilities of proper,
class preserving and class admissible team learning to one another.
Proposition 3. For all $n\in \mathrm{N}^{+}$ we have: $(1, n)PLIM$-TXT $=(1, n)LIM$-TXT $=(1,n)oLIM$-TXT.

3 Inferability with Anomalies from Text

We start our investigations by characterizing learning in the limit with anomalies in terms of finite tell-tales.
The first such theorem goes back to Angluin [1] who characterized proper learning in the limit accordingly.
In order to characterize learning in the limit with anomalies, we had to generalize Angluin’s [1] definition of
tell-tales as follows.
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Definition 4. Let $\mathcal{L}=(L_{j})_{j\in \mathrm{I}\mathrm{N}}$ be an indexed family, let $a\in \mathrm{I}\mathrm{N}\cup\{*\}$ , and let $\mathcal{G}=(G_{j})_{j}\in \mathrm{I}\mathrm{N}$ be a dass
preserving $hypothesi\mathit{8}$ space for $\mathcal{L}.$ A set $Q$ is said to be an $a-tell_{-}tale$ for $L\in range(L)$ with respect to $\mathcal{L}(\mathcal{G})$

provided $Q$ satisfies the following conditions:

(1) $Q$ is finite,

(2) $Q\subseteq L$ , and

(3) for every $j\in 1\mathrm{N}$, if $Q\subseteq L(G_{j})\subseteq L$ , then $L(G_{j})=_{a}L$ .

Note that the definition made above essentially coincides with Angluin’s [1] definition of a tell-tale in case
$a=0$. Therefore, we refer to O-tell-tales as to tell-tales for short.
Proposition 4. (Angluin [1]) Let $\mathcal{L}=(L_{j})_{j\in N}$ be an indexed family. Then following two conditions are
equivalent.

(1) $\mathcal{L}\in PLIM$ -TXT,

(2) there exists an effective procedure which, for every $j\in 1\mathrm{N}$ , uniformly $enumerate\mathit{8}$ a tell-tale for $L_{j}$ with
respect to $\mathcal{L}$ .

Next, we want to extend this characterization theorem to identification in the limit with anomalies.

Theorem 1. Let $L=(L_{j})_{j\in N}$ be an indexed family, let $a\in \mathrm{N}\cup\{*\}$ , and let $\mathcal{G}=(G_{j})_{j\in \mathrm{l}\mathrm{N}}$ be a class
preserving hypothesis space for $\mathcal{L}$ . If there $e\dot{m}st_{\mathit{8}}$ an effective procedure $g$ which, for all $j\in$ IN, uniformly
enumerates $a- tell-\iota_{a}les$ for $L(G_{j})$ with respect to $\mathcal{L}(\mathcal{G})$ , then $\mathcal{L}$ is $LIM^{a}-TX\tau$-inferable with respect to $\mathcal{G}$ .

Proof. Using just the same procedure as in Angluin [1], we can enumerate a-tell-tales. $\square$

However, in generalizing Theorem 1 to class admissible learning with anomalies, and in proving the converse
of Theorem 1, and its desired generalization we have to overcome some difficulties. The next lemma actually
states that any IIM which $CLIMa-\tau X\tau$-infers an indexed family $\mathcal{L}$ can be replaced by another one that
converges on every text for every language $L\in range(c)$ to a superset of it, and that also witnesses $\mathcal{L}\in$

CLIM-TXT.
Lemma 2. Let $a\in 1\mathrm{N}\cup\{*\}$ . Furthermore, let $L$ be an indexed family, let $\mathcal{G}=(G_{j})_{j\in}\mathrm{m}$ be a hypothesis space
and let $M$ be an $IIM$ witnessing $L\in$ CLIM-TXT with respect to $\mathcal{G}$ . Then one can effectively construct a
$hypothesi\mathit{8}$ space $\hat{\mathcal{G}}=(\hat{G}_{j})_{j\in \mathrm{N}}$ and an $IIM\hat{M}$ such that

(1) $\hat{M}CLIM^{a}-TX\tau$ -infers $L$ with respect to $\hat{\mathcal{G}}$ , and

(2) for all $L\in range(c)$ and for all $t\in teXi(L)$ , if $(\hat{M}(t_{x}))_{x\in}\mathrm{I}\mathrm{N}$ converges to $k$ , then $L\subseteq L(\hat{G}_{k})$ .

Proof. The desired hypothesis space $\hat{\mathcal{G}}$ is defined as follows. For all $j\in 1\mathrm{N}$, we set

$\hat{G}_{j}=\{$

$G_{i,2}$ , if $j$ is even,

grammar $\mathrm{o}\mathrm{f}L_{\frac{j-1}{2}}$ , if $j$ is odd.

Furthermore, let $w_{0},$ $w_{1},$ $\ldots$ be any fixed effective enumeration of $\Sigma^{+}$ . For every $A\subseteq\Sigma^{+}$ and $x\in$ IN, we
use $A^{(x)}$ to denote $A\cap\{w_{0}, w_{1}, \ldots , w_{x}\}$ . Now we are ready to define the desired IIM $\hat{M}$ .

IIM $\hat{M}$: “On input $t_{x}$ , execute Stage $x$ .
Stage $x$ : Let $j_{x}=M(t_{x})$ . Search for the least $j\leq x$ satisfying $(t_{x}^{+})(x)\subseteq L(\hat{G}_{j})^{(x})\subseteq L(G_{j_{x}})\cup t_{x}^{+}$ . If such a

$j$ is found, then output it, and request the next input.
Else output $x$ , and request the next input.”

It remains to show that $\hat{M}$ satisfies Properties (1) and (2). Let $L\in range(\mathcal{L})$ , let $t\in text(L)$ , and $x\in$ IN. By
assumption, $MCLIMa-\tau X\tau$-infers $L$ with respect to $\mathcal{G}$ . Hence, there exist $\tilde{x}$ and $m$ such that $M(t_{x})=j_{x}=m$

for all $x\geq\tilde{x}$ and $L(G_{m})=_{a}L$ . Let $\tilde{J}$ be the least $j$ which satisfies $L\subseteq L(\hat{G}_{j})\subseteq L(G_{m})\cup L$ . There exists such
a $\tilde{J}$ because $\mathcal{L}(\hat{\mathcal{G}})$ contains $L$ . Inevitably $L=_{a}L(\hat{G}-)$ . It is straightforward to see $\hat{M}$ converges to $\tilde{J}$. $\square$
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Now we are ready to establish both the desired generalization of Theorem 1 as well as its converse.
Theorem 3. Let $a\in \mathrm{I}\mathrm{N}\cup\{*\}$ , and let $\mathcal{L}=(L_{j})_{j\in \mathrm{I}\mathrm{N}}$ be an indexed family. If $L$ is CLIM $-TX\tau$-inferable,
then there $exi_{S}i\mathit{8}$ an effective procedure $g$ which, for each $j\in$ IN, uniformly enumerates an a-iell-tale for $L_{j}$

with respect to $\mathcal{L}$ .
Proof. Let $M$ be any IIM which $CLIM^{a}-TX\tau$-infers $\mathcal{L}$ with respect to $\mathcal{G}$ . Let $\hat{M}$ and $\hat{\mathcal{G}}$ be chosen in accordance
with Lemma 2. We show that the following procedure $g$ uniformly enumerates a-tell-tales with respect to $L$ .
Note that this procedure is just the same one Angluin [1] has used. For every $j\in 1\mathrm{N}$ let $w_{0},$ $w_{1},$ $w_{2},$ $\ldots$ be any
fixed effective enumeration of $L_{j}$ , and let $\tau_{0},$ $\tau_{1},$ $\tau_{2},$ $\ldots$ be any fixed effective enumeration of all finite sequences
of elements of $L_{j}$ .

Procedure $g$:
“On input $j\in 1\mathrm{N}$ , do the following: Initialize $\sigma_{0}=w_{0}$ , output $w_{0}$ . Execute Stage $0$ (If the computation of

$\hat{M}(w_{0})$ halts without any output, consider that $\hat{M}(w_{0})$ is not equal to any integers.)

Stage $x,$ $x\in 1\mathrm{N}$ : For $y=0,1,2,$ $\cdots$ , compute $\hat{M}(\sigma_{0}\cdot\ldots\cdot\sigma_{xy}. \mathcal{T})$ until the first $y$ is found such that $\hat{M}(\sigma_{0}$ .
$\ldots\cdot\sigma_{x})\neq\hat{M}(\sigma_{0}\cdot\ldots\cdot\sigma_{x}\cdot \mathcal{T}_{y})$ . Then, let $\sigma_{x+1}=\tau_{y}\cdot w_{x+1}$ , output all elements that occur in $\sigma_{x+1}$ , and
go to Stage $(x+1).$”

It is clear that this procedure is effective since $\hat{M}CLIM^{a}- TX\tau$-infers $\mathcal{L}$ . If this procedure executes infinitely
many stages, then $t=\sigma_{0}\cdot\sigma_{1}\cdot\ldots$ becomes a text for $L_{j}$ , because it is containing all and only the elements of
$L_{j}$ . However for this text $t$ , the IIM $\hat{M}$ does not converge. Hence, the assumption is contradicted. Thus there
exists an $m$ such that for all $\tau_{k},\hat{M}(\sigma_{0}\cdot\ldots\cdot\sigma m.\tau_{k})=\hat{M}(\sigma_{0}\cdot\ldots\cdot\sigma_{m})$. Let $l=\hat{M}(\sigma_{0}\cdot\ldots\cdot\sigma_{m})$ . Consequently,
we may conclude that $L_{j}=_{a}L(\hat{G}\ell)$ as well as $L_{j}\subseteq L(\hat{G}_{l})$ , since $\hat{M}$ is assumed to $CLIM^{a}- TX\tau$-infer $\mathcal{L}$ with
respect to $\vec{\mathcal{G}}$ and in accordance with Lemma 2 it converges to supersets. Moreover, in accordance with the
definition of Procedure $g$ we see that the set $Q_{j}$ enumerated on input $j$ satisfies $Q_{j}=(\sigma_{0}\cdot\ldots\cdot\sigma_{m})^{+}$ .

Next we prove that $Q_{j}$ fulfills the Properties (1) through (3) of Definition 4. Obviously $Q_{j}$ is finite and
$Q_{j}\subseteq L_{j}$ , thus Properties (1) and (2) are satisfied. In order to prove Property (3) assume any $L’\in range(\mathcal{L})$

that satisfies $Q_{j}\subseteq L’\subseteq L_{\mathrm{j}}$ . We have to show that $L’=_{a}L_{j}$ . Let $t\sim$ be any text for $L’$ . Since $Q_{j}\subseteq L’$ , we may
directly conclude that $\sigma_{0}\cdot\ldots\cdot\sigma_{m}\cdot t\sim$ is a text for $L’$ , too. ffirthermore, every initial segment $t_{x}\sim$ of $t\sim$ constitutes a
finite sequence of elements from $L_{j}$ , since $L’\subseteq L_{j}$ . Therefore, the construction of the finite sequence $\sigma_{0}\cdot\ldots\cdot\sigma_{m}$

ensures that the sequence $(\hat{M}((\sigma 0^{\cdot}\ldots\cdot\sigma_{m}\cdot t\sim)_{x}))_{x\in \mathrm{I}}\mathrm{N}$ converges to $\ell$ . Finally, since $\hat{M}CLIM^{a}- TX\tau$-infers $\mathcal{L}$

with respect to $\hat{\mathcal{G}}$ , and since $L’\in range(L)$ , we get $L’=_{a}L(\hat{G}\ell)$ . Taking into account that $L’\subseteq L_{j}\subseteq L(\hat{G}\ell)$

we can conclude that $L’\backslash L_{j}=\emptyset$ as well as $a\geq|L(\hat{G}_{t})\backslash L’|\geq|L_{j}\backslash L’|$ . Thus, $L’=_{a}L_{j}$ and $Q_{j}$ is an
$a- \mathrm{t}\mathrm{e}\mathrm{l}\mathrm{l}- \mathrm{t}\mathrm{a}\mathrm{l}\mathrm{e}$

for $L_{j}$ . This proves the theorem.

Now, we can completely characterize inference with anomalies. This is done with the following proposition.
Proposition 5. Let $a\in 1\mathrm{N}\cup\{*\}$ and $\mathcal{L}=(L_{j})_{j\in N}$ be an index family. Then the following conditions are
equivalent.

(i) There $exist\mathit{8}$ an effective procedure which, for every $j\in$ IN, uniformly enumerates an a-tell-tale for $L_{j}$

with respect to $\mathcal{L}$ .

(ii) $\mathcal{L}\in PLIM^{a}$-TXT.

(iii) $\mathcal{L}\in CLIM^{a}$-TXT.

Proof. By Theorem 1, (i) implies (ii). The implication (ii) $arrow(iii)$ is clear by definition. By Theorem 3,
$\mathrm{w}\mathrm{e}\square$

have $(iii)arrow(i)$ .

The following corollaries follow immediately.
Corollary 4. For all $a\in$ ]$\mathrm{N}^{+}$ there $exi\mathit{8}tS$ an indexed family $L_{a}$ such that $\mathcal{L}_{a}\in PLIM^{a_{-}}\tau xT\backslash PLIMa-1$ -TXT.

Proof. Let $a\in 1\mathrm{N}^{+}$ , we define the desired indexed family $\mathcal{L}_{a}=(L_{j})_{j\in \mathrm{N}}$ as follows. Set $L_{0}=\Sigma^{+}$ , and let
$L_{1},$ $L_{2},$

$\ldots$ be the canonical enumeration of all languages obtained by removing just $a$ strings from $\Sigma^{+}$ . It
$\square \mathrm{i}\mathrm{s}$

easy to see $\mathcal{L}_{a}\in PLIM^{a}-TX\tau\backslash PLIM^{a-1}$-TXT.

Corollary 5.
$\cup PLIM^{a}- TXT\subset$ PLIM*-TXT

$a\in 1\mathrm{N}$
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Proof. Let $L_{1},$ $\mathcal{L}_{2},$

$\ldots$ be the indexed families defined above, and let $L$ be the canonical enumeration of all
the languages enumerated in the indexed families $L_{1},$ $L_{2},$

$\ldots$ . It is easily shown that $L\in PLIM^{*}-Tx\tau_{\square ^{\backslash }}$

$\bigcup_{a\in \mathrm{l}\mathrm{N}}$ PLIM-TXT.

Corollary 6. Let $\mathcal{L}$ be any super-finite indexed family, $i.e.,$ $\mathcal{L}$ involves all finite sets and at least one infinite
language L. Then $\mathcal{L}$ is not $PLIM^{*}$ -TXT-inferable.

We finish this section with the following figure that summarizes the results obtained.

$PLIM^{0_{-}}TX \tau\subset PLIM^{1}- TXT\subset\cdots\subset\bigcup_{a\in \mathrm{N}}PLIM^{a_{-}}\tau XT\subset PLIM^{*}$
-TXT

4 Inferability by a Team of IIMs from Text

The next theorem shows that a team of two IIMs has sometimes more learning power than every IIM learning
with anomalies.

Theorem 7. For all $a\in l\mathrm{N},$ $(1,2)PLIM- TX\tau\backslash PLIM^{a_{-}}\tau XT\neq\emptyset$.
Moreover, the next theorem shows that teams of size $a+1$ can be used to correct at most $a$ anomalies

a single machine may make. Note that a similar result has been obtained by Daley [5] in case of learning
recursive functions.

Theorem 8. Let $a\in 1\mathrm{N}^{+}$ . Then, $PLIM^{a}-TX\tau\subseteq(1, a+1)PLIM$ -TXT.

Furthermore, the number $a+1$ of team members used in the above theorem to correct $a$ anomalies cannot
be decreased, as we shall show (cf. Theorem 10). In order to prove this, we need a further generalization of
the tell-tale concept which is provided by the next definition.

Definition 5. Let $\mathcal{L}$ be an indexed family and $L\in range(\mathcal{L})$ .
A set $Q$ is said to be a $0$ -depth tell-tale for $L$ with respect to $\mathcal{L}$ if it satisfies the following conditions:

(i) $Q$ is finite,

(ii) $Q\subseteq L$ , and

(iii) no $L’\in range(\mathcal{L})$ exists such that $Q\subseteq L’\subset L$ .

(that is, $Q$ is an ordinary tell-tale set for $L$).

We proceed inductively. Let $n\geq 1$ . Then a set $Q$ is said to be a $n$-depth tell-tale for $L$ with respect to $\mathcal{L}$ if
it satisfies $fo\mathrm{p}_{o\mathrm{W}i}\mathrm{n}g$ conditions:

(i) $Q$ is finite,

(ii) $Q\subseteq L$ and

(iii) for all $\hat{L}\in range(L),$ $Q\subseteq\hat{L}\subset L$ implies the existence of an $(n-1)$-depth tell-tale for $\hat{L}$ with respect to
$L$ .

Note that an $n$-depth tell-tale is a variation of $n$ -bounded finite tell-tales introduced by Mukouchi [13]. The
next lemma describes a necessary condition for team inference from positive data in terms of $n$-depth tell-tales.

Lemma 9. Let $n\in 1\mathrm{N}$ and let $L$ be any indexed family that is $(1, n+1)PLIM- TX\tau$ -inferable. Then, for all
$L\in range(c)$ , there exists an $n$ -depth tell-tale for $L$ with respect to $\mathcal{L}$ .
Proof. Since $\mathcal{L}\in(1, n+1)PLIM$-TXT, there exists a team $(M_{0}, M_{1\cdot\cdot n},., M)$ of IIMs that $(1, n+1)PLIM- TXT-$
infers $\mathcal{L}$ . We continue with the proof of a technical claim that is very helpful in showing the existence of n-depth
tell-tale. This claim describes that there exists a “locking sequence” (see, [14]) in case of team inference also.

Claim. Let $L’\in range(c)$ and let a be an arbitrary finite sequence which satisfies $\sigma^{+}\subseteq L’$ . Then, there exist
a finite sequence $\tau$ and $k\in\{0,1, \ldots,n\}$ such that

(i) $\tau^{+}\subseteq L’$ , and
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(ii) there exists $j$ such that $M_{k}(\sigma\cdot\tau\cdot\psi)=j$ for every finite (maybe empty) sequence $\psi$ with $\psi+\subseteq L’$ and
$L’=L_{j}$ .

Proof of Claim. Assume there does not exist a pair $(\tau, k)$ which satisfies Conditions (i) and (\"u). Let $w_{0},$ $w_{1},$ $\ldots$

be a fixed effective enumeration of $L’$ . We define finite sequences $\sigma_{0},$ $\sigma_{1},$ $\ldots$ inductively as follows:

(a) $\sigma_{0}=w_{0}$

(b) $(\sigma\cdot\sigma_{0}\cdot\ldots\cdot\sigma_{x}-1)^{+}\subseteq L’$ by inductive definition of $\sigma_{0},$
$\ldots,$

$\sigma_{x-1}$ . Since the team infers $\mathcal{L}$ , there exists
$\tau$ such that $\tau^{+}\subseteq L’$ and $P(\tau)=$ {$(k,j)|$ $M_{k}(\sigma\cdot\sigma 0^{\cdot}\sigma_{1}\cdot\ldots\cdot\sigma_{x-1}\cdot\tau)=j$ and $L_{j}=L’$ } $\neq\emptyset$ . Note
that $|P(\tau)|\leq n+1$ . Let $(k_{1},j_{1}),$

$\cdots,$ $(k_{r},j_{r})$ be any enumeration of $P(\tau)$ . By the assumption, a pair
$(\sigma_{0}\cdot\ldots\cdot\sigma x-1\mathcal{T}, k1)$ does not satisfy (\"u). Hence we may conclude that there is a finite sequence $\psi_{1}$ such
that $\psi_{1}^{+}\subseteq L’$ and $j_{1}\neq M_{k_{1}}(\sigma\cdot\sigma 0^{\cdot}\sigma 1^{\cdot}\ldots\cdot\sigma x-1^{\cdot}\mathcal{T}\cdot\psi 1)$. Since a pair $(\sigma 0^{\cdot}\ldots\cdot\sigma x-1^{\cdot}\tau\cdot\psi_{1}, k1)$ does not
satisfy (ii), there exists $\psi_{2}$ such that $\psi_{2}^{+}\subseteq L’$ and $j_{2}\neq M_{k_{1}}(\sigma\cdot\sigma_{0}\cdot\sigma_{1}\cdot\ldots\cdot\sigma_{x}-1^{\cdot}\tau\cdot\psi_{1}\cdot\psi_{2})$. By iterating
this construction, we effectively find a finite sequence $\psi=\psi_{1}\cdot\psi_{2}\cdot\ldots\cdot\psi r$ which satisfies (i) $\psi+\subseteq L’$ and
(\"u) $M_{k}$ outputs another number than $j$ between $\sigma\cdot\sigma_{0}\cdot\ldots\cdot\sigma x-1^{\cdot}\mathcal{T}$ and $\sigma\cdot\sigma_{0}\cdot\ldots\cdot\sigma_{x}-1^{\cdot}\tau\cdot\psi$ for all
$(k,j)\in P(\tau)$ . Let $\sigma_{x}=\tau\cdot\psi\cdot w_{x}$ .

$t=\sigma_{0}\cdot\sigma_{1}\cdot\ldots$ constitutes a text for $L’$ . However the team can not infer $L’$ from $t$ by construction (infinitely
many mind changes occur). This is a contradiction. Here, the claim is proved.

In order to finish the proof of the lemma, we have to show that every $L\in range(\mathcal{L})$ possesses an n-depth
tell-tale. Assume $L$ does not have any $n$-depth tell-tale. Consider the following $(n+1)$ stages.

Stage $0$ : By the claim, there exist a finite sequence $\tau_{0}$ and $k_{0}\leq n$ such that $\tau_{0}^{+}\subseteq L$ and $M_{k_{0}}$ is locked to $j_{0}$

with $L_{j\mathrm{o}}=L$ having $\tau_{0}$ . Since $L$ does not have any $n$-depth tell-tale, there exists $L^{1}\in range(c)$ which
satisfies $\tau_{0}^{+}\subseteq L^{1}\subset L$ and $L^{1}$ does not have any $(n-1)$-depth tell-tale.

Stage $x(1\leq x\leq n-1)$ : Since $(\tau_{0}\cdot\tau_{1}\cdot\ldots\cdot\tau_{x-1})^{+}\subseteq L^{x}$ , by the claim there exist a finite sequence $\tau_{x}$ and
$k_{x}\leq n$ such that $\tau_{x}^{+}\subseteq L^{x}$ and $M_{k_{x}}$ is locked to $j_{x}$ with $L_{j_{x}}=L^{x}$ having $\tau_{0}\cdot\ldots\cdot\tau_{x}$ . Since $L^{x}$ does not
have any $(n-x)$-depth tell-tale, there exists $L^{x+1}\in range(c)$ which satisfies $(\tau_{0}\cdot\ldots\cdot\tau_{x})+\subseteq L^{x+1}\subset L^{x}$

and $L^{x+1}$ does not have any $(n-x-1)$-depth tell-tale.

Stage $n$ : Since $(\tau 0^{\cdot}\tau_{1}\cdot\ldots\cdot\tau n-1)^{+}\subseteq L^{n}$ , by the claim there exist a finite sequence $\tau_{n}$ and $k_{n}\leq n$ such that
$\tau_{n}^{+}\subseteq L^{n}$ and $M_{k_{n}}$ is locked to $j_{n}$ with $L_{j_{n}}=L^{n}$ having $\tau_{0}\cdot\ldots\cdot\tau_{n}$ . Since $L^{n}$ does not have any O-depth
tell-tale, there exists $L^{n+1}\in range(\mathcal{L})$ which satisfies $(\tau_{0}\cdot\ldots\cdot\tau_{n})+\subseteq L^{n+1}\subset L^{n}$ .

In Stage $n,$ $L^{n+1}\in range(\mathcal{L})$ is defined. Let $t$ be a text for $L^{n+1}$ . Then, $\tau_{0}\cdot\ldots\cdot\tau_{n}\cdot t$ is also a text for $L^{n+1}$ .
However $M_{k_{0}},$ $M_{k_{1},k_{n}}\ldots,$$M$ are locked to $j_{0},j_{1},$ $\cdots$ , $j_{n}$ respectively, having $\tau_{0}\cdot\ldots\cdot\tau_{n}$ . And by the construction,
$L^{n+1}\subset L_{j_{n}}\subset L_{j_{n-1}}\subset\cdots\subset L_{j_{0}}$ . That is, all IIMs are locked to indices of languages which are not equal

$\mathrm{t}\mathrm{o}\square$

$L^{n+1}$ having $\tau_{0}\cdot\ldots\cdot\tau_{n}$ . Hence the team cannot infer $L^{n+1}$ from its text $\tau_{0}\cdot\ldots\cdot\tau_{n}\cdot t$, a contradiction.

Theorem 10. Let $a\in 1\mathrm{N}^{+}$ . Then, $PLIM^{a}-\tau X\tau\backslash (1,a)PLIM- TX\tau\neq\emptyset$ .
Proof. For all $k\in\{0,1, \ldots , a\}$ , let $L^{(k)}$ be the canonical enumeration of all sets obtained by removing just
$(a-k)$ strings from $\Sigma^{+}$ . And let $\mathcal{L}$ be the canonical enumeration of all languages in the indexed families
$\mathcal{L}^{(0)},$ $c^{(1)},$

$\ldots,$
$c(a)$ . Clearly, $L\in PLIM^{a}$-TXT.

On the other hand, we can show $\Sigma^{+}\in range(L)$ does not have an $(a-1)$-depth tell-tale by
$\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{C}\mathrm{a}1\coprod$

induction. Thus, by lemma 9, $\mathcal{L}$ is not $(1, a)PLIM- TX\tau$-inferable.

$PLIM^{}$-TXT $=$

$\cap$

PLIM1-TXT $\subset$

$\cap$

PLIM2-TXT $\subset$

$(1, 1)PLIM$-TXT
$\cap$

$(1, 2)PLIM$-TXT
$\cap$

$(1, 3)PLIM$-TXT
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5 Conclusion

We mainly studied the learnability of indexed families from positive data by IIMs that are allowed to converge
to approximations as well as by teams. In particular, two new infinite hierarchies have been established.

The uniform recursive enumerability of $n$-depth tell-tales could only be proved to be necessary for learning
by a team of $n$ machines with success ratio $1/n$ . On the other hand, it remained open whether or not this
condition is sufficient, too.
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