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Reliable Broadcasting in Product Networks
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Abstract

In this paper we study the reliable broadcasting in product networks. We suppose that the faulty
nodes and faulty links may arbitrarily change the messages that pass through them, and may even
fabricate messages. An n-channel network can tolerate |(n — 1)/2] such arbitrary faults in broadcasting
in the worst case. We prove that the product network of any n component networks is an n-channel
network, and hence it can tolerate [(n — 1)/2] faults in the worst case. If there are f faulty nodes
randomly distributed in the n-product networks, the broadcasting succeeds with a probability higher
than 1 — (46%nf/N) n/ 2], where N is the node number of the n-product network and b is the upper
bound of the node numbers of the n component networks. If only links may fail while all the nodes are

healthy, then ©(L) faulty links that are randomly distributed in the n-product network can be tolerated
with high probability, where L is the link number of the network. :

1 Introduction

1.1 Product Networks

Let Gi = (W, E)) and G; = (V4, E») be two finite undirected graphs. The cartesian product of G; and
G, is defined as G = G x G, with the node-set V =V, x V, = {(z,y) |z € 1,y € V,}. There is an edge
{(z,9), (4,v)} in G iff either z = u and {y,v} € Ey, or {z,u} € E; and y = v. The graphs G; and G,
are called the factors or component networks of G. G consists of |G2| copies of G;, namely the subgraphs
Gz, with node-set {(z1,;)|z; € W1} and edge-set {{(z,22), (¥,2)}|{z,y} € E;}. Analogously, G
has |G| copies z;G; of G; induced by the node-set {(z1,z,) | z; € V3 }.

Figure 1 shows an example of a product network.
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Figure 1: Example of a product network.

This definition can be generalized to a product of n graphs G = (V,E) = G; x G2 X ... x G, with
Gi=(Vi,Ei),1<i<n Itholds V=Vix...xVyand E = {{z1...2n,y1...yn}|3i € {1,...,n}
with {z;,y;} € E; and z j =yj for i # j}. An interconnection topology derived from several component
networks by this product operation is called a product network.

Examples for product networks include the (m; X ... x m,)-mesh (respectively torus) defined as
Lm, X ... X Lm, (respectively R, X ... X Rp,,) (for a linear array L; or a ring R; of length j), the
n-dimensional binary hyper-cube is @, = Qn—; X K3, the generalized hyper-cube GQp = GQ;:—l x Ky,
where K}, is the complete graph of order b, b > 2, the hyper de Bruijn network HD(m,n) = Q,, x DG(n)
(for the binary de Bruijn graph DG(n) of order n) [5] and the hyper Petersen network HP, = Q,_3 x P
[4]. Here an n-dimensional binary hypercube, Q,, has the node-set Vo =28 ={z...zalz; = 0 or
1,1 < i < n}, which is the set of binary strings of length n. There exists an edge between two nodes iff
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their binary labels differ in exactly one bit. A binary de Bruijn graph of order n, DG(n), has the same
node-set as Q, and the edge-set {(21...%n,Z2...2ap)|p, 2i € Z2,1 <1 < n}.

Youssef has proven in [9] that for two graphs Go and G, the product network G = G X Gy has
the diameter d(G) = d(G,) + d(G2), the degree deg(G) = deg(G1) + deg(G2), the average distance
davg(G) = davg(G1) + davg(Ge), and the node-connectivity c(G) = c(G1) + ¢(Ga).

1.2 Fault-Tolerant Broadcasting

Broadcasting is the process of information dissemination in a communication network by which a message
originated at one node (source node) is transmitted to all other nodes in the network [7]. If there exist
faulty links and faulty nodes in the network, the task of fault-tolerant broadcasting is to disseminate the
information from the source node (source node is supposed to be always healthy) to all the healthy nodes
in the network. We say that a broadcasting succeeds if after the broadcasting procedure all the healthy
nodes in the network obtain correct message held by the source node. Recently a lot of attention has been
devoted to fault-tolerant broadcasting [1],[2],[6],[8]. In this paper we study fault-tolerant broadcasting in
product networks. .

There are usually two assumptions of fault type. One is to assume that only fail-stop faults take
place, i.e., a faulty node or link does not transmit any message. It just stops the message. The other one
is to assume that a faulty node or link may behave in arbitrarily harmful performance, i.e., it may not
only stop a message, but also arbitrarily change the message that pass throught it, and even fabricate a
message. The faults we consider in this paper are of such arbitrary type.

In the study of fault-tolerant broadcasting, two situations are usually considered. One is to consider
the maxmum number of faults which can be tolerated in the worst case. Apparently, in this situation
the maxmum number of faults cannot exceed the degree (respectively half degree) of any node in the
presence of fail-stop faults (respectively arbitrary faults). The other situation is that faults are randomly
ditributed in the network, and the relationship between the number of faults and the probability of
successful broadcasting is considered.

We call a graph G an n-channel graph at node u, if there are n spanning trees of G rooted at u, T,
Ty, ..., T,, such that for any node v of G, paths from u to v in different T; are node disjoint. If a graph G
is n-channel graph at every node u, we call G an n-channel graph. We show that an n-channel network
can tolerate |(n—1)/2] arbitrarily-faulty nodes/links in broadcasting in the worst case. In this paper we
do following work:

(1) We prove that the product network of any n component networks G; X Gy X -+- Xx-G, is an
n-channel network. Hence, it can tolerate |(n — 1)/2] arbitrarily-faulty nodes/links in broadcasting in
the worst case.

(2) If every component network G; has n; nodes and n; < b for some constant b, the product network
Gi x G X +++ x Gy, can tolerate WNT{E faulty nodes of arbitrary type that are randomly distributed in

the network with probability larger than 1 — k—["/2}, Here N is the node number of G; X G X -+ - X Gy,.

(3)We exploit the fact that there exist n disjoint paths of length< 3 between any pair of adjacent
nodes in G X G2 % - - - x G, and construct a reliable broadcasting, which tolerates O(L) arbitrarily-faulty
links that are randomly distributed in the network(L is the number of the links in G; x G X - -+ X Gr).

2 Broadcasting in Product of n Networks

Let G be a graph and v be a node of G. We call G to be n-channel at node v if there exist n spanning
trees of G rooted at v, denoted by Ty, T3, - -, Ty, which satisfy the following condition:

For any node u of G, the paths p1 (v, u), p2(v,u), - -, pn(v,u) are node-disjoint except for v and u
where p;(v, u) denotes the path from v to u in T;, 1 <¢ < n. See Figure 2.

We call G an n-channel graph if G is n-channel at every node.

Theorem 1 If G is an n-channel network, then G can tolerate | (n—1)/2] arbitrarily-faulty nodes/links
in the worst case in broadcasting.

Proof: We suppose that every node u of the network G is a processor and has the knowledge about the
topology of the network.

Let node s be the source node and Ty, T3, ..., T, be the n spanning trees rooted at s. For any node
u, the path p;(s,u) from s to u in T} is node-disjoint from the path p;(s,u) in Tj if 1 < # j < n. Node
s holds a message m which is needed to be disseminated to all the healthy nodes in the network.
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Figure 2: G is n-channel at node v if p;(v, u)’s are node-disjoint for any u.

At first, s transmits the message (¢,m) to all its sons in T}, for 1 < i < n. Then every node u in the
network works concurrently in the following way:

When receiving a message (i',m’) from node v, u checks whether v is the father of v in Ty. If yes,
then u saves the message (i',m’) and transmits it to all its sons in T}. Otherwise, u does nothing,.

(Note: (1) If the message received by u is not in form of (i,m’), then u does nothing, (2) If u receives
messages more than one times from a same adjacent node, it only accept the message in the first time. (3)
Since there may exist faults, the message (i’, m’ ) received by u is not necessary to be (i, m), the correct
message. But u regards (i, m’) as correct one if it comes from the father of u in T}.)

After the broadcasting is completed, each node v in G obtains at most n copies of the message,
each from one of Ty, Ty, -, T,,. If there are no more than [(n — 1)/ 2| faulty nodes/links, then at least
[(n+1)/2] paths among p; (s, u), p2(8, u),... , Pn(s,u) are fault free. Hence, more than half of the copies
of message m obtained by u are correct. By majority voting, u can pick out the correct message m. O

In the proof of above Theorem, there is an implicit assumption that every node u knows that the
source node is s. Actually, this assumption can be removed by modifying the broadcasting in the following
way: :

At first, s transmits the message (s,i,m) to all its sons in Ti(s), for 1 < i < n. When receiving a
message (s',i’,m’) from node v, u checks whether v is the father of u in Ti(s'). If yes, then u saves the
message (s',4',m’) and transmits it to all its sons in Ty (s’). Otherwise, u does nothing. Here T;(v)’s
denote the spanning trees rooted at node v, and for any node w, p;(v, w)’s are node-disjoint.

Now we consider the product network of n component networks. Let Gy, Gg, -+, G, be n basic
networks, ¢.e., each G; is a relatively simple graph such as an array, a ring or a small complete graph
etc. In general, we let each G; be a small graph. Denote the product of Gy, Ga, -, Gy, by P(n,G;) =
G1 X G2 X +++ X Gpn. Each node u of P(n, G;) can be wirtten as u =< u;, us,- -, u,, > where u; is a node
of G, for 1 < i < n. In the next Theorem, we prove that P(n,G;) is an n-channel network. We only
need that each G; is connected and a spanning tree of each G; is used.

Theorem 2 P(n,G;) is an n-channel network for any n networks G1,.Go, -+, G,

Proof: To prove P(n, G;) being an n-channel network, we only need to prove that P(n,G;) is n-channel
at every node. Let < sy,59,...,8, > be a node of P(n,G;) and let BT; be a spanning tree of G; rooted
at s; fori = 1,2,...,n. Then from BT,,BT,---, BT,,, we can construct spanning trees Ty,T5,---,T,, of
P(n,G;) rooted at < sy, 83, ..., 8, >. For 1 < i < n, we construct T} as following;:

Let Vi = {< 81,82,..,8i=1, %4, Sit1,-» Sn > |2; € G;}. For any two nodes of Vi, < 81,89,y Si_1,
YisSit1s ey Sn > and < 81, 89, -0y Si_1, Yjy Si41, .+ Sn >, add alink between < s1, 59, ..., $;_1, Yis Sidls-ees S >
and < 81,82,..., 8i_1,Yj, Si41,--- Sp > if and only if there is a link between y; and y; in BT;.

Let Vo = {< 81,82, s i1, T4, Tig15 Sig2,.00 8n > |7, € G; — {8:}, 2541 € Gi11}. For the two nodes of
Vo, < 81,82, 000y 815 Tiy Yisk 15 Sid2y ooy S > and < 81, Sa, ..., si_l,a;;,yéH, 8i42y.e0s Sp >, add a link between
< 81582, 00y Si—15 Tiy Yit 14 Sit2y -0 Sy > and < sy, 89, ..., si_l,:zr,-,yg_,_l, 8§42, ..., 8y > if and only if there is
a link between y;,, and y;,, in BT};;.

Let V3 = {< 51,82,y 8im1y Tis i1, Tit2y Sit3y ey Sp > |zi € Gi — {s:i},2it1 € Gig1, Tig2 € Gita}.
For the two nodes of V3, < s1, 82, ..., Si—1, Zi, Tit1, Yisa, 8i43s ey Sp > ANA < 81,82, .0y 8i1, T4, Tit1,Yipos
5i43, 03 5n >, add a link between < s1,89,..., Si—1,Tiy Tit1,Yit2s Sit43seerr Sn > and < 87,82, ..., Si_1,
TisTit1,Yjtrgs Si43s-s S > if and only if there is a link between y;4» and Yipo in BTy,



Let Vpo1 = {< @1, ey Ti2, Sic1, Tis ey Tn > |2; € Gi—{si}, 2 € Gj for j =i+1,i+2,...,n,1,2, ey b —

2}. For the twonodes of Vi, _1, < @1, .oy Zi—3, Yi=2, Si=1; Tisrees Tn > and < Ty, .oy Tim3, Yi_94 Sim1s Tiyeeey Tn >,

add a link between < &1, ..., i3, Yi—2, Sim1s Tiy ey Tn > ANA < T1,yeeey Tim3y Yi_gy Sim1, Tiyeeny T > if and
only if there is a link between y;_» and y}_, in BT;_,.

Let V;, = {< @1, .00y Tio1, Tis ooy Tn > |T5 € Gi — {8i},2; € Gy, for j # i}. For the two nodes of V;,
& By ey Bie2y Yim1s Tiyeeey T > aNd < T1yeees Tim2y Vi1, Tis oons T >, add a link between < zy,..., %i-2,
Yi1, Tiyerny Ty > ANA < T1yueey Tim2y Yi_1, iy eny & > if and only if there is a link between y;_; and yi_;.

Finally, denote the leftmost son of s; in BT; by t;. Let V4, = {< C1. 22000y Bim1 5 84, Tigly ey T >
|z; € Gj,j # i} —{< s1,82,..., 8n >}. For any node of Viy1, < 1y Bic128is i1y s T >y add a link
between < 1, .oy Ti1y8iyTitlseeeyTp > WA < Ty eeey Tim1sbia Tiglseeer Ty >

Apparently, Vi — {s} C Vo C -+ C V, and V,, U Vay1 U{s} = V(P (i, G:)). It is not difficult to verify
that above connection makes a spanning tree T; of P(n,G;) rooted at < s1, 82, ..., Sn >.

By the method of above construction, we can construct n spanning trees of P(n,G;), T1, 15, ..., In
rooted at s =< sy, 82, ..., 5p >. For any node u =< uy, ug, ..., up > of P(n,G;), we denote the path from
§ =< 81,82, Sn > t0 U =< Uy, Uz, ..., up, > in Tj by pj(s,u) for j = 1,2,...,n. Next we prove that
p1(s,u), pa(8, 1), ..., pu(s, u) are node-disjoint. Hereafter in this paper, when we talk about the nodes of
p;j(s,u), we do not include s and wu.

Suppose that u; = s; for j = 41,82,k 1 <41 <2 <+ < ik < n,and uj; # sj for 1 < j#
11,89, ey bl < N

(1) If § € {41,199,y ik}, then pj(s,u) is node-disjoint with all other p;(s, v) since the j-th component
of all the nodes on p;(s, u) is t;, the lefmost son of s; while for 7 # j the j-th component of all the nodes
on pi(s,u) is s;.

(2) Now we only need to prove that for j, J' # i1,02, .0 and j # §', pj(s,u) and pj(s,u) are
node-disjoint. We denote the number of different components between two nodes w =< wy,...,wn >
and w' =< w},...,w!, > by ND(w,w'), i.e., ND(w, w')=the number of w;’s such that w; # w;. Let v be
a node on p;(s, u), v’ be a node on pj/(s,u) and j # j'. If ND(v,s) # ND(v',s), of course v # v'. If
ND(v, s) = ND(/, s), it is not difficult to see from the construction of T}, Ty, ....Ty, that v # ', a

We suppose that each transmission of message (i,m) via a link takes a unit time, or we say, takes
one step. The time needed by a broadcasting is measured as the number of concurrent steps in the
broadcasting. The quantity of the broadcasting is measured as the total number of transmissions. We
can not give the quantity of the broadcasting if there exist faults in the network since faults may fabricate
message. But if no faults exist, the quantity of the broadcasting should be n(N —1). It is the sum of the
transmission numbers of n spanning trees.

If at each step, each node can transmit a message to all its adjacent nodes, the broadcasting is called
all-port broadcasting. If at each step, each node can transmit a message to only one of its adjacent nodes,
the broadcasting is called one-port broadcasting. Let s =< s1, 82,- -+, 8, > be the source node of P(n,G;)
and hold a message to be disseminated to all healthy nodes in P(n,G;). Let BT; be a spanning tree of
G; rooted at s; for 1 < i < n. Let T; be the n spanning trees of P(n,G) rooted at s =< $1,82,"**,8n >
as described in Theorem 2.

Theorem 3 gives the time needed by all-port broadcasting and the time needed by one-port broadcast-
ing. Here we suppose that in one time unit (or one step), a message (i,m) is allowed to be transmitted
via a link forth and back once, or we say the two adjacent nodes communicate once.

Theorem 3 (1) The all-port broadcasting which tolerates |(n —1)/2] faulty nodes/links needs concur-
rent steps not exceeding 1 + Y., a;i, where a; is the number of concurrent steps needed by the all-port
broadcasting from s; in G; via BT;.

(2) The one-port broadcasting which tolerates |(n — 1)/2] faulty nodes/links needs concurrent steps not
exceeding 2 Z?zl 0;, where 0; is the number of concurrent steps needed by the one-port broadcasting from
s; in G; via BT;.

Proof: (1) The fault-tolerant broadcasting described in Theorem 1 is actually the broadcasting which
consists of n concurrent broadcastings via Ty, Ts, ..., T respectively. Here each T; is a spanning tree
rooted at the source node s, and for any node u of P(rn,G;) paths from s to u in different T;’s are node-
disjoint. If a transmission from v to w via the link (v,w) appears in T;, then there is no transmission
from v to w in Tj for j # i (but it is possible that a transmission from w to v appears in T;). Hence, the
number of concurrent steps needed by the fault-tolerant broadcasting is equal to the maxmum hight of

Ty, Ty, ..., Ty
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The hight of BT; is a;, for 1 < i < n. From the construction in Theorem 2, the hight of T} is equal
to 2131‘#51: a; + maz(a;,2). Since a; > 1 for 1 <4 < n, the hight of T; < 1+ E:lzl a;.

(2) The fault-tolerant one-port broadcasting works in the following way:
There are 2n rounds in the broadcasting. In round 1, o; steps are needed. In round 2, o, steps are
needed. ... In round n, o, steps are needed. In round n + 1, o; steps are needed. ... In round 2n, o,
steps are needed.

Let 1<r<n,1<j<o,and u =< ug,...,Up,..., 4p > be a node of P(n,G;). Let u transmit a
message to u' =< Uy, e, Up—1, ULy Upt1, ..oy Uy > at the j-th step in round r or round n + r if and only if
the following two conditions are satified.

(i) In the one-port broadcasting of G, from s, via BT,, the j-th step is the transmission from u, to

!
U

(ii) The transmission from u to v’ is legal in the broadcasting specified in Theorem 1, i.e., the message
(k,m) that u want to transmit to v’ is from the father of u in T}, and v’ is one of the sons of u in Tj.
There can be at most one legal trnsmission from u to u’ at the j-th step in round r and round n + r.
From round 1 to round n + 1, the sub-broadcasting via T} is completed. From round 2 to round
n + 2, the sub-broadcasting via T is completed. ...
From round n to round 2n, the sub-broadcasting via T}, is completed. The whole broadcasting needs 2n
rounds, totally 2.7, o; steps. (Note: the sub-broadcastings via T}’s do not conflict over any link since
the paths from any node v in different 7;’s are node-disjoint. O

3 Broadcasting with Random Faults

In the above Section, we proved that the product network P(n,G;) can tolerate |[(n — 1)/2] faults in the
worst case. However, in the reality the worst case appear with very small probability. The more reasonable
assumption is that faults are randomly distributed in the network. In this case the broadcasting succeeds
with high probability even much more than |[(n — 1)/2] faults take place.

In this Section, we suppose that faulty nodes are randomly distributed in the network. We study the
relation between the number of faulty nodes and the probability with which the broadcasting succeeds.

Suppose that there are f faulty nodes randomly distributed in the network, i.e., we suppose that
each configuration of the network with f faulty nodes is equally probable. We denote a configuration of
network G with f faulty nodes by C’Cf;, the set of all the configurations with f faulty node by Cé. For any
Cé € Cé, if the broadcasting succeeds in presence of C’é, then we say C'é is a successful configuration.
Otherwise C’é is called a failed configuration. The probability of successful broadcasting in presence of
f random faulty nodes is measured as the ratio of the number of successful C’é’s to |Cé| We denote
the set of all the successful configurations by SCé and the set of all the failed configurations by FCé.
Hence, the probability of successful broadcasting = |SCL|/|CL| = 1— [FCL|/ |CL.

Now we consider the product network P(n,G;). We require each G; be a small graph. Suppose that
there is a bound to the node numbers of all the G;’s, i.e., |Gi| < b for some constant b, 1 < i < n.

Let u be a node of P(n,G;). There are n node-disjoint paths p (s, u), p2(s, u), ..., Pn(s,u) from s to
u. The message is disseminated from s to u through these n paths in the broadcasting. It is easy to see
from the construction of Theorem 2 that there are less than nb nodes on each p;(s,u) for any 1 < i < n.
If in a configuration Cl{’(n,Gi) more than |(n — 1)/2] paths among p;(s,u), p2(s,u), ..., Pa(s,u) have
faulty nodes, then Cﬁ(n’Gi) is said to be a failed configuration on u. Denote the set of all the failed

configuration on u by FC{,(n G,—)(“)' We have
IFCLi< Y [FCL, c ()l
UEP(n,G,‘)
Theorem 4 If there are f faulty nodes randomly distributed in P(n,G;), the broadcasting succeeds. with
[n/2]
a probability higher than 1 — (%i) , where N is the node number of P(n,G;).

Proof: The probability of successful broadcasting in P(n,G;) is

f f f
|SCP(n,G,»)I _ lFCP(n,G,-)] >1 ZveP(n,G,-) |FCP(n‘Gi)(U)|
T oS - i
IC‘If)(n,G,)I ICP(n,G',)I |CP(TI,G‘)I



For any node v of P(n,G;), there are n node-disjoint paths p;(s,v), p2(8,0), ..., Pn(s,v) of length <
bn. By reapedly counting, we have

FC @l < omi (o Y (Y2l

£chuayl 2" (g ) (5200 )

IC.IfJ(n,G;)l ( N )
f

_ n/2 n f(f=1)--(f+1-[n/2])
= N (bn)™/ < n/2] )N(N—1)~--(N+1— fn/2])

[n/21 3 [n/2]
< b*(bn)n/210m (_]{_/_) < (M)

Hence

N

Hence, we obtain

ISCQ(n,G‘.ﬂ 1 apdnf ™
N

f
lCP(n,Gi) l

Corollary 1 For any k > 1, if there are ZIIﬁNn_k faulty nodes randomly distributed in P(n,G;), the broad-
casting succeeds with a probability higher than 1 — k—n/21,

In reference [1], a broadcasting in face of randomly distributed faults is said to be e-safe if the proba-
bility with which the broadcasting succeeds is higher than 1— N~¢. From Corollary 1, our broadcasting is
e-safe if there are Zb{*VW faulty nodes randomly distributed in P(n, G;) for any k > 1, where € is dependent
on both k and b.

Similarly, we can also suppose that there are f faulty links randomly distributed in the network
P(n, G;). By the same method, we have the following Theorem.

Theorem 5 If there are f faulty links randomly distributed in P(n,G;), the broadcasting succeeds with
[n/2]
a probability higher than 1 — (%’iﬁ) , where L is the link number of P(n,G;).

4 'Tolerate ©(L) Faulty Links

In Theorem 5, we consider the situation where f faulty links are randomly distributed in the network
P(n, G;) while all the nodes are healthy. By Theorem 5, the broadcasting succeeds with a probability
higher than 1 — k=I/21 if f = @(L/kn). Here the coefficient of © is a constant dependent on b. Next
we show that in this situation we can modify the broadcasting such that the broadcasting succeeds with
a probability higher than 1 — k~"/21 if f = ©(L/k).

The network P(n,G;) has a spanning tree T'. For example we let T = T,. For any pair of adjacent
nodes of P(n,G;) there exist at least n paths of length < 3 between them. Let u =< uy,ug,...,un > and
U =< Upy ey Ui, Uy Uit 1, .ony Up > Where u; is adjacent with u; in BT;. The n disjoint paths between u
and u' are described as follows:

For k = 1,2, ...,n, we use pg(u,u') to denote the k-th path from u to «'. (But this time the meaning
of py(u,u’) is different from the above.)

If k =1, pp(u,u') is the link between u and u'.

If k # i, pr(u,u’) is the path

u —

K ULy ey U1y bhs Ukpely oey Uim1s Uiy Ui 15 +oey Un >

<ULy eers Uk—15 Thy Ukt 1y ery Uil uia Uig 1y eeey U >

L Upy ooy Ug—15 Uk U1y ) Yi-1) uvlin Ui 1y eeny Up >= u’ )

Here tj is any neighbor of uj in Gj. Actually, It is not difficult to see that there exist 1 +
Zl<j;£i5 degree(u;) node-disjoint paths of length < 3 between u =< uj,Usg,..,u, > and v =<
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ULy ey Uim], Upy Uiy 1,000, Uy, >.  In this section, we only consider the results obtained by exploiting n
node-disjoint paths of length < 3 between any pair of adjacent nodes. It is easy to generalize our results
to the situation where 14+ 3, j#i< degree(u;) node-disjoint paths of length < 3 are exploited.

The modified broadcasting is simple: Consider the broadcasting on P(n,G ;) via the spanning tree T.
We replace each transmission in the broadcasting via T by n transmissions via the n paths of length <
3. We describe it more formally as in follows.

Figure 3: Each link of the spanning tree is replaced by n disjoint paths of length < 3.

Let v and v’ be adjacent in 7. In the broadcasting via T, the message is transmitted from u to u’.
In the modified broadcasting, the message is transmitted from u to v’ through p;(u,u’), pa(u,u’)
Pnlu,u’).

The modified broadcasting needs about 3n times of transmissions as the broadcasting via T needs.
Hence, The modified broadcasting needs about 3 times of transmissions as needed by the broadcasting
described in Section 2. The time (concurrent steps) needed by the modified broadcasting does not exceed
3n times as needed by the the broadcasting in Section 2.

The modified broadcasting behaves much better in tolerating randomly distributed faulty links al-
though it also tolerates at most [(n — 1)/2] faulty links in the worst case.

3 seey

Theorem 6 If there are f faulty links randomly distributed in P(n,G;) and |G) <bforanyl<i<n,
the modified broadcasting succeeds with a probability higher than 1 — (12b%f /L) [r 2] where L denotes the
link number of P(n,G;).

Proof: We denoted a configuration of f faulty links in P(n,G;) by C'P(" G, and the set of all the
C{,(" G by c’ P(n.Gi)" Similarly as before, we denote the set of all the C?, P(n.G,) Which makes the modified
broadcasting succeed by SCY P(n.G:)? and the set of all the Cf P(n.,Gs) which makes the modified broadcasting
fail by FCP(n G+ Let (u,v) be a link of T. Denote the set of all the CP(" ) in which at least [n/2]
paths among p; (u,v), pa(u, v),..., pn(u,v) are faulty by FCP(n ¢, (& v). Apparently,

IFCP(nG | < Z IFCP(nG) u, v)|
(u,v)€T

Since there are at most 3 links along each p;(u, v), still by repeatedly counting, we have

[FCL . 6 (w,0)] < ( /2] )3rn/z1 ( ];1: {Z@ )

Hence
IFC{°$G-')|<N< I'n )3rn/2]( f:FZ;;')

il /2] (%)

P(n,G,')I
) J(F =1 - (f+1-[n/2])
N( [n/2] )3 LE=1)-(E+1=[n/2])

[n/2] 2 n/2]
< br2n3n/2l (%) < (—1% f)

L



Hence, we have

f
ISChncol _,_ FChmgal | _ (12b2f) /2]

f -
ICP(n,Ga-)l |C£(n,G,~)| L

Corollary 2 The modified broadcasting succeeds with a probability higher than 1 — k=1/21 with ©(L)
faulty links randomly distributed in P(n,G;), where the coefficient of © is dependent on k and b.

Corollary 2 shows that the modified broadcasting is e-safe even if there are cL faulty links randomly
distributed in the network, where c is a constanat dependent on both € and k.

5 Conclusions

In this paper we study the reliable broadcasting in product networks. We prove that an n-product
network is an n-channel graph by constructing n spanning trees 71, Ty, ..., T,. The reliable broadcasting
is naturally based on these n spanning trees. It can tolerate | (n—1)/2] faulty nodes/links of arbitrary type
in the worst case. The relation between the number of randomly distributed faults and the probability
with which the broadcasting succeeds is analyzed. Actually, what we give in this paper is a lower bound
of the successful probability. The results are obtained under the assumption |G;| < b. However, if the

concrete number of nodes for each G; is given, our method can be applied to deriving a tighter bound.’

For the situation where only faulty links exist, we give another broadcasting which can tolerate ©(L)
randomly distributed faulty links with high probability.
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