RIGHT CONGRUENCES FOR ω -REGULAR LANGUAGES

Hideki YAMASAKI

(山崎 秀記, 一橋大学)

Department of Mathematics, Hitotsubashi University Kunitachi, Tokyo 186 Japan

March 9, 1995

1 Introduction

Let Σ be an alphabet and Σ^* be a free monoid generated by Σ . One of the main feature of the study of regular languages (of finite words) over Σ is the study of the right congruences (i.e., equivalence relations preserved under the concatenation from right) of Σ^* .

The next theorem is well known.

Theorem 1 (Myhill-Nerode) The following three conditions for a language $L \subseteq \Sigma^*$ is equivalent.

- (1) L is regular.
- (2) L is a union of some equivalence classes of a right congruence of finite index.
- (3) The equivalence relation \sim defined by :

 $u \sim v \text{ if for any } x \in \Sigma^* \text{ } ux \in L \Leftrightarrow vx \in L$

is a right congruence of finite index.

Moreover, for any regular language L, there exists a one-to-one correspondence between finite automata accepting L and right congruences of finite index recognizing L in the sense of (2) of the Myhill-Nerode's theorem.

In the case of ω -regular languages, the situation is not so simple as the case of regular languages. As shown in Example 1 below, there exists an ω -regular language L which does not have a unique deterministic minimum automaton accepting L. For the syntactic characterization of ω -regular languages, the results using (two-sided) congruence was obtained by Arnold [1], and the syntactic right congruence can recognize only the ω -languages in the subclass of ω -regular languages [4, 5].

Recently, Do Long Van, B.Le Saëc and I.Litovsky [3] give necessary and sufficient conditions for finite right congruences to recognize ω -regular languages. Maler and Staiger [4] introduce a notion of a family of right congruences, called a FORC, and show that an ω -language L is regular if and only if it is saturated by a finite FORC.

In this paper, we define simple and normal FORCs, and show that for any ω -language L, L is accepted by a deterministic Büchi (Muller, respectively) automaton if and only if it is covered (saturated) by a simple (normal) FORC. Moreover, there exists a one-to-one correspondence between simple (normal) FORCs covering (saturating) L and deterministic Büchi (Muller) automata accepting L.

2 Basic Definitions

For an alphabet Σ , we call a mapping $\alpha \in \Sigma^{\mathbb{N}}$ an ω -word over Σ , and write $\alpha = a_0 a_1 a_2 \cdots$ where $a_n = \alpha(n)$ for each n. The set of all ω -words over Σ is denoted by Σ^{ω} , and that of all finite words over Σ is denoted by Σ^* , as usual. For $u = a_0 a_1 a_2 \cdots a_m \in \Sigma^*$, we also denote the (n+1)th letter a_n of u as u(n), $0 \le n \le m$.

The concatenation operation and prefix relation on Σ^* are generalized as follows. For $u \in \Sigma^*$ and $\alpha \in \Sigma^\omega$, $u\alpha$ is defined to be the ω -word obtained by concatenating u before α . If $\beta = u\alpha$, then we say that u is a prefix of β . For any $u \in \Sigma^*$ and $\alpha \in \Sigma^* \cup \Sigma^\omega$, we write $u \leq \alpha$ if u is a prefix of α .

For $K \subseteq \Sigma^*$ and $L \subseteq \Sigma^{\omega}$, we define $KL = \{u\alpha \mid u \in K \text{ and } \alpha \in L\}$ and $K^{\omega} = \{v_1v_2 \dots \mid v_1, v_2, \dots \in K - \{\epsilon\}\}$, where $v_1v_2 \dots$ is the ω -word obtained by concatenating v_1, v_2, \dots one after another.

For $\alpha \in \Sigma^* \cup \Sigma^{\omega}$, we define $\underline{\alpha} = \{a \mid a = \alpha(n) \text{ for some } n\}$, and $\underline{\alpha} = \{a \mid a = \alpha(n) \text{ for infinitely many } n\}$. That is, $\underline{\alpha}$ is the set of letters appearing in α and $\underline{\alpha}$ is the set of letters appearing infinitely many times in α .

A deterministic finite automaton over Σ is a quadruple $A=(Q,\Sigma,\delta,s)$, with the finite set Q of states, the input alphabet Σ , the transition function $\delta: Q \times \Sigma \to Q$, and the initial state $s \in Q$. (We do not include the usual set of accepting states in this definition.) For any $\alpha \in \Sigma^* \cup \Sigma^\omega$, the run $Run(A,\alpha)$ of A over α is the $\rho \in Q^* \cup Q^\omega$ such that $\rho(0) = s$ and $\rho(i+1) = \delta(\rho(i), \alpha(i))$ for any i.

For a deterministic finite automaton $A = (Q, \Sigma, \delta, s)$ and the set $F \subseteq Q$ of accepting states, the ω -language I(A, F) accepted by (A, F) is defined by:

$$I(A, F) = \{\alpha \mid \underline{Run(A, \alpha)} \cap F \neq \emptyset\}.$$

The automaton (A, F) is called a Büchi automaton.

For a deterministic finite automaton $A = (Q, \Sigma, \delta, s)$ and the set $\mathbf{F} \subseteq 2^Q$ of accepting sets of states, the ω -language $R(A, \mathbf{F})$ accepted by (A, \mathbf{F}) is defined by:

$$R(A, \mathbf{F}) = \{ \alpha \mid \underline{Run(A, \alpha)} \in \mathbf{F} \}.$$

The automaton (A, \mathbf{F}) is called a Muller automaton.

We define

$$I = \{I(A, F) | (A, F) \text{ is a Büchi automaton over } \Sigma\},\$$

$$\mathbf{R} = \{R(A, \mathbf{F}) \mid (A, \mathbf{F}) \text{ is a Muller automaton over } \Sigma\}.$$

That is, **I** (**R**, respectively) is the class of ω -languages accepted by Büchi (Muller) automata over Σ . The class **R** is called the class of ω -regular languages over Σ . It is shown [2, 5, 6] that $\mathbf{I} \subset \mathbf{R}$, and $L \in \mathbf{R}$ if and only if $L = \bigcup_{i=1,n} J_i K_i^{\omega}$ for some regular languages $J_i, K_i \subseteq \Sigma^*$ (i = 1, ..., n).

Example 1 Let $\Sigma = \{a, b\}$. The ω -language $(\Sigma^* b)^{\omega}$ is accepted by two essentially different two state Muller automata $(A_i = (\{0, 1\}, \Sigma, \delta_i, 0), \mathbf{F}_i)$ (i = 0, 1) with $\delta_0(p, a) = p$, $\delta_0(p, b) = 1 - p$ for any p = 0, 1, $\mathbf{F}_0 = \{\{0, 1\}\}, \delta_1(p, a) = 0, \delta_1(p, b) = 1$ for any p = 0, 1 and $\mathbf{F}_1 = \{\{1\}, \{0, 1\}\}.$

Note that $(\Sigma^* b)^{\omega}$ is also accepted by the Büchi automaton $(A_1, \{1\})$.

A right congruence \sim of Σ^* is an equivalence relation preserved under the concatenation from right, that is, $u \sim v$ implies $ux \sim vx$ for any $x \in \Sigma^*$. A right congruence is said to be *finite* if it has a finite number of equivalence classes.

Let \sim be a right congruence of Σ^* and $u \in \Sigma^*$. The equivalence class of \sim containing u is denoted by $[u]_{\sim}$, and we simply write [u] if the right congruence \sim is clear from the context.

For any finite right congruence \sim , we can assign a deterministic finite automaton $A_{\sim} = (\Sigma^*/\sim, \Sigma, \delta_{\sim}, [\epsilon])$, with $\delta_{\sim}([u], a) = [ua]$ for every $u \in \Sigma^*$ and $a \in \Sigma$. Conversely, for any deterministic finite automaton $A = (Q, \Sigma, \delta, s)$, we can assign a finite right congruence \sim^A defined by: $u \sim^A v$ if and only if $\delta(s, u) = \delta(s, v)$. Note that these establish the one to one correspondence between finite automata and right congruences, i.e., $\sim^{A_{\sim}} = \sim$ and A_{\sim^A} is isomorphic to A.

3 Simple FORCs and Normal FORCs

Recently, Maler and Staiger [4] defined a family of finite right congruences, called a FORC, to study the ω -languages. A FORC C is a family of finite right congruences $C = (\sim, {\sim_{[u]} | u \in \Sigma^*})$ such that for any $u, x, y \in \Sigma^*$, $x \sim_{[u]} y$ implies $ux \sim uy$. The right congruence \sim is called the leading right congruence of C. We write \sim_u for $\sim_{[u]}$ and $[x]_u$ for $[x]_{\sim_u}$. Thus $\sim_u = \sim_v$ and $[x]_u = [x]_v$ for any $x \in \Sigma^*$, if $u \sim v$.

We say that a FORC is *simple* if $x \sim_u y$ if and only if $ux \sim uy$ for any $u, x, y \in \Sigma^*$. In this case the FORC is determined by the leading right congruence \sim , so we call the FORC a simple FORC induced by \sim .

We say that a FORC is normal if $x \sim_u y$ if and only if

- (1) $ux \sim uy$ and
- (2) $\{[uv] \mid v \leq x \text{ and } uv \sim uxz \text{ for some } z\}$
- $= \{[uv] \mid v \leq y \text{ and } uv \sim uyz \text{ for some } z\}.$

In this case the FORC is determined by the leading right congruence \sim , so we call the FORC a normal FORC induced by \sim .

An ω -language L is covered by a FORC $C = (\sim, {\sim_{[u]} \mid u \in \Sigma^*})$ if L is a finite union of ω -languages of the form $[u][v]_u^{\omega}$ with $u \sim uv$. An ω -language L is saturated by a FORC $C = (\sim, {\sim_{[u]} \mid u \in \Sigma^*})$ if $[u][v]_u^{\omega} \cap L \neq \phi$ implies $[u][v]_u^{\omega} \subseteq L$.

The following lemma proved in [4] assures that any FORC covers all of ω -words.

Lemma 2 ([4]) For any FORC C over Σ , $\bigcup_{u \sim uv} [u][v]_u^{\omega} = \Sigma^{\omega}$.

Lemma 3 Any FORC C saturating L covers L.

Proof. Let $K = \bigcup \{[u][v]_u^{\omega} \mid [u][v]_u^{\omega} \cap L \neq \emptyset \}$. $L \subseteq K$ is clear from the definition of K and Lemma 2. Since C saturates $L, K \subseteq L$.

The converse of the above lemma does not always hold, as shown in the Example 2 below.

Example 2 Let $\Sigma = \{a, b\}$ and \sim be a right congruence with the equivalent classes $\{\epsilon \cup \Sigma^* a, \Sigma^* b\}$. Then the simple FORC induced by \sim is $\{\sim, \{\sim_{\epsilon}, \sim_{b}\}\}$, where $\sim_{\epsilon} = \sim$ and \sim_{b} has the equivalent classes $\{\epsilon \cup \Sigma^* b, \Sigma^* a\}$. Thus, $(\Sigma^* b)^{\omega} = [b][\epsilon]_b$ is covered by C. Since $(\Sigma^* b)^{\omega} \cap [\epsilon][\epsilon]_{\epsilon} = (\Sigma^* b)^{\omega} \cap (\Sigma^* a)^{\omega} \neq \phi$ and $(\Sigma^* a)^{\omega} - (\Sigma^* b)^{\omega} \neq \phi$, $(\Sigma^* b)^{\omega}$ is not saturated by C.

If a FORC C is normal, then it saturates any ω -languages covered by C.

Lemma 4 If a FORC C is normal, C saturates L if and only if C covers L.

Proof. It is enough to show that a normal FORC C saturating L covers L. Let $C = (\sim, {\sim_u \mid u \in \Sigma^*})$ be a normal FORC. For any u, v such that $u \sim uv$, we show that $\alpha \in [u][v]_u^{\omega}$ if and only if $Run(A_{\sim}, \alpha) = {[uz] \mid z \leq v}$.

It is easy to see that if $\alpha \in [u][v]_u^{\omega}$ then $\overline{Run(A_{\sim},\alpha)} = \{[uz] \mid z \leq v\}$. Assume $\underline{Run(A_{\sim},\alpha)} = \{[uz] \mid z \leq v\}$. Then there exists $x, y_1, y_2, \dots \in \Sigma^*$ such that $\alpha = xy_1y_2 \dots, u \sim x \sim xy_i$ for any i, and $\{[uz] \mid z \leq v\} = \{[xz] \mid z \leq y_i\}$ for any i. It means that $v \sim_u y_i$ for any i. Thus, $\alpha \in [u][v]_u^{\omega}$.

Now, assume $\alpha \in [u_1][v_1]_{u_1}^{\omega} \cap [u_2][v_2]_{u_2}^{\omega}$. It means that $\underbrace{Run(A_{\sim}, \alpha)}_{\text{Hence }C \text{ saturates any }\omega\text{-languages covered by }C$.

Lemma 5 If L is covered by a simple FORC induced by \sim , then $L = \bigcup_{i=1}^{n} [u_i][\epsilon]_{u_i}$ for some u_1, \ldots, u_n .

Proof. Let $(\sim, \{\sim_u \mid u \in \Sigma^*\})$ be a simple FORC induced by \sim . If $u \sim uv$, then $\epsilon \sim_u v$. Thus, $[u][v]_u = [u][\epsilon]_u$ for any $u \sim uv$.

4 Main Results

Now we show the main results of this paper.

Theorem 6 An ω -language L is in the class I if and only if it is covered by a simple FORC. Moreover, there exists a one-to-one correspondence between Büchi automata accepting L and simple FORCs covering L.

Proof. Let $(A = (Q, \Sigma, \delta, s), F)$ be a Büchi automaton such that L = I(A, F). Then

$$L = \bigcup_{q \in F} \{u \, | \, \delta(s, u) = q\} \{v \, | \, \delta(q, v) = q\}^{\omega}.$$

Consider the simple FORC induced by \sim^A . It is clear that $x \sim_u^A y$ if and only if $\delta(s, ux) = \delta(s, uy)$. Thus,

$$L = \bigcup_{\delta(s,u) \in F} [u][\epsilon]_u^{\omega}$$

Hence, L is covered by the simple FORC induced by \sim^A .

To show the converse, consider a simple FORC induced by \sim , and let $L = \bigcup_{i=1}^{n} [u_i] [\epsilon]_{u_i}^{\omega}$. We define the Büchi automaton (A_{\sim}, F) with $F = \{[u_i] | i = 1, \ldots, n\}$). Then an ω -word α is in L if and only if $\alpha \in [u_i] [\epsilon]_{u_i}^{\omega}$ for some i if and only if α is accepted by (A_{\sim}, F) . Thus, $L = I(A_{\sim}, F)$.

Theorem 7 An ω -language L is in the class \mathbf{R} if and only if it is saturated by a normal FORC. Moreover, there exists a one-to-one correspondence between Muller automata accepting L and normal FORCs saturating L.

Proof. Let $(A = (Q, \Sigma, \delta, s), \mathbf{F})$ be a Muller automaton and $L = R(A, \mathbf{F})$. We define $run(q, a_1 \ldots a_n)$ is a finite sequence $q_0 \ldots q_n$ of states such that $q_0 = q$ and $q_i = \delta(q_{i-1}, a_i)$ for all $i, i = 1, \ldots, n$. Then

$$L = \bigcup_{q \in F \in \mathbf{F}} \{u \mid \delta(s, u) = q\} \{v \mid \delta(q, v) = q \text{ and } \underline{run(q, v)} = F\}^{\omega}$$

Consider the normal FORC induced by \sim^A . Then, for any u, x, y such that $ux \sim^A uy \sim^A u$, $x \sim^A_u y$ if $\underline{run(\delta(s, u), x)} = \underline{run(\delta(s, u), y)}$. It is easy to see that

$$L = \bigcup \left\{ [u][v]_u^\omega \mid \delta(s,u) = \delta(s,uv) \text{ and } \underline{run(\delta(s,u),v)} \in \mathbf{F} \right\}$$

Hence, L is covered by the normal FORC induced by \sim^A . Since the FORC is normal, it saturates L.

To show the converse, consider the normal FORC induced by \sim , and let $L = \bigcup_{i=1}^n [u_i][v_i]_{u_i}^{\omega}$ with $u_i v_i \sim u_i$. We construct the Muller automaton (A_{\sim}, \mathbf{F}) , where $\mathbf{F} = \{F_i \mid i = 1, \ldots, n\}$, and $F_i = \{[u_i z] \mid z \leq v_i\}$ for any i. It is clear that $L \subseteq R(A, \mathbf{F})$.

Assume $\alpha \in R(A, \mathbf{F})$. Then $\underline{Run(A, \alpha)} = F_i$ for some i. Since $[u_i] \in F_i$, α can be written as $\alpha = xy_1y_2...$ so that $x \sim u_i$ and $y_j \sim_{u_i} v_i$ for all j. Thus, $\alpha \in L$.

References

- [1] A. Arnold, A syntactic congruence for rational ω -languages, T.C.S. 39 (1985) 333-335.
- [2] J.R.Büchi, On a decision method in restricted second-order arithmetic, Logic, Methodology and Philosophy of Science (Stanford Univ. Press, 1960) 1-11.
- [3] Do Long Van, B.Le Saëc and I.Litovsky, A syntactic approach to deterministic ω-automata, in Journées Franco-Berges: Automata theory and applications, Rouen (1991).
- [4] O.Maler and L.Staiger, On syntactic congruence for ω -regular languages, L.N.C.S. 665 (1993) 586 594.
- [5] L.Staiger, Finite State ω -languages J.C.S.S. 27 (1983) 434-448.
- [6] M.Takahashi and H.Yamasaki, A note on ω -regular languages, T.C.S. 23 (1983) 217–225.