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1 Introduction

Let ¥ be an alphabet and £* be a free monoid generated by £. One of the
main feature of the study of regular languages (of finite words) over X is the
study of the right congruences (i.e., equivalence relations preserved under the
concatenation from right) of X*.

The next theorem is well known.

Theorem 1 (Myhill-Nerode) The following three conditions for a lan-
guage L C X* is equivalent.

(1) L is regular.

(2) L is a union of some equivalence classes of a right congruence of finite
index.

(3) The equivalence relation ~ defined by :

u~vifforanyz€X*uz€ L& vz el
is a right congruence of finite index.

Moreover, for any regular language L, there exists a one-to-one correspon-
dence between finite automata accepting L and right congruences of finite
index recognizing L in the sense of (2) of the Myhill-Nerode’s theorem.
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In the case of w-regular languages, the situation is not so simple as the case
of regular languages. As shown in Example 1 below, there exists an w-regular
language L which does not have a unique deterministic minimum automaton
accepting L. For the syntactic characterization of w-regular languages, the
results using (two-sided) congruence was obtained by Arnold [1], and the
syntactic right congruence can recognize only the w-languages in the subclass
of w-regular languages [4, 5].

Recently, Do Long Van, B.Le Saéc and I.Litovsky [3] give necessary and
sufficient conditions for finite right congruences to recognize w-regular lan-
guages. Maler and Staiger [4] introduce a notion of a family of right congru-
ences, called a FORC, and show that an w-language L is regular if and only
if it is saturated by a finite FORC.

In this paper, we define simple and normal FORCs, and show that for any
w-language L, L is accepted by a deterministic Biichi (Muller, respectively)
automaton if and only if it is covered (saturated) by a simple (normal) FORC.
Moreover, there exists a one-to-one correspondence between simple (normal)
FORGCs covering (saturating) L and deterministic Biichi (Muller) automata
accepting L.

2 Basic Definitions

For an alphabet X, we call a mapping o € =N an w-word over 3, and write
Q = @ga1ag -+ - where a, = a(n) for each n. The set of all w-words over T
is denoted by £, and that of all finite words over ¥ is denoted by I*, as
usual. For 4 = aga;ay-+-a, € X*, we also denote the (n+1)th letter a, of u
as u(n), 0 < n < m.

The concatenation operation and prefix relation on $* are generalized as
follows. For u € £* and a € £¥, ux is defined to be the w-word obtained
by concatenating u before . If # = ua, then we say that u is a prefiz of 8.
For any u € £* and o € £* U %, we write u £ « if u is a prefix of a.

For K C ¥* and L C X%, we define KL = {ua|u € K and a € L} and
KY = {vv,...| v;,vs,... € K—{e}}, where v;v,...is the w-word obtained
by concatenating v;, vy, ... one after another.

For a € ¥* U XY, we define @ = {a]|a = a(n) for some n}, and o =
{a|a = a(n) for infinitely many n}. That is, a is the set of letters appearing
in a and ¢ is the set of letters appearing infinitely many times in o.



A deterministic finite automaton over ¥ is a quadruple A = (@, %, 6, s),
with the finite set Q of states, the input alphabet X, the transition function
§: Qx X — Q, and the initial state s € Q. (We do not include the usual set
of accepting states in this definition.) For any a € £*UX%, the run Run(4, @)
of A over ais the p € @*UQY such that p(0) = s and p(i+1) = 6(p(i), (7))
for any i.

For a deterministic finite automaton A = (@, X, §,s) and the set F C @
of accepting states, the w-language I(A, F') accepted by (A, F) is defined by:

I(A, F) = {a|Run(4,a) N F # ¢}.

The automaton (A, F) is called a Biichi automaton.

For a deterministic finite automaton A = (Q, X, 6,s) and the set F C 29
of accepting sets of states, the w-language R(A,F) accepted by (A,F) is
defined by:

R(A,F) = {a| Run(A, ) € F}.

The automaton (A, F) is called a Muller automaton.
We define

I={I(A, F)|(A, F) is a Biichi automaton over X},

R = {R(A,F)|(A,F) is a Muller automaton over £}.

That is, I (R, respectively) is the class of w-languages accepted by Biichi
(Muller) automata over ¥. The class R is called the class of w-regular lan-
" guages over X. It is shown [2, 5, 6] that I C R, and L € R if and only if
L = Uizy n iKY for some regular languages J;, K; C X* (i=1,...,n).

Example 1 Let & = {a,b}. The w-language (3*b)* is accepted by two es-
sentially different two state Muller automata (4; = ({0,1},%,6;,0),F;) (i =
0,1) with &o(p, @) = p, bo(p, b) = 1—p for any p = 0,1, Fo = {{0,1}}, 6:(p,a) =
0,8:(p,b) = 1 for any p= 0,1 and F; = {{1},{0,1}}.

0 A1b
b 0“

Note that (Z*b)* is also accepted by the Biichi automaton (A, {1}).

b
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A right congruence ~ of ¥* is an equivalence relation preserved under
the concatenation from right, that is, u ~ v implies uz ~ vz for any ¢ € £*.
A right congruence is said to be finite if it has a finite number of equivalence
classes.

Let ~ be a right congruence of ¥* and u € X*. The equivalence class
of ~ containing u is denoted by [u]., and we simply write [u] if the right
congruence ~ is clear from the context.

For any finite right congruence ~, we can assign a deterministic finite
automaton A. = (¥*/~, X, 6.,[€]), with 6.([u],a) = [ua] for every u €
X* and a € ¥. Conversely, for any deterministic finite automaton A =
(@,X,6,s), we can assign a finite right congruence ~# defined by: u ~4 v
if and only if 6(s,u) = 6(s,v). Note that these establish the one to one
correspondence between finite automata and right congruences, i.e., ~4~=n~
and A.4 is isomorphic to A.

3 Simple FORCs and Normal FORCs

Recently, Maler and Staiger [4] defined a family of finite right congruences,
called a FORC, to study the w-languages. A FORC C is a family of finite
right congruences G = (~,{~[, |u € ¥*}) such that for any u,z,y € &*,
T ~[,) ¥ implies uz ~ uy. The right congruence ~ is called the leading right
congruence of C. We write ~, for ~,) and [z], for [2].,. Thus ~,=~, and
[z]s = [z], for any z € B*, if u ~ v.

We say that a FORC is simple if z ~, y if and only if uz ~ uy for
any u,z,y € X*. In this case the FORC is determined by the leading right
congruence ~, so we call the FORC a simple FORC induced by ~.

We say that a FORC is normal if z ~, y if and only if
(1) uz ~ uy and
(2) {[uv]|v 2 = and wv ~ uzz for some 2}
= {[uv]| v <X y and wv ~ uyz for some z}.

In this case the FORC is determined by the leading right congruence ~, so
we call the FORC a normal FORC induced by ~.

An w-language L is covered by a FORC C = (~, {~y |u € Z*}) if L is
a finite union of w-languages of the form [u][v]* with u ~ uv. An w-language
L is saturated by a FORC C = (~, {~y) | u € Z*}) if [u][v]Y NL # ¢ implies
R[] C .
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The following lemma proved in [4] assures that any FORC covers all of
w-words.

Lemma 2 ([4]) For any FORC C over X, Usmao[t][0]Y = Z¥.
Lemma 3 Any FORC C saturating L covers L.

Proof. Let K = U{[u][v]* |[«][v] N L # ¢}. L C K is clear from the defi-
nition of K and Lemma 2. Since C saturates L, K C L. O

The converse of the above lemma does not always hold, as shown in the
Example 2 below.

Example 2 Let ¥ = {a,b} and ~ be a right congruence with the equivalent
classes {€¢ U £*a,X*b}. Then the simple FORC induced by ~ is (~,{~e
,~p}), where ~ =~ and ~ has the equivalent classes {¢ UX*b, Z*a}. Thus,
(Z*b)¥ = [b][€]y is covered by C. Since (£*b)* N[e][e]e = (*b)¥ N(X*a)¥ # ¢
and (L*a)¥ — (Z*0)¥ # ¢, (X*b)¥ is not saturated by C.

IfaFORCCis hormal, then it saturates any w-languages covered by C.
Lemma 4 If a FORC C is normal, C saturates L if and only if C' covers L.

Proof. It is enough to show that a normal FORC C saturating L covers
L. Let C = (~,{~, |u € £*}) be a normal FORC. For any u,v such that
u ~ uv, we show that o € [u][v]¥ if and only if Run(A.,a) = {[uz]|2z X v}.

It is easy to see that if € [u][v]¥ then Run(A.,a) = {[uz]|z < v}.
Assume Run(A.,a) = {[uz]|z <X v}. Then there exists z,y;,y3,--+ € &~
such that o = zy192..., ¥ ~ & ~ zy; for any i, and {[uz] |z X v} = {[z2] |z <
y;} for any i. It means that v ~, y; for any i. Thus, o € [u][v]7 .

Now, assume o € [ui][v1]¥ N [u][vz]%. It means that Run(A. a) =
{[wz] |z = v1} = {[usz]|z < vo} and [u1][v1]% = [us][vo]s,. Hence C satu-
rates any w-languages covered by C. : o

Lemma 5 If L is covered by a simple FORC induced by ~, then L =
UL, [w][€)s; for some uy, ..., u,.

Proof. Let (~, {~, |u € X£*}) be a simple FORC induced by ~. If u ~ uv,
then € ~, v. Thus, [u][v], = [u][¢e], for any u ~ uv. m]
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4 Main Results

Now we show the main results of this paper.

Theorem 6 An w-language L is in the class I if and only if it is covered by
a stimple FORC. Moreover, there exists a one-to-one correspondence between
Biich: automata accepting L and simple FORCs covering L.

Proof. Let (A = (Q,X%,6,8),F) be a Biichi automaton such that I =
I(A, F). Then

L= J{ulb(s,u) = ¢}{|8(g,v) = ¢}*.
_ , q€EF
Consider the simple FORC induced by ~“. 1t is clear that z ~# y if and
only if é(s,uz) = 6(s, uy). Thus,

L= U [
&(s,u)EF
Hence, L is covered by the simple FORC induced by ~4.

To show the converse, consider a simple FORC induced by ~, and let L =
Ui, [w][€]¥. We define the Biichi automaton (A, F) with F = {[u]]i =
1,...,n}). Then an w-word « is in L if and only if o € [u;][e]%, for some i if
and only if « is accepted by (A., F). Thus, L = I(A., F). O

Theorem 7 Anw-language L is in the class R if and only if it is saturated by
a normal FORC. Moreover, there exists a one-to-one correspondence between
Muller automata accepting L and normal FORCs saturating L.

Proof. Let (4 = (Q,X,6,5),F) be a Muller automaton and L = R(A, F).
We define run(g,a;...a,) is a finite sequence ¢o...¢q, of states such that
go = ¢ and ¢; = 6(¢i—1,a;) for all i, i = 1,...,n. Then

L= {ulé(s,u) = q¢}{v|6(g,v) = ¢ and run(g,v) = F}*
q€FeF

Consider the normal FORC induced by ~“. Then, for any u, z,y such that

uz ~A uy ~A u, 2 ~A yif run(8(s, u), ) = run(8(s, u),y). It is easy to see

that

L = J{[u][*}¢ | 6(s,u) = 6(s,uv) and run(é(s,u),v) € F}




Hence, L is covered by the normal FORC induced by ~#. Since the FORC
is normal, it saturates L.

To show the converse, consider the normal FORC induced by ~, and
let L = Ui, [w][v]% with wv; ~ u;. We construct the Muller automaton
(A, F), where F = {F;|i =1,...,n}), and F; = {[u;2]| z 2 v} for any i.
It is clear that L C R(A,F).

Assume o € R(A,F). Then Run(A, a) = F; for some i. Since [4;] € F}, @
can be written as & = zy1¥,... so that z ~ u; and y; ~,; v; for all j. Thus,
a€L. |

‘References

1] A. Arnold, A syntactic congruence for rational w-languages, T.C.S. 39 (1985
g guag
333-335.

[2] J.R.Biichi, On a decision method in restricted second-order arithmetic, Logic,
Methodology and Philosophy of Science (Stanford Univ. Press, 1960) 1-11.

[3] Do Long Van, B.Le Saéc and I.Litovsky, A syntactic approach to deterministic
w-automata, in Journées Franco-Berges: Automata theory and applications,
Rouen (1991).

[4] O.Maler and L.Staiger, On syntactic congruence for w-regular languages,
L.N.C.S. 665 (1993) 586 — 594.

5] L.Staiger, Finite State w-languages J.C.S.S. 27 (1983) 434-448.
g

- [6] M.Takahashi and H.Yimasa,ki, A note on w-tegular languages, T.C.S. 23 (1983)
217-225.

118



