
規則限定 Resolution により証明可能な命題論理式の複雑さ

宮野英次 (Eiji MIYANO) 岩間 –雄 (KazuO IWAMA)
九州大学工学部情報工学科

1. Introduction
Resolution is a proof system for the ($\mathrm{c}\mathrm{o}\mathrm{N}\mathrm{P}$ -complete) family of unsatisfiable CNF predicates
that involves only one rule denoted by $(A+x)(B+\overline{x})arrow(A+B)$. For example,

$f=(x_{1}+x_{2}+x_{3})(\overline{X_{1}}+\overline{x2}+\overline{x_{3}})(x_{1}+\overline{x_{3}})(\overline{x_{2}}+X_{3})(\overline{x_{1}}+x_{2})$

is proved as follows: (i) Merge the 1st and 3rd clauses to get $(x_{1}+x_{2})$. $(\mathrm{i}\mathrm{i})$ Merge this $(x_{1}+x_{2})$

and the 5th one to get (x_{2}) . $(\mathrm{i}\mathrm{i}\mathrm{i})$ Merge the 2nd and 3rd clauses to get $(\overline{x_{2}}+\overline{X_{3}})$. $(\mathrm{i}\mathrm{v})$ Then this
is merged with the 4th one to get $(\overline{x_{2}})$. (v) Now we can get nil $\mathrm{h}\mathrm{o}\mathrm{m}(x_{2})$ and $(\overline{x_{2}})$. Thus f is
proved in five steps.

Resolution is complete, i.e., any unsatisfiable predicate can be proved. However, if we
take the length of proofs into account, Resolution is a relatively weak system. The polynomial
unboundedness, namely, the existence of predicates for which super-polynomial proof-steps are
needed, was first proved for this Resolution [Hak85]. After that the same property has been
proved for more powerful systems like depth-k Frege systems [Ajt88, $\mathrm{B}\mathrm{I}\mathrm{K}^{+}92$]. However, it is
still open if the most powerful Frege system, called Extended Frege, is polynonially-bounded (if
so, NP $=\mathrm{c}\mathrm{o}\mathrm{N}\mathrm{P}$). Several results on the possibility of efficient simulation among proof systems
are also known [Kra91, PU92].

Thus, as the power of proof systems increases, the set of predicates provable in polynomial
time also increases. This is a sure merit. However, as the power increases, it generally becomes
harder to find a proof (a sequence of rule applications as given at the beginning) itself. Since
the essential goal of proof systems is to find proofs, that could be an important demerit. This
is the reason why a lot of research has been done to “decrease” the power of proof systems
by means of, e.g., making the rules simpler $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ imposing several kind of restrictions to
nondeterminism [GHRS93]. Actually, proofs can be found in deterministic poly-time for several
restricted systems such as Unit-Resolution and $\mathrm{H}\mathrm{o}\mathrm{m}$-Resolution [MSS90].

In this paper we investigate “the tree-form restriction” which has been popularly used for
many proof systems [Kra91, IP94] and impose it to Resolution. Tree-Resolution is a Resolution
but each clause can be used at most once in its proof. (In the proof given above, the 3rd clause
is used twice.) Then the proof can be drawn as a binary tree instead of a directed acyclic graph
in normal Resolution. Tree-Resolution runs in polynomial time for every predicate, namely the
set of provable predicates is now in $\mathrm{N}\mathrm{P}$. Not surprisingly, therefore, it is no longer complete;
such a simple predicate as above f cannot be proved (see Sec. 2). Thus the restriction seems to
be very strong and it is somehow reasonable to expect its benefit, easiness of finding proofs.

Unfortunately, as is shown in this paper, Tree-Resolution is still intractable and it consti-
tutes a rich hierarchy in terms of the repeated use of clauses. Let $R(k)$ be the set of predicates
that are proved by Resolution with at most k repetitions of clauses (see Sec. 2 for details).
Namely $R(\mathrm{O})$ is the set of predicates provable by Tree-Resolution and the opening example f

is in $R(1)$. Our main results include: (i) $R(\mathrm{O})$ is $\mathrm{N}\mathrm{P}$-complete, and (ii) $R(k)-R(k-1)$ is
D^{P} -complete for any positive integer k .

数理解析研究所講究録
906巻 1995年 47-54 47

We may conclude that the tree-form restriction, although popular in many proof systems,
does not pay in the case of Resolution; it appears to lose too much power (even $R(1)-R(\mathrm{O})$ is
D^{P} -complete) and is still intractable. It is a little surprising that only one more application of
the clause repetition increases the set of provable predicates enormously.

2. Propositional Proof Systems
In this paper, only CNF predicates are considered. A literal is a logic variable x or its negation
\overline{x} . A clause is a sum of literals like $(x_{1}+\overline{x_{2}}+\overline{x_{3}})$ but it cannot hold two or more same
variables; so those like $(x_{1}+x_{1}+x_{2})$ and $(\overline{x_{1}}+x_{1}+x_{2})$ are prohibited. A special clause
that consists of 0 clauses is denoted by nil. A (CNF) predicate is a product of clauses like
$f=(x_{1}+\overline{x_{2}}+\overline{x_{3}})(X_{2}+x_{3})(\overline{X_{1}})(X2+x_{3})$. Sometimes we regard that a predicate is a (multi)set
of clauses, i.e., above f is a set of four clauses. (Note that f contains two same clauses, which is
allowed.) A specific assignment of true (or 1) and false (or 0) into the variables determines the
value (true or false) of the whole predicate, which is calculated in the usual way. For example,
above $f=1$ for assignment $(x_{1,2,3}xX)=(0,0,1)$. If an assignment makes the value of some
clause false, then it is said that the assignment $i\mathit{8}$ covered by that clause. A predicate is said
to be satisfiable (unsatisfiable) if there is an (no) assignment that makes the predicate true.
In other words, a predicate is unsatisfiable iff every assignment is covered by some clause. As
mentioned above, $(0,0,1)$ is covered by no clause of f and so f is satisfiable.

Resolution is a proof system to show the unsatisfiability of a given predicate, which can
be formulated as a nondeterministic algorithm as follows:

Algorithm $Re\mathit{8}olution$

Input: predicate $f=\{C_{1}, C_{2}, \cdots, C_{n}\}$

Step 1. Let $S=f$.
Step 2. Apply either the following (i) or (ii).

(i) Select any clause C in S nondeterministically and replace it by two $C’ \mathrm{s}$, i.e., $Sarrow S\cup\{C\}$.
(The variable S holds a multiset.)

(ii) Select nondeterministically two clauses C_{i} and C_{j} in S satisfying that there is exactly one
variable, say, x , such that C_{i} contains x and C_{j} contains \overline{X} . Then replace those C_{i} and C_{j}

by a single clause C_{ij} containing of all the other (possibly zero) literals of C_{i} than x and
all the other (possibly zero) literals of C_{j} than \overline{x} . (If some literal, say, y , appears both in
C_{i} and $c_{j,y}$ appears in C_{ij} only once.)

Step 3. If S contains nil then halt and output “
f is unsatisfiable”. Otherwise return to Step 2.

A prooffor a predicate f is a sequence of predicates $S_{0}=f,$ $s_{1},$ $\cdots,$
$S_{i},$

$\cdots,$ $Sm=nil$ where
each $S_{i}(i=1, \cdots, m)$ is the value of variable S at the end of $i\mathrm{t}\mathrm{h}$ round of Step 2. Note that in
(ii) of Step 2, C_{i} and C_{j} are removed from S . If we need them later, we should duplicate them
by (i) in advance.

Proposition $1[\mathrm{D}\mathrm{P}60]$. Any unsatisfiable predicate can be proved by Resolution. Namely
Resolution is complete.

Proof systems based on axioms and inference rules are generally called Frege $\mathit{8}ystemS$. In
this sense, Resolution can be regarded as a specific depth-2 Frege system. (Depth-2 means that
only CNF formulas are involved.) For comparison, we introduce the most powerful depth-2 Frege
system [PU92], denoted by $\mathit{2}Foege$, as the following nondeterministic generator: (Resolution can
also be changed into the form of generators easily.)

48

Generator $\mathit{2}F\Gamma ege$

Step 1. This time, variable S holds a (multi)set of predicates (not clauses as before). Let S be
the empty set initially.

Step 2. Apply one of the following rules:
(i) Add predicate $x_{0^{\overline{X}}0}$ to S. (We often use this simplified notation instead of $(x_{0})(\overline{X0})$.)
(\"u) Select (nondeterministically, the same for below) a predicate f in S and duplicate it.
(iii) Select a predicate f and if f contains two same clauses then delete one of them.
(iv) Select a predicate f and replace it by fA where A may be any clause.
(v) Select a predicate f , a clause in f and a literal in the clause. Then delete that literal.
(vi) Select two predicates f_{1} and f_{2} that can be written as $f_{1}=Af$ and $f_{2}=Bf$ (A and B

are single clauses. Namely f_{1} and f_{2} differ in only one clause.) Then replace f_{1} and f_{2} by
single predicate $(A+B)f$ (or by f if A contains x and $B_{\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{s}\overline{X}$ for some variable x).

(v\"u) Select two predicates f_{1} and f_{2} that can be written as $f_{1}=(x)f_{1}’$ and $f_{2}=(\overline{x})f_{2}’$ for
some variable x . Then replace f_{1} and f_{2} by single predicate $f_{1}’f_{2}’$.

Step 3. Output any predicate in S and halt, or return to Step 2.

Proposition 2. $\mathit{2}Frege$ is complete.

Basic difference between Resolution and $\mathit{2}Frege$ is that during the course of $Re\mathit{8}oluti_{on}$, only
one (unsatisfiable) predicate, g , is involved and a new predicate, $g’$, is obtained by a modification
of g . In $\mathit{2}Ft\mathrm{e}ge$, many (unsatisfiable) predicates are involved and a new predicate can be derived
from two (or one) such predicates. (Resolution also involves a lot of clauses each of which may
be regarded as a predicate. However, such a predicate ($=$ clause) cannot be an unsatisfiable
predicate excepting nil.) It is not hard to see that $\mathit{2}Frege$ p-8imulates Resolution, namely, if there
is a Resolution proof of length t for a predicate f then there is a $\mathit{2}Frege$ proof of poly (t) steps
for f . The converse is not true [Urq87]. So, $\mathit{2}Frege$ is more powerful than Resolution. Neither
$Re\mathit{8}olution$ nor $\mathit{2}Frege$ is polynomially bounded [Ajt88, $\mathrm{B}\mathrm{I}\mathrm{K}^{+}92$, Hak85, Urq87], i.e., predicates
for which we need exponential steps exist for both proof systems.

Note that there is a duplication rule both in $Re\mathit{8}olution$ and $\mathit{2}F\Gamma ege,$ (i) of Step 2 and (ii)
of Step 2, respectively. If we eliminate this duplication rule, then the proof can be expressed in
the form of a binary tree (each leaf is a clause in Resolution and $x_{0}\overline{x_{0}}$ in $\mathit{2}F_{\Gamma eg}e$). This tree-form
restriction is a popular one to make many systems simpler but the power of systems usually
decreases. It is known [Kra91] that we need $\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{h}_{-}(k+1)\mathrm{b}\mathrm{e}\mathrm{e}$-Rege to p-simulate depth-k
Frege without the tree-form restriction. Also, Haj\’os Calculus (HC) is strictly more powerful
than Tree-HC [IP94]. Here HC is a proof system for non-k-colorable graphs. However, in these
cases, the $\mathrm{t}r\mathrm{e}\mathrm{e}$-form reduction does not destroy the completeness of proof systems.

In the case of $Re\mathit{8}oluti_{on}$, the tree-form restriction makes it severely less powerful. Tree-
Resolution is no longer complete. Take a look at the opening example again:

$f=(_{X_{1}+x}2+X3)(\overline{x_{1}}+\overline{X2}+\overline{X3})(X1+\overline{X3})(\overline{x2}+x3)(\overline{x_{1}}+x_{2})$.
$\tau_{\Gamma ee-}Re\mathit{8}olution$ cannot prove this f . (Reason: Each of the eight assignments $(x_{1}, x_{2}, X_{3})=$

$(0,0, \mathrm{o})\mathrm{t}\mathrm{h}r$ough (1, 1, 1) is covered by only one clause. Any application of the rule, say, $(x_{1}+x_{2}+$

$X_{3})$ and $(x_{1}+\overline{x_{3}})$ being replaced by $(x_{1}+x_{2})$, reduces the number of the covered assignments at
least one, $\mathrm{h}\mathrm{o}\mathrm{m}$ three to two in the case of these two clauses). At the same time, the restriction
makes the system very simple; $\tau_{ree-}Re\mathit{8}olution$ now runs in polynomial time for any input
predicate because a single application of the rule decreases the size of S by one.

49

From these observations, it might be reasonable to conjecture that if a formula can be
proved by πee-Resolution (in polynomial time), then one could find its proof in deterministic
polynomial time. If this is true, then it could be a good news for theorem proving, because many
formulas in practice could be proved by Tree-Resolution or they could be transformed to such
ones by simply repeating some clauses a few times. In this paper, we $\mathrm{p}r$ove that this conjecture
is probably not true.

3. Main Results
Suppose that $k(n)$ is a fumction in n and let $R(k(n))$ denote a set of predicates f that can be
proved by Resolution using (i) of Step 2, often called the duplication rule, at most $k(|f|)$ times.
Hence $R(\mathrm{O})$ is a set of predicates provable by $\tau_{ree-}Re\mathit{8}olution$. The opening example f is not
in $R(\mathrm{O})$ but in $R(1)$. Obviously, if $k(n)$ is a polynomial then $R(k(n))$ is in $\mathrm{N}\mathrm{P}$, namely, every
predicate in $R(k(n))$ can be $\mathrm{p}r$oved by Resolution in polynomially many steps. It is said that a
set, P , is in class D^{P} if P can be written as $P=P_{1}-P_{2}$ for some NP sets P_{1} and P_{2} .

In $\mathrm{t}\mathrm{h}\mathrm{i}8$ paper we prove the following two theorems, which shows that (i) even $R(\mathrm{O})$ is
intractable, and (ii) $R(k(n))$ constitutes a rich hierarchy:

Theorem 1. $R(\mathrm{O})$ is NP-complete.

Theorem 2. For any positive integer $k,$ $R(k)-R(k-1)$ is D^{P} -complete.

Strong conjectures are: (i) For any polynomial $k(n),$ $R(k(n))$ is $\mathrm{N}\mathrm{P}$-complete and (ii)
$R(k(n))-R(k(n)-1)$ is D^{P} -complete. It should be noted that $R(2^{n})=R(\infty)$, namely, an
exponentially many applications of the duplication rule is enough.

4. . Proof of Theorem 1
As mentioned in Sec. 2, $R(\mathrm{O})$ is in $\mathrm{N}\mathrm{P}$. To prove its $\mathrm{N}\mathrm{P}$-hardness, we use a reduction from $3\mathrm{S}\mathrm{A}\mathrm{T}$.
Namely, we will show that for a given $3\mathrm{S}\mathrm{A}\mathrm{T}$ predicate f we can construct another predicate g

such that g is in $R(\mathrm{O})$ iff f is satisfiable. For better exposition, we describe the reduction using
the following example as f of five variables $\alpha_{1},$ $\cdots,$ α_{5} . Generalization is straightforward:

$f=(\overline{\alpha_{1}}+\overline{\alpha_{2}}+\alpha_{3})(\overline{\alpha 1}+\alpha 2+\alpha 4)(\alpha 1+\overline{\alpha_{4}}+\alpha_{5})(\alpha_{2}+\alpha 3+\overline{\alpha_{5}})$

$(\alpha_{3}+\alpha_{4}+\overline{\alpha_{5}})(\overline{\alpha 2}+\overline{\alpha_{3}}+\alpha_{5})(\alpha 1+\overline{\alpha 2}+\alpha_{4})(\alpha_{2}+\alpha 3+\alpha_{5})$.

The reduced predicate g consists of five groups of clauses, G_{1} through G_{5} , i.e., $g=$
$G_{1}G_{2}c_{3}c4G_{5}$. The first group G_{1} consists of the following single clause:

G_{1} : $(\overline{x_{1}}+\overline{x_{2}}+\overline{x_{3}}+\overline{x_{4}}+\overline{x_{5}}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}+a_{8})$. (1)

Associated with the five variables of f , we prepare x_{1} through x_{5} . a_{1} through $a_{8}\mathrm{c}\mathrm{o}\mathrm{r}\prime \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{P}^{\mathrm{o}}\mathrm{n}\mathrm{d}$ to
the eight clauses of f .

The second group G_{2} consists of the following five ($=\mathrm{t}\mathrm{h}\mathrm{e}$ number of variables of f) clauses,
where σ is a special single variable playing an important role:

G_{2} : $(X_{1}+\overline{\sigma})(_{X}2+\overline{\sigma})(x_{3}+\overline{\sigma})(_{X}4+\overline{\sigma})(x5+\overline{\sigma})$. (2)

G_{3} consists of the following 24 ($=3\cross \mathrm{t}\mathrm{h}\mathrm{e}$ number of $f’ \mathrm{s}$ clauses) clauses:

50

G3 : α_{1} : $(\overline{X_{1}}+\overline{a_{3}})(\overline{X_{1}}+\overline{a_{7}})$ (3)
$\overline{\alpha_{1}}$: $(\overline{X_{1}}+\overline{a_{1}})(\overline{X_{1}}+\overline{a_{2}})$ (4)
α_{2} : $(\overline{x_{2}}+\overline{a_{2}})(\overline{x_{2}}+\overline{a_{4}})(\overline{x_{2}}+\overline{a_{8}})$ (5)

$\overline{\alpha_{2}}$: $(\overline{X_{2}}+\overline{a_{1}})(\overline{X_{2}}+\overline{a6})(\overline{x_{2}}+\overline{a_{7}})$ (6)
α_{3} : $(\overline{x_{3}}+\overline{a_{1}})(\overline{x_{3}}+\overline{a_{4}})(\overline{x_{3}}+\overline{a_{5}})(\overline{x_{3}}+\overline{a_{8}})(7)$

$\overline{\alpha_{3}}$: $(\overline{x_{3}}+\overline{a_{6}})$ (8)
α_{4} : $(\overline{x_{4}}+\overline{a_{2}})(\overline{x_{4}}+\overline{a_{5}})(\overline{x_{4}}+\overline{a_{7}})$ (9)

$\overline{\alpha_{4}}$: $(\overline{x_{4}}+\overline{a_{3}})$ (10)
α_{5} : $(\overline{x_{5}}+\overline{a_{3}})(\overline{x_{5}}+\overline{a_{6}})(\overline{x_{5}}+\overline{a_{8}})(11)$

$\overline{\alpha_{5}}$: $(\overline{x_{5}}+\overline{a_{4}})(\overline{x_{5}}+\overline{a_{5}})$. (12)

Here, the leflimost labels such as “
$\alpha_{1}:$

” are just for readability. The first four clauses in (3)
and (4) mean that the variable of f corresponding to x_{1} (i.e., α_{1}) appears in the 3rd, 7th, 1st
and 2nd clauses. Note that α_{1} appears in the 3rd and 7th clauses as an affirmative literal and
therefore label α_{1} is used here.

G_{4} consists of 10 clauses:

G_{4} : α_{1} : $(U(1)+\sigma+\overline{x_{1}}+a_{3}+a_{7})$ (13) $\overline{\alpha_{3}}:(U(3)+\sigma+\overline{x_{3}}+a_{6})$ (18)
$\overline{\alpha_{1}}:(U(1)+\sigma+\overline{X_{1}}+a_{1}+a_{2})$ (14) α_{4} : $(U(4)+\sigma+\overline{x_{4}}+a_{2}+a_{5}+a_{7})(19)$

α_{2} : $(U(2)+\sigma+\overline{x2}+a_{2}+a4+a_{8})$ (15) $\overline{\alpha_{4}}:(U(4)+\sigma+\overline{x_{4}}+a3)$ (20)
$\overline{\alpha_{2}}:(U(2)+\sigma+\overline{X_{2}}+a_{1}+a_{6}+a_{7})$ (16) α_{5} : $(U\Theta+\sigma+\overline{x_{5}}+a_{3}+a_{6}+a_{8})(21)$

α_{3} : $(U(3)+\sigma+\overline{X_{3}}+a_{1}+a_{4}+a_{5}+a_{8})(17)$ $\overline{\alpha_{5}}:(U(5)+\sigma+\overline{X_{5}}+a_{4}+a_{5})$. (22)

Again “
$\alpha_{1}:$

” and so on are just labels. Clauses (13) and (14) mean that α_{1} appears in the 3rd and
7th clauses as a fixed polarity and also appears in the 1st and 2nd clauses as the other polarity.
$U(1)$ through $U(5)$ are defined as follows: $U(1)=u_{1},$ $U(2)=\overline{u_{1}}+u_{2},$ $U(3)=\overline{u_{1}}+\overline{u_{2}}+u_{3}$,
$U(4)=\overline{u_{1}}+\overline{u_{2}}+\overline{u_{3}}+u_{4},$ $U(5)=\overline{u_{1}}+\overline{u_{2}}+\overline{u_{3}}+\overline{u_{4}}$, where u_{1} through u_{4} are new variables.
It is important to see that, for any sum F of literals, $(F+U(1))(F+U(2))\cdots(F+U(5))$ can
be changed to (F) by $\tau ree- Re\mathit{8}oluti_{on}$. But the (proper) order of the rule application is unique;
namely we have to merge $(F+U(4))$ and $(F+U(5))$ first to get $(F+\overline{u_{1}}+\overline{u_{2}}+\overline{u_{3}})$ and then
this must be merged with $(F+U(3))$ to get $(F+,\overline{u_{1}}+\overline{u_{2}})$ and so on. If, for example, we first
merge $(F+U(1))$ and $(F+U(2))$, then we can never imply F .

The last group, G_{5} , consists of the following five clauses determined only by the number
of variables in f :

G5 : $(U(1)+\sigma+X1)(U(2)+\sigma+x_{2})(U(3)+\sigma+x_{3})(U(4)+\sigma+X4)(U(5)+\sigma+X_{5})$. (23)

Lemma 1. If f is satisfiable then g is in $R(\mathrm{O})$.
Proof. Suppose that the original $3\mathrm{S}\mathrm{A}\mathrm{T}$ predicate becomes true by assignment, say,

$(\alpha_{1}, \cdots, \alpha_{5})=(0,1,0,1,1)$ (in fact this assignment makes f true). Then we use clauses la-
beled by $\overline{\alpha_{1}},$ $\alpha_{2},\overline{\alpha_{3}},$ α_{4} and α_{5} in G_{3} . One can see that among those literals we can always
choose eight clauses by which the eight literals a_{1} through a_{8} in G_{1} are all deleted. (Suppose
that clauses $C_{1}=(x_{1}+x_{2}+x_{3})$ and $C_{2}=(x_{1}+\overline{x_{2}})$ are replaced by $(x_{1}+x_{3})$. Then we often
say that literal x_{2} of C_{1} is deleted by $C_{2}.$) For example, $(\overline{x_{2}}+\overline{a_{2}})$ in (5) can delete a_{2} of (1), by
which we mean $\alpha_{2}=1$ makes the $f’ \mathrm{s}$ 2nd clause true. Then we use five clauses in G_{2} , each of
which can delete $\overline{X_{1}}\mathrm{t}\mathrm{h}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{g}\mathrm{h}_{\overline{X}}5$ of G_{1} but the literal $\overline{\sigma}$ is added. At this moment, there remain
clause $(\overline{\sigma})$ that can be regarded as an offspring of G_{1} , no clauses of G_{2} , all the clauses labeled
by $\alpha_{1},$ $\overline{\alpha_{2}},$ $\alpha_{3},$

$\overline{\alpha_{4}}$ and $\overline{\alpha_{5}}$ in G_{3} (none of which was used above), and $\mathrm{a}\mathrm{U}$ the clauses in G_{4} and
G_{5} . Then we can now use $\alpha_{1},\overline{\alpha_{2}},$ $\alpha_{3},\overline{\alpha 4}$ and $\overline{\alpha_{5}}$ in G_{3} to delete all $a_{i}’ \mathrm{s}$ in the clauses labeled by
the same $\alpha_{1},\overline{\alpha_{2}},$ $\alpha_{3},\overline{\alpha_{4}}$ and $\overline{\alpha_{5}}$ in G_{4} , which produces $(U(1)+\sigma+\overline{x_{1}}),$ \cdots , and $(U(5)+\sigma+\overline{x_{5}})$.

51

Notice that this was able to be done only because all the clauses labeled by $\alpha_{1},\overline{\alpha_{2}},$ $\alpha_{3},\overline{\alpha_{4}}$ and
$\overline{\alpha_{5}}$ in G_{3} remained. This is a key point of the proof. The five literals $\overline{X_{1}}$ through $\overline{X_{5}}$ are now
deleted by using the five clauses of G_{5} , which implies $(U(1)+\sigma),$ \cdots , and $(U(5)+\sigma)$. Now

$\mathrm{w}\mathrm{e}\square$

can get (σ) from these five clauses , and then can get nil $\mathrm{h}\mathrm{o}\mathrm{m}(\sigma)$ and $(\overline{\sigma})$.
Now suppose that the original predicate f is unsatisfiable. We wish to show that the

reduced predicate g cannot be proved by Tree-Resolution. An intuitive observation is that the
clauses in G_{3} are not enough to delete both (i) all $a_{i}’ \mathrm{s}$ in (1) and (ii) all $a_{i}’ \mathrm{s}$ in some five clauses
in G_{4} that includes $U(1)$ through $U(5)$ completely. The following lemma will be often used.

Lemma 2. Let the current set of clauses be S . Then if S is satisfiable then we can never
imply nil $\mathrm{h}\mathrm{o}\mathrm{m}S$ by Tree-Resolution.

Now suppose that we are trying to apply the rule to some two clauses, say, to a clause
in G_{2} and a clause in G_{4} . (We shall say that the rule is applied to a (c_{2}, c_{4}) pair in such an
occasion.) There are 15 possibilities from $(c_{1}, c_{1}),$ $(c_{1}, c_{2}),$ \cdots , through (c_{5}, c_{5}) . However,
the rule can actually be applied to a very few of them at the beginning.

Lemma 3. Suppose that $S=g$. Then it is enough to consider the application of the rule
to only $(c_{1}, c_{2}),$ $(c_{1}, c_{3}),$ (c_{3}, c_{4}) and (c_{4}, c_{4}) pairs.

Then we next consider what will happen if we merge G_{4} and G_{4} to check the last case in
Lemma 3. Again we have to merge $U(4)$ and $U(5)$ first. For example, suppose that we merged
(20) and (21) and got

$(\overline{u_{1}}+\overline{u_{2}}+\overline{u_{3}}+\sigma+\overline{x_{4}}+\overline{x_{5}}+a_{3}+a_{6}+a_{8})$. (24)

Then the following observation holds: (i) We still need (19) and (22) to imply nil. The reason
is that if we remove either, say, (19), then S becomes satisfiable (details are omitted). (ii) We
need all clauses (1), (22) and (24) to get nil since if (1) is removed then the predicate becomes
satisfiable, since if we do not need (24) then the above merge operation was needless and since
we showed that (22) is also needed in above (i). Note that literal $\overline{X_{5}}$ appears three times in (1),
(22) and (24). Although we have to delete all these three $\overline{X_{5}},\mathrm{s}$, there are only two $x_{5}’ \mathrm{s}$ in (2) and
(23). The same argument also holds $f\mathrm{o}\mathrm{r}\overline{x4}$. So, before using (2) and (23), we have to reduce
the number $\mathrm{o}f_{\overline{X_{5}}8}’ \mathrm{a}\mathrm{n}\mathrm{d}_{\overline{X}\mathrm{s}}4$

’ into at most two. (iii) To do so, we essentially have to merge some
two of those three clauses. Let us first consider the merge of (1) and G_{4} . First of all it is not
possible currently. It would become possible by merging (1) and G_{2} , by $\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{C}\mathrm{h}\overline{\sigma}$ is added to (1).
However, when we merge (1) and G_{4} , some $u_{i}’ \mathrm{s}$ must be added to (1), which makes the predicate
satisfiable. (iv) Therefore, we have to merge (22) and (24). It is again impossible currently, but
would become possible only by merging (22) and $(U(4)+\sigma+x_{4})$ in G_{5} , which introduces u_{4}

into (2.2). However, that implies such a clause like $(\overline{u_{1}}+\overline{u_{2}}+\overline{u_{3}}+\sigma+\overline{x_{5}}+\cdots)$ from (20)$-(22)$,
which again makes the predicate satisfiable.

Thus we can conclude that the first merge must be applied to $(c_{1}, c_{2}),$ (c_{1}, c_{3}) or
(c_{3}, c_{4}) . Suppose that we have applied the rule to (c_{1}, c_{3}) and (c_{3}, c_{4}) several times but
no major changes, such as all $a_{i}’ \mathrm{s}$ in G_{4} disappear, have not occurred yet. Then we can claim
the same lenlma as Lemma 3 for the current predicate S (proof is very similar and is omitted).
So, suppose that we apply the rule to (c_{1}, c_{3}) several times, and then to (c_{1}, c_{2}) , say to (1)
and $(x_{1}+\overline{\sigma}).$ Then $\overline{x_{1}}$ in (1) disappears and we can never apply the rule to (G_{1}, G_{3}) if it revives

$\overline{x_{1}}$ in (1) (the predicate becomes satisfiable). Hence, without loss of generality, we can assume
that the rule should be applied first to (c_{1}, c_{3}) as many times as possible and then to (c_{1}, c_{2}) .
By this sequence of applications, we can get

$(\overline{x}+a+\overline{\sigma})$, (25)

52

where \overline{x} is a sum of some (possibly zero) $\overline{X_{i}},\mathrm{s}$ and similarly for a .
Also, the rule is applied to (G_{3}, G_{4}) several times, which deletes $a_{i}’ \mathrm{s}$ of G_{4} . When all the

$a_{i}’ \mathrm{s}$ in some clause of G_{4} are deleted, that clause can only be merged with G_{5} . If some clause of
G_{5} has been used in this way, then all the others must be used in the same way. (If we do not
use some clause in G_{5} , namely if we delete it, then the predicate becomes satisfiable.) Thus we
get $(U(1)+\sigma)(U(2)+\sigma)\cdots(U(5)+\sigma)$ and then can get (σ) .

At this moment, S contains (25), some of G_{2} , some of $G_{3},$ (σ) and some of G_{4} . Now our
only way of continuing $Re\mathit{8}oluti_{on}$ is to further remove $\overline{x_{i}}$ or a_{i} from (25) or to merge (25) with
(σ) . Suppose that we do merge (25) and (σ) before all the $\overline{x_{i}}’ \mathrm{S}$ and $a_{i}’ \mathrm{s}$ are removed. Then the
result would be $(\overline{x}+a)$ and the predicate becomes satisfiable. Thus we can conclude that all the
$\overline{x_{i}}’ \mathrm{s}$ and $a_{i}’ \mathrm{s}$ in (25) must be removed using G_{2} and G_{3} . However, one can see that this merging
procedure is essentially the same as that conducted in Lemma 1, namely, it follows that

$g\mathrm{i}\mathrm{s}\square$

satisfiable. However, this contradicts the assumption.

5. Proof of Theorem 2
We first show two key lemmas: The first one is on so-called MINIMAL-UNSAT due to [PW88].

Lemma 4. From any CNF predicate f , one can construct another CNF predicate $f’$ such
that (i) if f is satisfiable then so is $f’$ and (ii) if f is unsatisfiable then so is $f’$ but it becomes
satisfiable if any one clause is removed $\mathrm{h}\mathrm{o}\mathrm{m}f’$.

Let $f=C_{1}C_{2}\cdots C_{n}$ be a CNF predicate. Then, for a variable $x,$ $(x\oplus f)$ denotes predicate
$(C_{1}+x)(C_{2}+x)\cdots(C_{n}+x)$.

Lemma 5. Let $e_{1},$ e_{2} and e_{3} be CNF predicates such that (i) e_{i} and $e_{j}(i\neq j)$ do not
share any same variable and (ii) $e_{i}\not\in R(0)$ for all i . Furthermore none of variables $x_{1},$ x_{2} and x_{3}

appear in any of $e_{i}’ \mathrm{s}$. Then the following predicate is not in $R(2)$:

$(x_{1}\oplus e_{1})(x_{2}\oplus e_{2})(x_{3}\oplus e3)(\overline{x1}+\overline{x_{2+\overline{x})}}3$ (26)

Lemma 6. If one of $e_{1},$ e_{2} and e_{3} is not $R(\mathrm{O})$, say if $e_{1}\not\in R(\mathrm{O})$, then (26) $\not\in R(\mathrm{O})$. If two
of them are not in $R(\mathrm{O})$, then (26) $\not\in R(1)$.

Lemma 7. If $e_{1}\in R(k_{1}),$ $e_{2}\in R(k_{2})$ and $e_{3}\in R(k_{3})$ for $k_{1},$ $k_{2},$ $k_{3}\geq 0$, then (26)
$\in R(k_{1}+k2+k_{3})$.

We first prove that $R(1)-R(\mathrm{O})$ is D^{P} -complete. The reduction is from SAT-UNSAT
[PY84] which is the problem asking, given two CNF predicates f_{0} and f_{1} , whether or not f_{1} is
satisfiable and f_{0} is unsatisfiable. We shall construct a predicate $g,$ $\mathrm{h}\mathrm{o}\mathrm{m}f_{0}$ and f_{1} , such that g

is in $R(1)-R(\mathrm{O})$ iff $f\mathrm{o}$ is unsatisfiable and f_{1} is satisfiable.
We construct three predicates $g_{1},$ g_{2} and g_{3} as follows. (i) g_{1} is reduced from f_{1} by the

method described in the proof of Theorem 1. (ii) g_{2} is also reduced from f_{1} in the same way
but we use completely different variables $\mathrm{h}\mathrm{o}\mathrm{m}g_{1}$. (iii) As for g_{3} , we once change f_{0} into the
minimal unsatisfiable $f_{0}’$ (see Lemma 4) and this $f_{0}’$ is then transformed to g_{3} in the way of
Theorem 1. Again we use new variables. Now g is $(x_{1}\oplus g_{1})(x_{2}\oplus g_{2})(x_{3}\oplus g_{3})(\overline{x_{1}}+\overline{X_{2}}+\overline{X_{3}})$. We
shall consider four different cases: (i) f_{1} is satisfiable and f_{0} is not. Then by Theorem 1, g_{1} and
$g_{2}\in R(\mathrm{O})$. Since $f\mathrm{o}$ is unsatisfiable and $f_{0}’$ is its minimum-unsat version, all the clauses except
one of $f_{0}’$ can be made true by some assignment. Then one can see, by a careful observation of
the proof of Theorem 1, that $g_{3}\not\in R(\mathrm{O})$ but $g_{3}\in R(1)$. (Namely, only one duplicate operation

53

for some of group G_{3} is enough.) Now, by Lemmas 6 and 7, $g\not\in R(\mathrm{O})$ but $g\in R(1).$ (\"u) f_{1} is
not satisfiable and f_{0} is not either. $g\not\in R(2)$ by Lemma 5. (iii) f_{1} is sat and f_{0} is sat. $g\in R(\mathrm{O})$.
(iv) f_{1} is not sat and f_{0} is sat. $g_{1}\not\in R(\mathrm{O})$ and $g_{2}\not\in R(0)$, so $g\not\in R(1)$ by Lemma 6. As a result,
$g\in R(1)-R(\mathrm{O})$ iff f_{1} is satisfiable and $f\mathrm{o}$ is unsatisfiable, which is what we wanted to show.

Extension to $R(k)-R(k-1)$ is straightforward: Let F be the following fixed predicate.

$(v_{1}+v_{2}+v_{3})(v_{1}+v_{2}+\overline{v_{3}})(v_{1}+\overline{v_{2}}+v_{3})(v1+\overline{v_{2}}+\overline{v_{3}})$

$(\overline{v_{1}}+v_{2}+v_{3})(\overline{v_{1}}+v_{2}+\overline{v_{3}})(\overline{v_{1}}+\overline{v_{2}}+v_{3})(\overline{v_{1}}+\overline{v2}+\overline{v_{3}})$. (27)

Let $G_{i},$ $1\leq i\leq k-1$, be the predicate reduced from the above $F(G_{i}$ and $G_{j},$ $i\neq j$, share no
variables) by the method of Theorem 1. Then one can see easily that $G_{i}\not\in R(0)$ but $G_{i}\in R(1)$.
Now for given f_{1} and f_{0} as before, set

$g=(x_{1^{\oplus}}g_{1})(_{X}2^{\oplus g2})(X_{3}\oplus g_{3})(X4\oplus c_{1})\cdots(x_{k}+2\oplus G_{k}-1)(\overline{X_{1}}+\cdots+\overline{X_{k2}+})$.

Then we extend Lemmas 5, 6 and 7 appropriately and consider the four cases just as before:
(i) $g_{3},$ $G_{1},$ \cdots , $G_{k-1}\not\in R(\mathrm{O})$, so $g\not\in R(k-1)$. g_{1} and $g_{2}\in R(\mathrm{O})$ and $g_{3},$ $G_{1},$

$\cdots,$ $G_{k1}-\in R(1)$,
so $g\in R(k).$ (\"u) $g\not\in R(k+1)$. $(\mathrm{i}\mathrm{i}\mathrm{i})g\in R(k-1)$. $(\mathrm{i}\mathrm{v})g\not\in R(k)$. That concludes the proof

$\mathrm{o}\mathrm{f}\square$

Theo$r\mathrm{e}\mathrm{m}2$.

References

[Ajt88] M. Ajtai. The complexity of the pigeonhole principle. In Proc. 29th IEEE Symp. on
Foundations of Computer Science, pp.346-355, 1988.

$[\mathrm{B}\mathrm{I}\mathrm{K}^{+}92]$ P. Beame, R. Impagliazzo, J. Kraj\’i\v{c}ek, T. Pitassi, P. Pudl\’ak and W. Woods. Ex-
ponential lower bounds for the pigeonhole principle. In Proc. 24th ACM Symposium on
Theory of Computing, pp.200-220, 1992.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification theory. J. $A_{\mathit{8}}soc$.
Comput. Mach., 1, pp.201-215, 1960.

[GHRS93] D. Gabby, C. Hogger, J. Robinson and J. Siekmann (Ed.). Handbook of Logic in
Artificial Intelligence and Logic Programming, Clarendon Press, 1993.

[Hak85] A. Haken. The intractability of resolution. Theor. Comput. Sci., 39, pp.297-308, 1985.
[IP94] K. Iwama and T. Pitassi. Exponential lower bounds for the tree-like Haj\’os calculus.

manuscript, 1994.
[Kra91] J. Kraj\’i\v{c}ek. Lower bounds to the size of constant-depth propositional proofs. preprint,

1991.
[MSS90] S. Miyano, S. Shiraishi and T. Shoudai. A list of P-complete problems. RIFIS Tech.

Rep., RIFIS-TR-CS-17, Kyushu Univ., 1990.
[PY84] C. H. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets of

complexity). J. $Computer\mathit{8}$ and System Sciences, 28, pp.244-259, 1984.
[PW88] C. H. Papadimitriou and D. Wolfe. The complexity of facets resolved. J. Computers

and System Sciences, 37, pp.2-13, 1988.
[PU92] T. Pitassi and A. Urquhart. The complexity of Haj\’os calculus. In Proc. $\mathit{3}\mathit{3}rd$ IEEE Symp.

on Foundations of Computer Science, pp.187-196, 1992.
[Urq87] A. Urquhart. Hard example for resolution. J. $As\mathit{8}OC$. Comput. Mach., 34, pp.209-219,

1987.

54

