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Abstract

Breadth first construction of OBDDs has been proposed as an output-size sensitive algorithm to cope
with a defect of conventional method. In this paper, we illvestigate applications of this method to the
problems of independent, dominating, and maximal independent sets of a graph. A maximal independent
set corresponds to a prime implicant of the function of independent sets and also of dominating sets.
We show the difficulty in constructing the OBDD of maximal independent sets by the breadth first
construction. But OBDDs of the two other functions can be obtained in an output-size sensitive manner
by the breadth first algorithm and the OBDD of maximal illdependent sets can be constructed with these
two OBDDs, although not in a purely output-size sensitive sense.

1 Introduction

OBDDs (Ordered Binary Decision Diagrams) are useful $1^{\cdot}\mathrm{e}\mathrm{p}_{\Gamma \mathrm{e}}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}$ for Boolean functions, which

can be used for efficient manipulation [1]. Because of their good properties, OBDDs have been investigated
and applied to various fields such as design and formal verification of digital systems, combinatorics, and so
on. In combinatorial problelns, generating and counting the number of all objects satisfying some condition
are sometimes needed, and these computation can be efficiently done with OBDDs.

In almost all the conventional $\mathrm{a}\mathrm{p}\mathrm{p}_{\mathrm{l}\mathrm{o}\mathrm{a}\mathrm{c}\mathrm{h}}\mathrm{e}\mathrm{s}$ using OBDDs, we have to represent problems in Boolean
expressions and apply Boolean operations repeatedly on OBDDs. By these methods, some intermediate
OBDDs may become much larger than the target OBDD and it is desired to construct OBDDs in some
output-size sensitive manner. In [7], a framework is proposed to resolve this difficulty by constructing
OBDDs directly in a top-down fashion from scratch with a breadth $\mathrm{f}\mathrm{f}\mathrm{i}\cdot \mathrm{s}\mathrm{t}$ algorithm. It has been shown that
this algorithm can construct OBDDs with output-size sensitive complexity and be applied to some problems
in graph theory.

The maximal independent sets problem is an interesting and important problem in graph theory and
therefore several efficient algorithms for generating maximal independent sets have been proposed [8, 5, 4].
One of merits to represent maximal independent sets by an OBDD is that we can generate and count the
number of all the maximal independent sets with it and its size is sometimes much smaller than the number
of the sets.

Independent sets and dominating sets have some interesting relationship to maximal independent sets.
The class of functions of independent sets is that of negative $2\mathrm{C}\mathrm{N}\mathrm{F}\mathrm{s}$ and that of dominating sets is a subclass
of positive CNFs of polynomial size. And we can identify a nlaximal independent set with a prime implicant
of the function representing independent sets or donlinating ones respectively. In other words, the sets
of the prime implicants of these two functions can be seen as a dual pair. Therefore generating maximal
independent sets can be seen as generating prime implicants of these two functions $[2, 6]$ . Furthermore,

since a set is maximal independent if and oldy if it is independent and dominating, we can construct an
OBDD of maximal independent sets from the two OBDDs of independent sets and dominating ones.

In this paper, we investigate the complexity to construct the OBDD representing maximal independent

sets of a graph by the breadth first algorithm. The breadth first algorithm of [7] requires a good strategy
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of making subproblems and testing equivalence between two subproblems. However the test of equivalence
between two problems or functions is intractable in general; for example, the problem of equivalence test
between two Boolean expressions is known to be co-NP complete [3]. To support the equivalence test,
we should investigate problems to choose a good representation. Unfortunately, it will be shown that
the equivalence test between two subproblems of the problem of maximal independent sets is also co-NP
complete. This fact states that the OBDD representing maximal independent sets can not be constructed
efficiently by the algorithm as long as we encode subproblenms in a simple and $\mathrm{d}\mathrm{i}\mathrm{r}\mathrm{e}\dot{\mathrm{c}}\mathrm{t}$ way. On the other
hand, the two problems of independent sets and dominating sets have much simpler structures than that of
maximal independent sets. We show how to apply the breadth first algorithm to these problems. Using the
resulting OBDDs, as mentioned above, we can construct an OBDD representing maximal independent sets,
although it may not always be done in output-size sensitive manner.

2 Preliminaries

In this section, we summarize basic notations of OBDDs and introduce the breadth first algorithm.

2.1 $\mathrm{O}\mathrm{B}\mathrm{D}\mathrm{D}_{\mathrm{S}}[1]$

An OBDD is a labelled directed acyclic graph representing a Boolean function. Non-terminal nodes of
an OBDD are called variable nodes and ternlinal ones are constant ones. A variable node is labelled as a
Boolean variable and a constant one a constant $\mathrm{f}\iota \mathrm{m}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ ( $0$ or 1). There is a total order on variables and the
order of the labels of a path from a variable node to a constant node does not contradict it. In the following,
this total order is assumed as $x_{1}<x_{2}<\ldots<x_{n}$ and we define the level of a variable node to be the
subscript of its label. It is assumed that there is a root node and that its level is the smallest in the OBDD.
The Boolean value labelled to a constant node $v$ is denoted as $value[v]\in\{0,1\}$ . The Boolean variable
labelled to a variable node $v$ is denoted as $indeX[v]\in\{x_{1,2,\ldots,n}xx\}$ . From each variable node $v$ , there are
two outgoing edges labelled as $0$ and 1 and the two nodes directed by them are denoted as edge $(v, \mathrm{o})$ and
edge $(v, 1)$ respectively. For each node $v$ , the Boolean function $F[v]$ represented by the subgraph rooted by
$v$ is defined as the following equations

$\{$

$F[v]=value[v]\in\{0,1\}$ if $v$ is a constant node
$F[v]=\overline{x_{i}}\cdot F[edge(v, 0)]+x_{i}\cdot F[edge(v, 1)]$ if $indeX[v]=x_{i}$

(1)

It has been known that there exist two canonical forms for a Boolean function using OBDDs and this is
one of the most delightful merits of OBDDs. These forms are the smallest in some senses, so we define two
$\mathrm{k}\mathrm{i}11\mathrm{d}_{\mathrm{S}}$ of “unnecessary” nodes as follows.

A redundant node $v$ : edge $(v, 0)=edge(v, 1)$

Equivalent nodes $u,$ $v$ : the two subgraphs rooted by $u$ and $v$ are isomorphic.

An OBDD without redundant nodes and equivalent nodes is called as an ROBDD (Reduced OBDD).
An OBDD without equivalent nodes and in which every path from the root node to a terminal one consists
of $n+1$ nodes is called as a QOBDD (Quasi-reduced OBDD). As previously mentioned, it has been proved
that for any Boolean function there are an $\mathrm{R}O$BDD and a QOBDD representing it and that they are
uniquely determined up to isomorphism. It is trivial that the QOBDD is not smaller than the ROBDD for
any Boolean function, but the size ( $=$ number of nodes) of the QOBDD is of the order of the number of
variables times the size of the ROBDD. We will consider mainly QOBDDs rather than ROBDDs for the
rest of this paper.
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2.2 The Breadth First Algorithm for Constructing QOBDDs

A breadth first algorithm for constructing a QOBDD based on (1) is proposed in [7], and Figure 1 shows
an outline of it. This algorithm uses an idea that resembles the branching operation of the $\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{h}- \mathrm{a}\mathrm{n}\mathrm{d}- \mathrm{b}_{0}\mathrm{u}\mathrm{n}\mathrm{d}$

method.
Each node in an OBDD represents a Boolean function, and each subproblem in the $\mathrm{b}_{\Gamma}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{h}-\mathrm{a}\mathrm{n}\mathrm{d}-\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}$

can be seen as representing a Boolean function because there exists a $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ correspondence between the
feasible solutions of the subproblem and the satisfying assignments of the Boolean function. (A subproblem
$P|_{x}::=b_{*}.,xj.--bj,\ldots$ of a problem $P$ is defined by adding the constraints $x_{i}=b_{i},$ $x_{j}=b_{j},$ $\ldots$ to $P.$ ) We can
identify a subproblem with the corresponding function and consider a node $v$ in an OBDD as representing
a subproblem $P[v]$ . The level of $P[v]$ is defined to be the same as that of $v$ .

An algorithm which constructs QOBDDs (for a specified problem) is called output-size sensitive if it has
a time complexity of the order of a polynomial in the size of them and the number of variables. If we can
find good strategies for representing subproblems and testing equivalence among them, we can construct
QOBDDs in output-size sensitive manner using this algoritllm.

procedure CONST $(P)$ :
var $u,$ $v$ : node;

begin
create a root node $v$ ;
$P[v]$ $:=\mathrm{I}\mathrm{N}\mathrm{I}\mathrm{T}(P)$ ;
for $i:=1$ to $n$ do begin

table: $=\phi$ ;
for-all $u\mathrm{s}.\mathrm{t}$ . $indeX[u]=x_{i}$ do

for $b:=0$ to 1 do begin
$P[u]|_{x:b}i=:=\mathrm{R}\mathrm{E}\mathrm{S}\mathrm{T}\mathrm{R}\mathrm{I}\mathrm{c}\mathrm{T}(P[u], Xi, b)$ ;
if $\exists P[u^{l}]\in$ table $\mathrm{s}.\mathrm{t}$ . $(P[u]|x::=b=P)$ then edge $(u, b):=u’$ ;
else begin

create a variable node $u^{l}$ ;
edge $(u,b):=u^{l}$ ;
table $:=table\cup\{P[u]|_{x:=}:b\}$ ;

end;
end;

end;
end;

Figure 1: The Breadth First Algorithm for Constructing the QOBDD for $P$

3 OBDDs Representing Maximal Independent Sets

In this section, we investigate the functions that represent the independent, maximal independent, and
dominating sets of a graph. Then, we examine the breadth first algorithm for these three problems.

3.1 Maximal Independent Sets and Boolean Functions

Let $G=(V, E)$ be a simple undirected graph where $V=\{1,2, \ldots,n\}$ is the set of vertices and $E$ is the
set of edges. $\Gamma(v)$ denotes the set of adjacent vertices of $v$ .
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A set $S\subseteq V$ is called independent if any pair of vertices in $S$ are not adjacent to each other. A set $S\subseteq V$

is called maximal independent if $S$ is independent and there is no independent set that includes properly $S$ .
A set $S\subseteq V$ is called dominating if any vertex is in $S$ or has an adjacent vertex in $S$ . Let IS $(G),$ $DS(c)$ ,
and $MIS(G)$ denote the classes of all the subsets of vertices that are independent, maximal independent, or
dominating, respectively. The next fact is well known in graph theory among these three classes.

Fact 3.1 A set $S\subseteq V$ is maximal independent iff $S$ is independent and dominating.

Here we introduce how we treat a class of subsets by means of a Boolean function. Let $U$ be a finite set
$\{1, 2, \ldots, |U|\}$ . The characteristic vector of $S$ on $U(S\subseteq \mathrm{U})\chi^{U}(S)$ is a $|U|$-dimensional Boolean vector in
$\{0,1\}^{|U|}\mathrm{s}.\mathrm{t}$ .

$\chi_{i}^{U}(s)=\{$

$0$ $(i\not\in S)$

1 $(i\in S)$

We identify an element of $U$ and the coordinate of $\mathrm{x}$ to which it corresponds, as long as there is no
ambiguity. The Boolean function $f_{C}$ representing the class $C$ of subsets of $U$ is defined as:

$f_{C}(\mathrm{X})=1\Leftrightarrow\exists S\in C\mathrm{S}.\mathrm{t}$ . $\mathrm{x}=\chi^{U}(S)$

3.2 A Boolean Expression for Maximal Independent Sets

We can form Boolean expressions of the functions $fIs(G),$ $fDs(c)$ , and $f_{MIS()}c$ as follows:

Proposition 3.1

$f_{IS(G)}$ $=$ $\wedge$ $(\neg x_{u}\mathrm{v}\neg X_{v})$ (2)
$(u,v)\in E$

$f_{DS()}c$ $=$
$\bigwedge_{v\in V}(X_{v}\mathrm{v} x_{u})$ (3)

$u\in^{\mathrm{r}(v)}$

$f_{MIS(}G)$ $=$ $f_{is()}G\wedge f_{D}S(G)$ (4)

The next proposition can be proved where $PI(f)$ denotes the set of the prime implicants of $f$ .

Proposition 3.2 $f_{IS(G)}$ is negative and $f_{DS(G)}$ is positive. strategies for There exist two one-to-one cor-
respondences $R_{IS(G)}$ between $MIS(G)$ and $PI(fIS(c))$ , and $R_{DS(G)}$ between $MIS(G)$ and $PI(f_{DS(}G))$ as
follows.

$X= \bigwedge_{-v\in S}V\neg xv$
$\Leftrightarrow$ $(S,X)\in R_{IS()}c\subseteq MIS(c)\cross PI(f_{Ic)}s_{(})$

$X= \bigwedge_{v\in S}X_{v}$

$\Leftrightarrow$ $(S,X)\in R_{Ds}c)\subseteq(MIS(c)\mathrm{x}PI(f_{DS(}G))$

3.3 The QOBDD Representing Maximal Independent Sets

As stated in section 2.2, the breadth first algorithm requires good strategies for INIT and RESTRICT.
We concentrate on how these can be done efficiently for the rest of this paper. The essential problem of the
algorithm is that it requires equivalence test among subproblems. In the case of maximal independent sets
problem, its complexity is intractable because the following problem $\mathrm{E}\mathrm{Q}$ , which would have to be solved if
trivial representation for subproblems is used in the breadth first algorithm, is co-NP complete.
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Definition 3.1 Problem $EQ$ : Given a graph $G$ , an integer $j$ and two subsets of vertices $V_{1}$ and $V_{2}\subseteq V$ .
Let $U=\{j+1,j+2, \ldots , n\}\subseteq V$ . Two Boolean functions $F_{1}$ ancl $F_{2}$ on the characteristic vector of a subset
$X\subseteq U$ are defined as:

$F_{i}(\chi^{U}(X))=1\Leftrightarrow(V_{i}\cup X)\in MIS(G)$ $(i=1,2)$

Decide whether $F_{1}=F_{2}$ or not.

Theorem 3.1 The problem $EQ$ is co-NP complete.

Proof: It is easy to see that EQ $\in$ co-NP. We will show a polynomial time reduction from $3\mathrm{S}\mathrm{A}\mathrm{T}$ like in [4].
An instance of $3\mathrm{S}\mathrm{A}\mathrm{T}$ is given as a set of clauses $\{c_{1}, C_{2}, \ldots, c_{m}\}$ and a set of variables $\{x_{1,2,\ldots,n}xx\}$ where
a clause $c_{i}=\{l_{i1}, l_{i}2, li3\}$ . We will construct a graph $G$ indicated as follows. $G$ has a vertex for a clause, a
vertex for a literal and an additional vertex $a$ . The vertex $a$ is adjacent to all the others, and $x_{i}$ is adjacent
to $\neg x_{i}$ . For a clause ci, there are three edges: (ci, $l_{i1}$ ), (ci, $l_{i2}$ ), $(c_{i}, l_{i3})$ . Set $j=m+1,$ $V_{1}=\{a, c_{1}\}$ , and
$V_{2}=\emptyset$ .

Let the order of the vertices be as follows:

$a<c_{1}<c_{2}<\ldots<c_{m}<x_{1}<\neg x_{1}<x_{2}<\neg x_{2}<\ldots<x_{n}<\neg x_{n}$

$F_{1}=\perp \mathrm{i}\mathrm{s}$ obvious by the definition of $MIS(G)$ . We can consider that an truth assignment $A$ of $3\mathrm{S}\mathrm{A}\mathrm{T}$

gives an independent set $X_{A}=\{(\neg)X_{i}\in A|1\leq i\leq n\}$ of $G$ and only such a set can be maximal under
$V_{2}=\emptyset$ . If $F_{1}=F_{2}$ , on the other hand, we can conclude that any $A$ does not satisfy all the clauses because
$X_{A}$ is not maximal and there must be a vertex $c_{i}$ that is not dominated by $X_{A}$ . $\square$

Note that we can not conclude that there is no possibility to construct the QOBDD representing $f_{MIS()}c$

with an output-size sensitive complexity even with this fact and $NP\neq P$ . We might be able to find another
approach to construct the QOBDD or a good representation of subproblems and strategy to solve this hard
problem.

3.4 QOBDDs for Independent Sets and Dominating Sets

Here we show two strategies for the problems of independent sets and dominating sets. As mentioned
above, an OBDD that represents $f_{MIS()}c$ can be constructed with a strategy that uses these two strategies
although it may not always be a QOBDD because of its equivalent nodes.

In the following, UNFIX $[i]=\{x_{j}|j\geq i\}$ denotes the set of the variables that are not fixed in subproblems
of level $i$ . If a subproblem is found to be inconsistency (0) or tautology (1), it is represented as $\perp \mathrm{o}\mathrm{r}\mathrm{T}$ ,

respectively, and exceptionally processed, but that will not be mentioned explicitly.

3.4.1 The QOBDD Representing Independent Sets

Here we show a strategy for the independent set problem. If we fix a variable $x_{i}$ to be 1 in a subproblem
$P_{a}$ where some vertex $v$ in $\Gamma(x_{i})$ has been fixed to be 1, the subproblem $P_{a}|_{x_{i}:=1}$ can be decided to $\mathrm{b}\mathrm{e}\perp$ . So
a subproblem $P_{a}$ can be represented by the set that consists of unfixed variables that have adjacent vertices

that have been fixed to be 1. Figure 2 shows the strategies for $f_{IS()}c$ based on this consideration.

Theorem 3.2 The OBDD constructed by the strategies indicated in figure 2 is the QOBDD representing
$f_{IS(}G)$ .
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function INIT$(G)$ : problem;
return $\emptyset$ ;

function RESTRICT $(P[u], Xi, b)$ : problem;
begin

if $b=0$ then return $P[u]-\{x_{i}\}$ ;
else if $x_{i}\in P[u]$ then return $\perp$ ;

else return $P[u]\cup$ ( $\Gamma(x_{i})\cap$ UNFIX $[i+1]$ );
end;

Figure 2: The Strategies for Independent Sets

3.4.2 The QOBDD Representing Dominating Sets

In this section, we show a strategy for the dominating sets problem. We investigate difference between
the Boolean expressions of independent sets and dominating sets. Equation (2) gives a positive $2\mathrm{C}\mathrm{N}\mathrm{F}$ of
$f_{IS()}c$ and the strategy described in the previous section can be recognized to compute a canonical form
of each subproblem in a sense. So we expect that we could get a similar strategy for $f_{DS(G)}$ by computing
canonical forms. Here we describe a strategy for $fDS(G)$ only, but it can be applied to a little wider class of
expressions.

We introduce an equivalence relation $\equiv_{i}$ on $V$ based on the set of unfixed adjacent vertices of each node.
Define a partial order $\prec_{i}$ on the quotient set $V/\equiv_{i}$ of the relation $\equiv_{i}$ . Note that we define only a partial
order on $V/\equiv_{i}$ , but we can define a total order on it and we use it to indicate subscript of a characteristic
vector on $V\not\in\underline{=}_{i}$ .

Definition 3.2

II$i(x_{p})$ $:=$ UNFIX $[i]\cap(\Gamma(x)P\cup\{x_{p}\})$ $(\forall x_{p}\in V)$

$x_{p}\equiv_{i^{X_{q}}}$
$\Leftrightarrow$ $\Pi_{i}(x_{p})=\square i(_{X}q)$ $(\forall x_{p}, X_{q}\in V)$

II $i(S)$ $:=$ $\Pi_{i}(x)$ $(\forall x\in V, S\in V\mathcal{F}-i\mathrm{s}.\mathrm{t}. x\in S)$

$S\prec_{i}T$ $\Leftrightarrow$ II$i(S)\subset\Pi_{i}(T)$ $(\forall S, T\in V\neq\underline{=}_{i}\mathrm{s}.\mathrm{t}. S\neq T)$

The strategy (Figure 3) represents a subproblem of level $i$ with a characteristic vector on $V\mathcal{F}-i$ . We prove
that the strategy constructs the QOBDD representing $f_{DS(G)}$ .

Proposition 3.3 $Vt–i$ is a refinement of $V\mathcal{F}-j$ if $i\leq j$ .

Lemma 3.1 For an equivalence class $S$ and a subproblem $P$ of level $i$ that is not decided to $be\perp$ , the
following is true where $POS(P)$ denotes the set of variables that are fixed to be 1 in the subproblem $P$ .

$P_{S}=1$ $\Leftrightarrow$ $(\mathrm{a})$
“$\exists x\in S$, $\Pi_{1}(x)\cap POS(P)=\emptyset$ ” and $(\mathrm{b})$

“
$\forall T\prec_{i}S$, $P_{T}=0$ ”

Lemma 3.2 Assume that two subproblems $P$ and $Q$ in level $i$ are given and $P\not\leq Q,$ $i.e$ . there exists an
equivalence $clas\mathit{8}S$ in level $i$ such that $P_{S}=1$ and $Qs=0$, then the following holds:

1. if there exists $T$ such that $T\prec_{i}S$ and $Q_{T}=1$ , there exists a feasible solution in $P$ but is not in $Q$ .
That is the next equation holds:

$P(\xi)=1$ and $Q(\xi)=0$ for $\xi\in\{0,1\}n-i+1s.t$ . $\xi_{k}=\{$

$0$ $x_{k+i-}1\in \mathrm{I}\mathrm{I}_{i}(T)$

1 otherwise
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function INIT$(G)$ : problem;
var init: problem;

begin
init $:=1^{|V/\equiv_{1}|}$ ;
return CANON $(\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}, 1)$ ;

end;

function RESTRICT $(P[u], Xi, b)$ : problem
var $Q$ : problem

begin
if $b=0$ then begin

if $\{x_{i}\}\in V\mathcal{F}-i$ and $P[u]_{\{:}x\}=1$ then return $\perp$ ;
for-all $S\in Vf\underline{=}_{i}$ do

$Q_{S}:=$ ( $\exists T\in V\neq\underline{=}_{i-1}\mathrm{s}.\mathrm{t}$ . $\Pi_{i}(S)=\Pi_{i-1}(\tau)-\{x_{i}\}$ and $P[u]_{T}=1$);

end;
else for-all $S\in V\mathcal{F}-i$ do

$Qs:=$ ($\exists T\in Vk-i-1\mathrm{s}.\mathrm{t}$ . $\mathrm{I}\mathrm{I}_{i}(S)=\Pi_{i-1}(T)$ and $P[u]\tau=1$);

return CANON $(Q, i+1)$ ;
end;

function CANON $(P, i)$ : problem;
begin

for $j:=|V|-i+1$ downto 2 do
for-all $S\in V/\underline{=}_{i}\mathrm{s}.\mathrm{t}$ . $|\Pi_{i}(S)|=j$ and $P_{S}=1$ do

if $\exists T\in Vt--_{i}\mathrm{s}.\mathrm{t}$ . $T\prec_{i}S$ and $P_{T}=1$ then $Ps=0$;

return $P$ ;
end;

Figure 3: The $\mathrm{S}\mathrm{t}_{1}\cdot \mathrm{a}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{i}\mathrm{e}\mathrm{s}$ for Dominating Sets

2. otherwise, there exists a feasible solution of $Q$ that is not $fea\mathit{8}ible$ in $P$ , that is,

$P(\xi)=0$ and $Q(\xi)=1$ for $\xi\in\{0,1\}^{n-i}+1s.t$. $\xi_{k}=\{$

$0$ $x_{k+i-}1\in\Pi_{i}(S)$

1 otherwise

Theorem 3.3 The OBDD constructed by the strategies indicated in Figure 3 is the QOBDD representing

$f_{DS(c)}$ .

Proof: A subproblem $P$ is decided to $\mathrm{b}\mathrm{e}\perp \mathrm{i}\mathrm{f}\mathrm{f}P=Q|_{x_{i}:=}0$ and $Q_{\{x\}}:=1$ . Then any $x$ in $\Pi_{1}(x_{i})$ is fixed

to be $0$ in $P$ by lemma 3.1. It proves that $P$ has no feasible solution and that the OBDD represents $f_{DS(G)}$ .
Furthermore we can confirm the OBDD is a QOBDD by lemma 3.2. $\square$

We can see that a characteristic vector $P$ indicates which clauses of equation (3) are left in the subprob-

lem. Therefore we can also devise a similar strategy for positive CNFs because they have unique smallest

forms and we can compute them as canonical forms.

7
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Furthermore, as noticed above, we can obtain an OBDD representing $MIS(G)$ using the strategies for
IS $(G)$ and $DS(G)$ in top-down $\mathrm{f}\mathrm{a}\mathrm{s}\mathrm{l}\dot{\mathrm{u}}\mathrm{o}\mathrm{n}$ , although this OBDD may not be a QOBDD because we could make
equivalent nodes and therefore it may not be in a purely output-size sensitive manner.

4 Conclusion

We have investigated an application of the breadth first algoritlum for constructing QOBDDs to the
problems of the independent sets, dominating sets, and maximal independent sets of a graph. It has been
shown that we have to solve a hard problem to construct the QOBDD of the maximal independent sets
in breadth first manner, although we have shown strategies to apply the algorithm to the problems of
independent sets and dominating sets using their monotonicity.

As future works, we will study possibility to construct the QOBDD of maximal independent sets in
output-size sensitive manner and to apply the breadth first algorithm when the input is limited to a certain
class. We also investigate relationships between the size of the QOBDD of maximal independent sets and
that of independent or $\mathrm{d}_{\mathrm{o}\mathrm{n}\dot{\mathrm{u}}\mathrm{n}\mathrm{a}}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ sets.
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