
Demonstrating Programs against Adversaries*
1st of $i\downarrow$ March, 1995

櫻井幸– 岩間 -雄
Kouichi SAKURAI Kazzuo IWAMA

九州大学工学部情報工学科
Department of $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{P}^{\mathrm{U}}\mathrm{t}\mathrm{e}\mathrm{r}$ Science and Colllmullication Engilleering,
Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-81, Japan

{sakurai, $\mathrm{i}\mathrm{w}\mathrm{a}\mathrm{m}\mathrm{a}$ } $\copyright \mathrm{c}\mathrm{s}\mathrm{c}\mathrm{e}.\mathrm{k}\mathrm{y}\mathrm{u}\mathrm{s}\mathrm{h}\mathrm{u}-\mathrm{u}.\mathrm{a}\mathrm{C}.\mathrm{j}\mathrm{P}$

Abstract

Methods of demonstrating correctness of programs without revealillg any computillg process
nor computed results are investigated. A protocol to delnonstrate the program to answer whether
two given graphs are isomorphic or not, which is secure against adversaries, is presented. Also, a
theoretical upper bound OI1 the class of problenls having sucll protocols is given, which suggests
the guaranteed security could lower the power of the demonstration systems. Tlle obtained results
are based on no assumptions such as the intractability of factoring or the existence of one-way
functions.

Key Words
Zero-Knowledge Proofs, Program Checking, Graph Isomorphsim Problem,

Bitcommitment scheme, Interactive Protocol, Computational Complexity

1 Introduction

1.1 Our results

Suppose you have discovered an efficient algorithm to solve the graph isomorphism problem. The
graph isomorphism problem is to decide whether two given graphs are isolnorphic or not., i.e. whether
there is a bijective mapping (a permutation) from the nodes of one graph to the nodes of the second
graph such that the edge connections are preserved. Until today, this problem is still unsolved in the
sense that no efficient algorithm for it has yet been found. So, you would strongly like to announce
that you have found a new algorithm for the problem by demonstrating the algorithln (the program).

However, you must do the demonstration carefully so as to reveal as little information as possible in
order to avoid the verifier’s getting important information (e.g. the algorithm, or solutions of instances
etc.) via your demonstration.

$\mathrm{F}^{l}\mathrm{o}\mathrm{r}$ this end, one could try to use the zero-knowledge interactive proof system for membership
of languages (is input x a lnember of language L ?) proposed by Goldwasser et al. [GMR85]. In
particular, Goldreich et al. [GMW86] proposed a protocol to show that two given graphs are isomor-
phic without revealing an isomorphic permutation, and also presented a different protocol to show
that two graphs are not isomorphic without giving any additional information. Let us consider the
following simple protocol obtained from these two GMW-protocols above. If the given two graphs
are isomorphic, then the prover shows the fact to the verifier by the first zero-knowledge protocol for
graph isomorphism. Otherwise, when the two graphs are not isomorphic. then the prover executes
the second zero-knowledge protocol for graph non-isomorphism. Thus you can convince the verifier

${}^{t}\mathrm{A}$ detailed manuscript is available from the first author.

数理解析研究所講究録
906巻 1995年 170-177 170

that your program correctly works for any two graphs, isomorphic or nonisomorphic. Unfortunately,
however, the protocol above leaks the one-bit information that these two graphs are isomorphic or
nonisomorphic, which could be a very important information for adversaries. Namely, the method
does not give a perfect answer to your demand.

This paper designs a new protocol and shows the first theorem.
Theorem I: Under no unproven complexity assumptions, the correctness of the
program to solve the graph isomorphism decision problem is interactively demon-
strated without revealing any information (even against computational unlimited
powerful verifiers).

This paper also explores what programs can be demonstrated via zero-knowledge fashion, and
gives the following.

Theorem II: If the correctness of the program to a function F is interactively
demonstrated without revealing any information, then the bounded error proba-
bilistic polynomial-time algorithm with an oracle to compute the function F is
no more powerful than the bounded error probabilistic polynomial-time algorithm
with an $\mathrm{N}\mathrm{P}$ -oracle, $i.e.$ $BPP^{F}\subseteq BPP^{NP}$.

This result contrasts with the result [LFKN90] that we can demonstrate, if not taking account of
security, the powerful program to compute $\#\mathrm{P}$-complete functions (e.g. computing the pernlanent of
0-1 matrix), and suggests the guaranteed security could lower the power of the demonstration systems.

We do not know if this characterization is tight. For exanlple, it is open whether this kind of
secure demonstration of the program is possible for solving $\mathrm{N}\mathrm{P}$ -complete problems. This question is
related to the important open problenl that $\mathrm{N}\mathrm{P}$ -complete problenls have checkers [BK89].

1.2 Previous results

1.2.1 As for the 1st theorem

Galil et al. [GHY85] investigated minimum-knowledge interactive proofs for decision problenls, in
which the prover tries to inform the verifier the value of functions (particularly 0 or 1 of a boolean
predicate) with revealing nothing to the third eavesdropper. Furthermore, Inlpagliazzo et al. [IY87]
presented a general method for minimum-knowledge proofs of any colnputation. We should note that,
in their minimum-knowledge proofs, the verifier obtains the result of the prover’s conlputation (e.g.
the value of a boolean predicate).

Feige, Fiat, and Shamir [FSS87] initiated the study of protocols which achieve further security such
that even the verifier can get no computation results nor any information. They [FSS87] showed, under
the assumption that secure public key encryption schemes exist, the prover can show that a statement
on a conjecture is true without telling anything new about the conjecture (not even whether the prover
found a proof or a counterexample). However, their result can only be applied to the problems that
belong to NPn co-N P.

Though we can extend the idea in [FSS87] into all languages having interactive proofs by using
the result in $[\mathrm{B}\mathrm{G}\mathrm{G}+88]$, in their argument of $[\mathrm{B}\mathrm{G}\mathrm{G}+88]$ the prover is not practical, i.e. the prover
needs much more power than solving the given problem even though the problem is not so difficult.
Thus, the discussion above fails to meet the original goal of [FSS87]. in which the prover requires
only (minimum) knowledge to solve the problenl. In addition. the one-way functions are required
as a fundamental tool to hide information, hence tlle achieved security is guaranteed against only
computationally bounded adversaries. Thus, $\mathrm{i}\mathrm{t}_{\tau}$ has been opell to find a method of delnonstrating a
prograln to solve the graph isonlorphism against the unlinlited powerful adversary.

Moreover, to emphasis originality of our proposed scheme, we must conlpare our scheme with
Yung’s nlethod [Yun89]. Yung [Yun89] fornlulated a notion of interactive proofs of computational

171

power, which is very similar to our scenario, and proposed a way in which one party can prove posses-
sion of certain computational power without disclosing any algorithmic detail about this computational
task. Yung’s idea uses zero-knowledge proofs of knowledge [FSS87, TW87] as subprotocols and the
outline is that (1) first the verifier randomly selects an instance with a solution, then sends the in-
stance with a zero-knowledge proof that the verifier knows a solution of the instance, and next (2) the
prover, after solving the problem on the instance, shows via a zero-knowledge manner that the prover
knows one of the solutions for the instance. Then the problems to which Yung’s method can apply is
restricted within (probabilistic polynomial-time) “samplable” and “verifiable” problems, and Yung’s
approach seems hard to extend into computational power to solve problems beyond N P. Taking the
graph isomorphism problem, we consider this point. Indeed we may apply Yung’s method above into
the computational power to solve the graph isomorphism problem, however, in this case we fail to
discuss formally that the prover has a power to judge that a given pair of graphs are non-isomorphic
rather than computing an isomorphic permutation between an isomorphic pair of graphs. On the
other hand, in our scheme we can directly deal with such a power and give the strict proof. Thus, our
scheme sugguests zero-knowledge proofs of ability to solve problems beyond N P.

1.2.2 As for the 2nd theorem

The computational complexity of zero-knowledge proofs without any unproven assumption was initially
investigated by Fortnow [For87], then followed by Aiello and Hastad [AH87]. They [For87, AH87]
showed an upper bound that languages having perfect zero-knowledge proofs for membership must lie
in AM \cap co-AM. Combined with the fact that PSPACE-complete languages have interactive proofs for
membership [Sha90], their upper bound [For87, AH87] indicates the zero-knowledgeness could lower
the power of the systems. We must note that the discussion in [For87, AH87] is heavily depended
upon the conditions of GMR-setting, wherein even the powerful prover cannot convince the verifier to
accept in the case when $x\not\in L$.

On the other hand, in our systems wherein the prover demonstrates the program to decide mem-
bership of L , the verifier accepts not only for $x\in L$ but also for $x\not\in L$, unless the prover’s program
is incomplete. Therefore, we cannot apply directly the argument in [For87, AH87] into our situation.
Note that, if we do not consider security of protocols, we can demonstrate very powerful programs
(e.g. computing the permanent of a given 0-1 matrix) as shown by [LFKN90]. Thus, the 2nd theorem
can be viewed as another evidence that the power of proof systems could be restricted by imposed
securities.

1.3 Basic Idea and Techniques Used

1.3.1 Regarding the 1st theorem

The prover have to show two opposite statements that one given pair of graphs are isomorphic and that
another given pair are non-isomorphic in the same manner. Otherwise, one-bit information which a
given pair of graphs belongs to GI or GNI is released. So, instead of interactive proof systems
in the original sense of [GMR85], we watch weak proof systems so called “arguments” (in other
words, computationally sound interactive proofs) [BCC88]. Arguments avoid the prover’s cheating
by assuming that the prover cannot perform some cryptographic task. Consequently arguments are
not proof systems in the sense of [GMR85], becuase in arguments for menbership of a language L ,
a powerful prover can cheat the verifier even for a given $x\not\in L$ if he has enough power to break the
cryptographic assumption.

Thus, a powerful prover convinces the verifier not only for L but also for the \overline{L} . Our basic idea is
to investigate such a cheating prover’s exact power of executing the cryptographic task, and we regard
the conversation between the cheating prover and the verifier as a kind of proofs for the complement
of the given language. The technical outline of the proposed method is that we transform the (zero-

172

knowledge) proof for the language of graph isomorphism [GMW86] into a protocol so that provers
can convince the verifier to accept for non-isomorphism graphs with preserving the propoerty that the
prover cannot convince the verifier without possessing an isomorphism permutation of input graphs..

Fo this goal, we develop a new bit-commitment scheme. This bit-commitment scheme is con-
structed based on the input pair of graphs, and consists of two phases: a conlnlitnlent phase and a
recovering phase, in which two persons sender and receiver communicate. In the conlnlitment phase
the sender, on input a random bit b to be connnitted and auxiliary pair of two graphs (G_{0}, G_{1}) ,
computes in expected polynomial time with an oracle to decide $th\epsilon$ membership of $G’ I$ a conlmitnlent
key com , then sends (C_{70}, G_{1}, Com) to the receiver. The pair (G_{0}, c_{1om}, c) has the properties: (A) in
both cases when $G_{0}\cong G_{1}$ and when $C_{70}^{t}\not\cong G_{1}$, it is possible for the expected polynomial tinle sender
who has an oracle to decide GI to reveal evidence of both $b=0$ and $b=1$ for the conlmitment key.
(B) when $G_{0}^{t}\cong G_{1}$, any sender cannot open both $b=0$ and $b=1$ for a conlmitted key without
possessing an isomorphism pernlutation between G_{0} and G_{1} . As a consequence of the property (A),
in this bitcommitment scheme, no adversary can guess the conllnitted bit b significantly better than
guessing at random, even though adversaries are infinitely powerful.

The full protocol consists of the commitnlent schenle above and the parallel execution of the
original $\mathrm{Z}\mathrm{K}$-proof for graph isomorphism [GMW86]. Recall the parallel execution of the GMW graph-
$\mathrm{i}_{\mathrm{S}\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{o}}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{n}1$ proof, in which the prover sends k-tuple graphs $H=(H_{1}, \ldots, H_{k})$ tllen the verifier
sends $b=$ (b_{1}, \ldots , b_{k}) to ask the prover isonlorphisms between H_{i} and $C_{X}b_{i}$ for $i=1,$ \ldots , k . In
our proposed protocol, the prover commits each bit of the first message H of the GMW-proof, and
instead of sending directly the graphs H , the prover sends the verifier the committed keys of H .
For the verifier’s challenges $b=(b_{1}, \ldots, b_{k})$, the prover sends k-tuple isomorphism permutations with
decommitted information of these conlmitted keys.
To the readers familiar with the Feige-Shamir’s 4-move perfect zero-knowledge argument
for Hamiltonian cycle [FS89]: Our proposed protocol is regarded as a variant of the Feige-Shamir’s
4-move scheme for Hamiltonian cycle [FS89] which is shown to be a perfect zero-knowledge argument.
More precisely,

1. We apply the Feige-Shamir’s protocol into another $\mathrm{N}\mathrm{P}$ -problenl, graph isomorphism instead of
Hamiltonian cycle.

2. We modify the Feige-Shamir’s developed bitcommitment scheme consists of a special discrete
logarithm problem into a bitcommitmemt scheme constructed from a pair of graphs which is the
common input of the prover and the verifier.

As the original $\mathrm{F}\mathrm{S}$-scheme, a powerful cheating prover convince the verifier when the input graphs
are not isomorphic, however, our novel approach is to analyze the exact power of such a cheating
prover and formally show that this cheating requires the power to decide the input pair of graphs are
non-isomorphic.

1.3.2 Regarding the 2nd theorem

Instead of applying the discussion of Fortnow et al. [For87, AH87], we adopt an alternative approach by
Bellare and Petrank [BP92] which is to measure how nluch power is sufficient for the prover to execute
perfect zero-knowledge protocol. They showed that any perfect zero-knowledge interactive proofs
for membership of languages have ($\mathrm{s}\mathrm{t}$,atistical) zero-knowledge interactive proofs for lnembership of
language with probabilistic polynomial-time $\mathrm{N}\mathrm{P}$ -oracle prover, and obtained an upper bound such
that PZKIP \subseteq BPPNP. The upper bound PZKIP $\subseteq \mathrm{B}\mathrm{p}\mathrm{p}\mathrm{N}\mathrm{p}$ by Bellare and Petrank [B P92] is weaker
than the previous one [For87, AH87], however, Bellare and Petrank’s argument can be applied to our
model because the apparent messages exchanged in the transformed protocol is not modified in Bellare
and Petrank’s argument. Thus, our model of demonstrating system clarifies a merit of the argument
by Bellare-Petrank on the.proving power of zero-knowledge proof system.

173

1.4 Overview of this paper

The next section gives the definition of our model on demonsrating programs with remaking previous
definitons of interactive proofs and program checkers. The proofs of the nlain theorems are omitted
from this abstract. Final section mentions some open problems.

2 Defining our model

2.1 Demonstrating the correctness of programs

This paper considers “interactive demonstration of programs” in which a (probabilistic polynomial-
time) demonstrator, who has a program to conlpute a given function, tries to convince that the prover’s
program correctly works to (probabilistic polynomial-time) verifier by interaction for a polynomial
number of rounds with polynomial-sized messages.

Such a variant of interactive proofs is introduced by Bellare and Goldwasser $[\mathrm{B}\mathrm{e}\mathrm{G}\mathrm{S}94]$, wherein
the prover is not unlimited power and must run in probabilistic polynomial time given access to the
given language L as an oracle, in order to clarify how the power of the prover effects the power of
proof systems. This part is the same setting as ours, however, as tlle original interactive proof systems
of GMR, the goal of the prover in their model is to show the verifier that a common input x belongs
to a given language L , and in the case of $x\not\in L$ no prover cannot convince the verifier to accept. On
the other hand, in our model, the prover show not only the fact that $x\in L$ but also $x\not\in L$, so the
prover tries to convince the verifier to accept for every $x\in L\cup\overline{L}=\{0,1\}*$.

We note that such proof systems wherein the prover can convince the verifier to accept for any
element $x\in\{0,1\}^{*}$ include a trivial protocol such that the verifier always accepts without depending
the prover’s answer (e.g. the verifier simply says “

$\mathrm{O}\mathrm{K}$”).
To avoid such trivial protocols, we request another condition that the prover cannot convince the

verifier without power to solve the problem. So, we consider the exact state of provers when the verifier
accepts, and give a formal definition that the prover has a program to compute a given function by
extending the notion of “possession of knowledge” defined in [FSS87] into “possession of programs
which is correctly working [BK89]. ”

2.2 Interactive proofs and program checkers

Interactive proofs, which were introduced by Goldwasser et al. [GMR85], is defined as follows.

Definition 2.1 [GMR85]: Let (P, V) be a pair of probabilistic in teractive TMs . We say that
(P, V) is an in teractive proof for membership of a 1anguage L if V is probabilistic, polyn $o\mathrm{m}i$al-time,
and

1. For every $x\in L,$ V accepts in its in teraction with P on common input x with overwhelming
probability.

2. For every $x\not\in L$, and for every function $P^{*}V$ accepts in its interaction with P^{*} on common
in$p\mathrm{u}tx$ with negligible probability.

Note that the probabilities are $o\mathrm{v}e\mathrm{r}$ the ran $\mathrm{d}om$ choice of both parties in the communication.

Beigel et al. [BBFG91] introduced the following variant in order to discuss how efficient the prover
P can be in an interactive proof for membership of languages.

Definition 2.2 [BBFG91]: Let P be a probabilistic polyn $o\mathrm{m}i\mathrm{a}l$ -time in teractive $or\mathrm{a}cleTM$ and V

be a probabilistic polyn $o\mathrm{m}$ial-ti$\mathrm{m}e$ oracle TM. We say that (P, V) is a competitive interactive p roof
for membersh $\mathrm{i}p$ of a language L if the following $t\mathrm{w}ocon$ditions hold.

174

1. For every $x\in L,$ V accepts in its interaction with P^{L} on $co\mathrm{m}m$on input x with $\mathit{0}$verwhelming
probabili ty.

2. For eve$\mathrm{r}yx\not\in L$, for $e\mathrm{v}\mathrm{e}ry$ function $P^{*},$ V accepts in its interaction with P^{*} on common in$p\mathrm{u}t$

x with n egligible probability.

Before introducing our new model, we recall the notion of program checkers defined by Blum and
Kannan [BK89] as follows.

Definition 2.3 [BK89]: Let C be a p robabilistic polynomial time $or\mathrm{a}cl\mathrm{e}TM$. We say that C a
checker for a function F : $\{0,1\}^{*}arrow\{0,1\}^{*}$ if for all program P an d all $x\in\{0,1\}^{*}$ it is the case that

1. If $P(y)=F(y)$ for all $y\in\{0,1\}^{*}$, then $C^{P}(x)$ accepts with overwhel11 $in\mathrm{g}$ probability.

2. If $P(x)\neq F(x)$, then $C^{P}(x)$ accept8 with 11 egligible probability.

Note that the probabilities are $\mathit{0}$ver the random coin tosses of the checker C .

2.3 The proposed model: denlonstration Systems

Now we give the following definition of our model of demonstrating the correctness of programs for a
function.

Definition 2.4: Let P be a probabilistic polynomial-time interactive oracle TM and V be a proba-
bilistic polynomial-time interactive TM. We say that (P, V) is a program-demonstration for a function
$F:\{0,1\}^{*}arrow\{0,1\}^{*}$ if the following $t\mathrm{w}o$ conditions hold.

1. For every $x\in\{0,1\}^{*},$ V accepts in its interaction with P^{F} on common input x with $\mathit{0}$verwh $\mathrm{e}l$ming
probability, where P^{F} is a probabilistic polynomial $\mathrm{t}i$me oracle TM with an oracle to $co\mathrm{m}$pute
the function F .

2. For any $x\in\{0,1\}^{*}$ and for any $P^{*},$ P^{*} can convince V to accept only if P^{*} actually $co\mathrm{m}$pu tes
the correct value of $F(x)$. A pro $b\mathrm{a}$ bilistic polynomial-ti$\mathrm{m}eo\mathrm{r}\mathrm{a}cleTME$ is used in order to
demonst$r\mathrm{a}t\mathrm{e}P^{*}’ s$ power to $co\mathrm{m}$pu $t\mathrm{e}$ F. Formally:

$\forall a\exists E\forall P^{*}\forall X\forall b\exists c\forall|x|>c$

Prob($P*-V(x)$ accepts) $>1/|x|^{a}$

\Rightarrow Prob $(EP^{1}(X)=F(x))>1-1/|x|^{b}$.

Note that the probabilities above is taken over all of the possible coin tosses of E and V .

Remark 2.5: Yung [Yun89] already formulated a notion of interactive proofs of computational
power, which has a very similar goal to ours. Unlike our definition, Yung’s formulation is not based on
Blum’s checker but founded on the protocols of zero-knowledge proofs of knowledge [FSS87, TW87]
rather than the concept itself in [FSS87, TW87]. Therefore, Yung considered only computational
power to solve problems which is restricted within (probabilistic polynomial-time) “samplable” and
“verifiable” problems. We shall note that our definition based on Blum’s result checking is a funda-
mental approach to deal with a wider class of ability to solve problems beyond N P.

Remark 2.6: Bellare and Goldreich [BG92] criticised previous definitions of proofs of knowledge
[FSS87, TW87], and claimed that we llave to deal with provers who convince the verifier with prob-
ability which is not non-negligible for wider applications. Indeed we shall adopt precisely the idea
of Bellare and Goldreich $[\mathrm{B}\mathrm{G}92]$ however, in this paper, we consider only provers who convince the
verifier with non-negligible probability to clarify our idea of definition and simplify the discussion.

175

Zero-knowledgeness of program-demonstration systems is defined as one of interactive proof system
for membership. We first recall that the view of the verifier is everything he sees during an interaction
with the prover, that is, his own coin tosses and the conversation between hinlself and the prover.

Definition 2.7 [GMR85]: Let $(P, V’)$ be an in teractive protocol and let $x\in\{0,1\}^{*}$. Th e view of
$V’$ on input x is the probability space

$VIEW_{(pV},’)(X)=\{(R, C):R-\{0,1\}^{p(|x|)}\mathrm{i}C-(P-V’[R])(X)\}$,

where p is a polynomial bounding the runni11g time of $V’$, a 11$d(P-V’[R])(X)$ denotes the probability
space of conversations between P an $dV’[R]$ on input $x(tl_{1}e$ probability is taken $o\mathrm{v}e\mathrm{r}$ the all of th e

possible coin tosses of P).

In the case of program-denlonstration for the characteristic function of alanguage L , the condition
of zero-knowledgeness requires that the simulator must exists for both $x\in L$ and $x\not\in L$ (i.e. for
any input $x\in\{0,1\}^{*})$, whereas zero-knowledge proofs for membership of language L discusses the
simulator only for $x\in L$.

Definition 2.8: A program-demonstration (P, V) for a function F is perfect $zero- l\backslash \iota\prime 1$owledge if
th ere exists a simulator S which runs in expected polynomial time, for every $V’$ and for $\forall x\in\{0,1\}^{*}$

$s_{(x;}V’(x))=VIEW(P,V’)(x)$.

Intuitively, the definition above means that the verifier cannot get any information (even the value of
$F(x))$ in its interaction with the prover.

3 Concluding remarks

We do not know if the obtained upper bound in Theorem II is tight. While an evidence for that SAT
cannot have perfect zero-knowledge interactive proofs for membership is given in [For87], it remains
open if the characteristic function of $\mathrm{N}\mathrm{P}$ -complete languages (e.g. SAT) has a perfect zero-knowledge
program-demonstration systems We shall note that even the problem whether SAT has a checker or
not is still unsettled [BK89].

Another fundamental problem is to give a nice characterization of the class of the functions that
have program-demonstration systems. It is already shown that the languages that have interactive
proofs for membership (namely $\mathrm{I}\mathrm{P}$) coincides with PSPACE [LFKN90, Sha90]. Also Blunl and Kannan
[BK89] introduced the following variant class of IP called “function-restricted IP (fr-IP).” which is
related to checkable problems. The set of all decision problelns π for which there is an interactive
proof system for Yes-instances of π satisfying the conditions that the honest prover lnust compute
the function π and any prover (even dishonest one) must be a function from the set of instances to
{Yes,No}. This fr-IP is shown to be equivalent to multi-prover interactive proof systems in which the
honest provers can only answer membership of the language that they are being asked to prove [FRS88,
BFL90].

Let CIP be the class of the languages that have competitive interactive proof systems, namely in
which the honest provers can only answer menbership of the language that they are being asked to
prove. It is easily observed that, for any $L\in \mathrm{C}\mathrm{I}\mathrm{P}\cap \mathrm{c}\mathrm{o}$-CIP, the characteristic function of L has a
program-demonstrating system. An interesting problem is if the converse of this proposition holds or
there exists a language that does not belong to ClPn $\mathrm{c}\mathrm{o}$-CIP, of which characteristic function has a
program-demonstration.

176

References
[AH87] $\mathrm{A}\mathrm{i}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{W}\rangle.$, and Hastad,J., “Statistical zero-knowledge languages can be recognized in two rounds,”

JCSS,vol.42,(1991); preliminary version in FOCS)87.

[BBFG91] Beigel, R., Bellare, M., Feigenbaum, J., and Goldwasser, S., “Languages that are easier than their
proofs,” FOCS’91.

[BCC88] Brassard, G., Chaum, D., and Cr\’epeau, C., “Minilnum Disclosure Proofs of Knowledge,” JCSS. 37,
No.2, (1988).

[BCY89] Brassard, G., Cre’peau, C., and Yung, M., ’‘Constant-round perfect zero-knowledge conlputationally
convincing protocols,)’ TCS, 84, (1991): preliminary version in ICALP)87.

[BFL90] Babai,L, Fortnow,L, and Lund,C., “Non-deterministic exponential time has two-prover interactive
protocols,” FOCS’90.

[BG92] Bellare, M., and Goldreich,O., “On defining Proofs of Knowledge,” CRYPTO’92.
[BeGS94] Bellare, M., and Goldwasser,S., “The complexity of decision versus search,” in SIAM J. Comp.

(1994).
[$\mathrm{B}\mathrm{G}\mathrm{G}^{+_{88]}}$ Ben-Or, M., Goldreich,O., Goldwasser,S., Hastad,J., Kilian,J., Micali,S., and Rogaway.P., “Every-

thing provable in provable in $\mathrm{z}\mathrm{e}\mathrm{r}\mathrm{o}- \mathrm{k}\mathrm{n}\mathrm{o}\mathrm{w}$]edge,)’ CRYPTO’88.
[BK89] Blum,M and Kannan,S., “Designing program that check their work,)’ SToc)89.

[BMO90a] Bellare, M., Micali, S., and Ostrovsky, R., “Perfect Zero-Knowledge in Constant Rounds,” Proc. of
STOC’90,

[BMO90b] Bellare, M., Micali, S., and Ostrovsky, R., “The (true) complexity of statistical zero-knowledge,”
Proc. of STOC’90,

[BP92] Bellare, M., and Petrank, E., “Making zero-knowledge provers efficient,” STOC’92.
[For87] Fortnow, L., “The Complexity of Perfect Zero-Knowledge,” SToc)87.

[FSS87] Feige, U., Fiat, A., and Shaniir, A., “Zero-Knowledge Proofs of Identity,” J. of Cryptology, Vol.1,
(1988); preliminary version in STOC\rangle 87.

[FS89] Feige, U. and Shamir, A., ζ‘Zero-Knowledge Proofs of Knowledge in Two Rounds,” CRYPTO’89.
[FS90] Feige, U. and Shamir, A., “Witness Indistinguishable and Witness Hiding Protocols,” STOC’90.

[GHY85] Galil,Z., Haber,S., and Yung,M., “Minimum-knowledge interctive proofs for decision problelns,)’
SIAM J. of Comput., Vol.18, No.4, (1989): preliminary version in FOCS’85.

[GK90] Goldreich, O. and Krawczyk, H., “On the Composition of Zero-Knowledge Proof Systems,” Proc. of
ICALP’90.

[GMR85] Goldwasser, S., Micali, S., and Rackoff, C., “The Knowledge Complexity of Interactive Proof Sys-
tems,” SIAM J. of Comput., Vol.18, No.1, (1989): preliminary version in SToC)85.

[GMW86] Goldreich, O., Micali, S., and Wigderson, A., “Proofs that Yield Nothing But Their Validity or All
Languages in NP Have Zero-Knowledge Proofs,” FOCS’86.

[IY87] Impagliazzo, R., and Yung, M., “Direct minimuln-knowledge computations,” CRYPTO’87.
[JVV86] Jerrum,M., Valliant,L, and Vazirani,V., “Random generation of combinatorial structures from a

uniform distribution,” TCS vol. 43.
[KST93] K\"obler,J., Sch\"oning,U., and T\’oran, J., “The graph isonlorphism problem: Its structural $\mathrm{c}\mathrm{o}\mathrm{m}_{\mathrm{P}}1\mathrm{e}\mathrm{X}\mathrm{i}\mathrm{t}\mathrm{y},$

)’

Progress in TCS, $Birkh\ddot{a}uSe\gamma,(1993)$.
[FRS88] Fortnow,L., Rompel,J., and Sipser.M., “On the power of multiple-prover interactive protocols,”

$\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e})\mathit{8}8$.
[Lau82] Lautemann,C., “BPP and polynomial hierachy,” IPL vol.17.

[LFKN90] Lund,C., Fortnow,L, Karloff,H., and Nisan,N., “Algebraic methods for interactive proof systems,)’
$\mathrm{F}\mathrm{O}\mathrm{C}\mathrm{S})90$.

[Mat79] Mathon,R., “A note on the graph isomorphism counting problem,” IPL, Vol.8 (1979).
[Sha90] Shamir,A., “IP $=$ PSpAcE,)’ FOCS’90.
[Sip83] Sipser,M. “A complexity-theoretic approach to randonlness\rangle ’’ STOC’83.

[Tod89] Toda, S., “On the computational power of PP $\mathrm{a}\mathrm{n}\mathrm{d}\oplus \mathrm{P},$

” FOCS’89.
[TW87] Tompa, M. and Woll, H., “Random Self-Reducibility and Zero-Knowledge Interactive Proofs of

Possession of Information,)’ FOCS’87.
[Yu.n89] Yung, M. “Zero-knowledge proofs of computational power,)’ Proc. of Eurocrypt’89.

177

