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Abstract

This paper investigates some fundamental properties of alternating one-way ( or two-way ) pushdown automata
(pda’s) with sublogarithmic space. :

Let strong-2APDA(L(n))(strong-2DPDA(L(n)), strong-2N PDA(L(n)), strong-2U PDA(L(n))) denote the
class of languages accepted by strongly L(n) space-bounded two-way alternating pda’s, (detcrministic pda’s, non-
deterministic pda’s, alternating pda’s with only universal states ), and let weak-2DPDA(L(n)) (weak-2NPDA
(L(n)),weak-2U PD A(L(n))) denote the class of languages accepted by weakly L(n) space-hounded two-way de-
terministic pda’s (nondeterministic pda’s, alternating pda’s with only universal states), and let weak-1APDA
(L(n)) (weak-1ASPACE(L(n))) denote the class of languages accepted by weakly L(n) space-bounded one-way
alternating pda’s (alternating Turing machines).

We first show that strong-2APD A(log log n) —weak-1ASPACE(o(log n)) # 0, and weak-1APD A(log logn) —
(weak-2N PD A(o(log n)) | weak-2U PD A{o(log n))) # @. Then, we show that for any function loglogn < L(n)=
o(logn), weak-1APDA(L(n)) and X-YPDA(L(n)) (X € {strong, weak} and Y € {2D,2N,2U}) are not closed
under concatenation, Kleene closure, and length preserving homomorphism.
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1 Introduction

Recently, many investigations about alternating Turing machines with sublogarithmic space have been made [2,4,9,10,13,
15]. It is shown in [9] that for any function loglogn < L{n) = o{log n), L(n) space-bounded two-way alternating Turing ma-
chines are more powerful than L(n) space-bounded one-way alternating Turing machines. Iwama [10] showed that o(loglogn)
space-bounded two-way alternating Turing machines accept only regular languages. Chang, Ibarra and Ravikumar [4] showed
that there is a language over a unary alphabet that can be accepted by a weakly loglog n space-bounded one-way alternatinig
Turing machine, but not by any two-way nondeterministic Turing machine with o(logn) space. Szepictowski [15] showed
that there is a language accepted by a weakly loglog n space-bounded one-way alternating Turing machine, but not by any
strongly o(log ) space-bounded two-way alternating Turing machine. Braunmiihl, Gengler and Rettinger [2], and Liskiewicz
and Reischuk [13] showed that the alternation hierarchy for Turing machines with space bounds between loglog n and logn
is infinite. ( Note the fact that all alternation hierarchies related to space-bounded two-way Turing machines collapse, pro-
vided we consider strong space-complexity and space-bounds in (logn). This is because the class of languages accepted by
strongly L(n) space-bounded two-way nondeterministic Turing machines is closed under complementation for L(n)=0(logn)
[8,14].) There have been few investigations about pushdown automata with small space, especially with sublogarithmic space.
Gabarro [7] showed that (i) there are languages with pushdown complexity strictly in n!/? or logn (q > 2), and (ii) the family
of languages accepted by one-way nondeterministic pushdown automata with sublinear space is a full-A.F.L containing one
infinite decreasing chain of full-A.F.L’s. Duris and Galil [5] showed that (i) for any function loglogn < L(n) = o(n), L(n)
space-bounded two-way deterministic pushdown automata are less powerful than L(n) space-bounded two-way deterministic
Turing machines, (i) o(n) space-bounded two-way deterministic pushdown automata accept only regular languages over a
unary alphabet, and (iii) there is a non-regular language accepted by a strongly loglogn space bounded two-way determin-
istic pushdown automaton. Yoshinaga and Inoue [16] investigated several properties of alternating multi-counter automata
with sublinear space.

This paper investigates some fundamental properties of alternating one- way (or two-way) pushdown automata with
sublogarithmic space. :

Section 2 gives the definitions and notations necessary for this paper. Let strong-2APDA(L(n)) (strong-2DPDA(L(n)),
strong-2NPDA(L(n)), strong-2U PDA(L(n))) denote the class of languages accepted by strongly L(n) space-bounded two-
way alternating pushdown automata (deterministic pushdown automata, nondeterministic pushdown automata, alternating
pushdown automata with only universal states ), and let weak-2DPDA(L(n)) (weak-2N PDA(L(n)), weak-2U PD A(L(n)))
denote the class of languages accepted by weakly L(n) space-bounded two-way deterministic pushdown automata (nondeter-
ministic pushdown automata, alternating pushdown automata with only universal states). Furthermore, let weak-14PDA
(L(n)) (weak-1ASPACE(L(n)), weak-1USPACE(L(n))) denote the class of languages accepied by weakly L(n) space-
bounded one-way alternating pushdown automata (alternating Turing machines, alternating Turing machines with only
universal states).

Section 3 investigates a relationship between the accepting powers of one-way and two-way alternating pushdown au-
tomata with sublogarithmic space, and shows that strong-2APDA(loglogn) — weak-14SPACE(o(logn)) # 0 (and thus
strong-2APD A(log log n)~weak-1APD A(o(log n)) # 8). This result strengthens the fact [9] that strong-AS PACE(loglog n)
—weak-1ASPACE(o(log n)) # 0.

Section 4 investigates a relationship among the accepting powers of alternating pushdown automata, nondeterminis-
tic pushdown automata and alternating pushdown automata with only universal states with sublogarithmic space, and
shows, for example, that weak-14PDA(loglog n)—(weak-NSPACE(o(log n)) | weak-USPACE(o(log n))) # @, and thus
weak-14PD A(loglog n)—(weak-2NPD A(o(log n)) | weak-2UPD A(o(log ))) # 0. This result strengthens the fact [9] that



weak-1ASPACE(log log n)—(weak-NSPACE(o(log n)) | Jweak-USPACE(o(log n))) # 0. We also show that for any func-
tion loglogn < L(n) = o(logn), weak-1INSPACE(L(n)) and weak-1USPACE(L(n)) is incomparable. This result solves
an open problem in [9].

Section 5 investigates several fundamental closure properties, and shows that, for any function loglogn < L(n) = o(log n),
weak-1APDA(L(n)) and X-Y PDA(L(n)) (X € {strong, weak} and Y € {2D, 2N 2U}) are not closed under concatenation,
Kleene closure, and length preserving homomorphism.

Section G briefly states a relationship between ‘strong’ and ‘weak’.

2 Preliminaries

We assume that the reader is familiar with the basic concepts and terminology concerning alternating machines and
computational complexity. (If necessary, see {3,9,13).)

A two-way alternaling pushdown automaton (2APDA) is a generalization of a two-way nondeterministic pushdown au-
tomaton (2NPDA) [11] whose state set is partitioned into ‘universal’ and ‘existential’ states. The input of a 2APDA M is
delimited by the left endmarker ¢ and the right endmarker §. We can view the computation of M as a trec whose nodes are
labelled by instantaneous descriptions (ID’s). An ID is called universal (ezistential, accepting) if the state associated with
that ID is universal (existential, accepting). A computation tree of M on input z is a tree, such that the root is labelled by
the initial ID and the children of any nonleaf node labelled by a universal (existential) ID include all (one) of the immediate
successors of that ID. A computation tree is accepting if it is finite and all the leaves are labelled by accepting ID’s. M
accepts = if there is an accepting tree of M on z. A computation tree of M (on some input) is I space-bounded if all nodes
of the tree are labelled with ID’s using at most ! cells of the pushdown stack. Let L(n) be a function. M is weakly L(n)
space-bounded if for every input z of length n, n > 1, that is accepted by M, there exists an L{n) space-bounded accepting
computation tree of M on z. M is atrongly L(n) space-bounded if for every input z of length n (accepted by M or not),
n 2> 1, any computation trce of M on z is L(n)) space-bounded.

A one-way allernating pushdown automaton (1APDA) is a 2APDA whose input head cannot move to the left. We denote
by 2UPDA (1UPDA) a 2APDA (1APDA) whose states are all universal. A one-way nondeterministic pushdown automaton
(INPDA) is 2 1APDA whose states are all existential. Of course, a 2NPDA is a 2APDA whose states are all existential. A
two-way (one-way) deterministic pushdown automaton, denoted by 2DPDA (1DPDA), is a 2APDA (1APDA) whose ID'S
each have at most one successor.

For each X € {24, 14, 2U, 1U, 2N, 1N, 2D, 1D}, let strong-X PD A(L{n)) denote the class ol sets accepted by strongly
L(n) space-bounded XPDA’s, and weak-XPDA(L(n)) denote the class of sets accepted by weakly L(n) space-bounded
XPDA’s.

A two-way {one-way) alternating Turing machine, denoted by 2ATM (1ATM), has a two-way (onc-way) read-only input
tape (with the left endmarker ¢ and the right endmarker $) and a separate two-way read-write storage-tape.

Let L(n) be a function and M be a 2ATM. The concepts of ‘a computation tree of M’, ‘L(n) space-bounded accepting
computation tree’, and ‘weakly (strongly) L(n) space-bounded’ are defined as above.

We denote by 2UTM (1UTM) a 2ATM (1ATM) whose states are all universal. A two-way (one-way) nondeterministic
Turing machine, denoted by 2NTM (INTM), is a 2ATM (1ATM) whose states are all existential, and a two-way (one-way)
deterministic Turing machine, denoted by 2DTM(1DTM), is a 2ATM (1ATM) whose ID’s each have at most one successor.
For each X € {A,U, N, D}, let strong-XSPACE(L(n)) (weak-XSPACE(L(n))) denote the class of sets accepted by
strongly (weakly) L(n) space-bounded 2XTM'’s, and strong-1XSPACE(L(n)) (weak-1XSPACE(L(n))) denote the class of
sets accepted by strongly (weakly) L(n) space-bounded 1XTM’s. This paper is mainly concerned with strongly and weakly
o(log n) space-bounded APDA’s (ATM’s).

Let M be a 2ATM, and Sy = @ x (I' = {B})* x N, where @ is the sct of states of M, T is the storage-tape alphabet
of M, B is the blank symbol, and N denote the set of all positive integers. An element (q,,j) of Sp is called a storage
state of M, and represents the state of the finite control, the non-blank contents of the storage-lape, and the storage-head
position.

We conclude this section by giving several notations used below. .

Notation 1. For any string w, jw| denotes the length of w, and w™ denotes the reversal (i.c. , mirror image) of w. For
any set S, |S| denotes the number of elements of S.

Notation 2. For each integer n > 1, and for each integer i(1 < i < 2"), let B(n,i) denote the binary number of n
bits with the leftmost bit as the most significant bit which represents the integer i — 1. Thus, B(3,1) = 000, B(3,2) =
001, B(3,3) =010 ---, B(2,2%) = B(3,8) = 111.

Notation 3. For each integer n > 1, and for each integer i(1 < i < 227), let

W(n,i) & 21 B(n, 1)zi2B(n,2) - 312~ B(n, 2"), and

W'(n, i) a zi1 B(n, 1)zi2B(n,2) -« - zi2» B(n, 2"), if ¢ is odd,
’ zirB(n,1)zi2 B(n,2)" - - - 292 B(n,2")R, if i is even,

where z;;’'s € {e,b}, and (W (n,i))= (W'(n,i)) = B(2",i) (where h : {0,1,a,b} — {0,1} is a homomorphism such that
R(0) = (1) = X, h(a) =0 and h(b) = 1).

Notation 4.

For each integer n > 1, let:

Rulery(n) [ W(n, D)#IWV(n,2)#- - #£W(n,2%"), and Rulerg(n)éW’(n,l)#W’(n,Z)#- W (n,227).
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Throughout this paper, let 1 denote the homomorphism described above, and let:

: D(n)={z;B(n,1)z2B(n,2)--- z9n B(n,2")|Vi(1 < i < 2") {z; € {a,b}]} for each n > 1, and

- D'(n) ={z,B(n, 1)z, B(n, 2)”---x2nB(n,2")"|Vi(1 <i<2") = € {a,b}]} for each n > 1.

3 Two-way versus One-way

This section investigates a relationship between the accepting powers of one-way and two-way alternating pushdown
automata with sublogarithmic space.

We first give some definitions necessary for proving Theorem 1 below. Let M be a 1ATM, and I be the input alphabet
of M. For each storage state (g, @, j) of M and for each w € £+, let a (g, ¢, j)-computation tree of M on w be a computation
" tree which represents a computation of M on w$ starting with the input head on the leftmost position of w and with the
storage state (g,a,j). A (g,q,j)-accepting computation tree of M on w is a (g, @, j)-computation tree whose leaves are all
labelled with accepting ID’s.

Theorem 1.

strong-2APD A(log log n) — weak-1ASPACE(o(logn)) # @.

Proof.

Let Ly = {Rulery(n)cucujcuge- - cup € {0,1,a,b,c, #} [n 21 & k21 & ue D'(n) &

Vi(l < i < k)[u; € D(n)] & 3r(1 < 7 < k)[R(x) = h(u,)]}

To prove the theorem, we show that

(1) L, € strong-2APD A(loglogn), and
(2) Ly ¢ weak-1ASPACE(o(log n)).

()

(2):

The set Ly will be accepted by a strongly loglogn space-bounded 2APDA M which acts as follows.

We assume without loss of generality that an input string to M is of the form
Rulery(n)cucujcuge - cup  +vvve- (1)
for some n > 1, where k > 1 and

(i) v = y1viyava -+ v (where ! > 2, y;'s € {a,b}, and vj's € {0,1}*), and
(ii) for each i(1 < i< k), ui = yanvayivie - yi,va, (where I; > 2, yi;'s € {a,b}, and vij's € {0,1}+).
This is because it is shown in [5] that the set { Ruler;(n)jn > 1} can be recognized by a stroné;ly log log n space-bounded
2DPDA , and thus input strings of the form different from the above can easily be rejected by M.
After recognizing Ruler(n), M checks whether Vi(1 < j < ) vj = B(n,j)? |, v =11..-1, and Vi(l<i<k)Vi(l1<

n
J 1) vij = B(n,j) ] and vy, = 11-- -1 ]. This check is deterministically done by using Z" stored in the pushdown

n
stack while M recognizes Ruler)(n), where Z is a pushdown stack symbol.

After this check, M existentially chooses some r(1 < r < k), moves to the segment u,, and universally checks whether
yrj =yj foreach 1 < j < I;.. In order to check that y,; = yj, M simply stores the symbol Yrj in the finite control, stores
the “yardstick” string v,; = B(n,j) (positioned just after y,;) in the pushdown stack, picks up the symbol y;(this
is deterministically done by using v,; in the pushdown stack and the yardstick string v; = B(n,j)"), and enters an
accepting state only if it finds out that y,.; = y;.

It will be obvious that each computation path of any computation tree of M on the input x of the form (1) is such
that the space of the pushdown stack is bounded by n < loglog|z|. (Note that M marks off n < loglog |z| stack cells
after recognizing Ruler;(n).)

Suppose that there exists a weakly L(n) space-bounded 1ATM M accepting L;, where L(n):: o(logn). Let s and k be
the numbers of states (of the finite control) and storage-tape symbols of M, respectively. For each n > 1, let:

V(n) = {Ruler;(n)cucujcuge-- - cuprm € L1|Vi(1 £i < 2%")[ u; € D(n) ] & u € D'(n)},
W(n) = {cujcuze- - cugn [Vi(1 £ i < 22" ) uw; € D(n) ]}.
For each z in V(n), We have: :
(i) |zl = |Rulery(n)] + Ju| + (22" + 1) + 22" |u;| = 22" (n+ 1) - 2" 4+ 2"(n + 1) + 22" +1 422" (n+1)-2°
2 r(n) = O(n-2n.22")

(i) There exists an L(r(n)) space-bounded accepting computation tree of M on z.

- For cacly storage state (g, o, j) of M and for each y in W(n), let



1 if there exists an L(r(n)) space-bounded

. g, @, j)-accepting computation tree of M
Mv((erlyJ) = in’ y’

0 otherwise.

For any two strings y, z in W{n), we say that y and z are M-equivalent if for each storage state (g,a,7) of M with
le| € L(r(n)) and 1 < j < |al, My(q,,j) = M:(g, @, j). Clearly, M-equivalence is an equivalence relation on strings
in W(n), and there are at most

E(n) = 25~[L(r(n))]-k”'('("m

M-equivalence classes denoted by Cy,Cs,:++, CE(n)-
For each y = cujcugc- - cugan in W(n), let
b(y) = {w € D'(n)| 3j(1< 5 < 2)(uy) = h(w) ] }-
Furthermore, for each n > 1, let R(n) = {b(y)ly '€ W(n)} Then |R(n)| = 22" _ 1,
Since limy—.co L(n)/ logn = 0, it follows that lim,_.e L(r(n))/logr(n) = 0. ------ (2)
Since r(n) = O(n - 2" - 22"), it follows that for some constant a > 0, logr(n) < a-2". From this and equation (2),
we have lim_oo L{r(n))/a - 2" = 0. From this, it follows that lim,_e L(r(n))/2" = 0. So we have |/i(n)| > E(n) for

large n. For such n, there must be some Q,Q'(Q # Q') in R(n) and some C;(1 < i < E(n)) such that the following
statement holds: '

“There exists two strings y,z € W(n) such that (i) b(y) = Q # Q' = b(2), and (ii) y,z € C; (ie. y and z are
M-equivalent.)” _

Because of (i), we can without loss of generality assume that there is some u such that v € b(y) — b(z). It is clear
that y' = Ruler;(n)cuy is in V(n), so there exists an L(r(n)) space-bounded accepting computation tree of M on y'.
Because of (ii), From this tree , we can easily construct an L(r(n)) space-bounded accepting computation tree of M on
z' = Ruler,(n)cuz. Thus, we can conclude that 2’ is also accepted by M. Since 2’ i5 not in Ly, We get a contradiction.
This completes the proof of (2). E ’ Q.E.D.

Theorem 2.

strong-2DP D A(loglog n) — weak-1NSPACE(o(logn)) # @

Proof.

Let Ly ={Ruler;(n)|n > 1}. Since L € strong-2DPD A(loglog n) [5], to prove this theorem, it is sufficent to show that
L is not in weak-1NSPACE(o(logn)).

It is shown in [4] that for any L € weak-1NSPACE(o(logn)), L satisfies the pumping property that, for large enough n,
if w is such that |w| > n and w € L, then there exist z,y, and z such that (1)w = zyz, and (2) zy'z € L for all i > 0. From
this and the obvious fact that L does not satisfy the pumping property , it follows that Ly & weak-1NSPACE(o(logn)).
This completes the proof. Q.E.D.

Theorem 3. ]

strong-2DPD A(log log n) — weak-1USPACE(o(logn)) # 0

Proof. Let Ly = {Rulery(n)cuc’|n > 1 & u € D(n) & u' € D'(n) & h(u) # h(v')}. We can show that Ly €
strong-2DPD A(Joglog n). (The proof is left to the reader.) We below prove that Ly is not in weak-1USPACE(o(log n)).

Suppose that there exists a weakly L(n) space-bounded 1UTM, M, which accepts Ly, where L(n) = o(logn). For each
u € D(n), n > 1, there exists exactly one u’ € D’(n) such that () = h(u’). We denote this u' by {u]. For cach n > 1, let

V(n) = {Ruler;(n)cuc|u} ju € D(n)}.

For each £ = Ruler)(n)cuc[u] in V(n), there is at least one computation path of M on z in which M never enters an accepting
state, because x ¢ L. Fix such a computation path of M on z, and denote it by p(z). Let s(x) be the storage state of M
just after the point where in p(z) the input head left the second ‘c’ of z. Then the following proposition must hold.

Proposition 1. For any two different strings z,y in V(n), s(z) # s(y).

[ Proof. For otherwise, suppose that z = Ruler)(n)cuclu], y = Ruler)(n)cvclv], v # v, and s(z) = s(y). Then, there
would be a computation path of M on the string Ruler;(n)cucfv] in which M never enters an accepting state. This means
that Ruler;(n)cuc(v] is rejected by M. This contradicts the fact that Ruler;(n)cuc[v} is in L. ]

Proof of theorem 3 (continued).

For each n > 1, let V/(n) = {Ruler;(n)cucu’|u.€ D(n) & v' € D'(n) & h(u) # h(u')}, and let ¢'(n) denote the number
of possible storage states of M just after the point where the input head left the second ‘c’ of strings in V’(n). Then it
is easily to see that ¢'(n) < kX("("))| where k is a constant depending only on M, and r(n) is the length of each string in
V'(n). Note that r(n) = O(n- 2"+ 2%"). For each n > 1, let q(n) denote the number of possible storage states of M just
after the point where the input head just left the second ‘c’ of strings in V(n). Since M is a one-way machine and has only

- universal states, it follows that g(n) = ¢’(n) < kX"(")). From this and the assumption that L(n) = o(logn), it follows that
[V(n)] = 22" > ¢(n) for large n. For such a large n, there must be two different strings z,y € V(n) such that s(z) = s(y).
This contradicts Proposition 1. Thus, we complete the proof of * Ly ¢ weak-1USPACE(o(logn)) . Q.E.D.

From Theorem 1, Theorem2, and Theorem 3, we have the following corollary.

Corollary 1. For any function loglogn < L(n) = o(logn), and for each X € { strong, weak } and each Y € {4, N, U, D},
X-1Y PDA(L(n))GX-2Y PD A(L(n)).
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4 A relationship among determinism, nondeterminism, and alternation

This scction mainly investigates a realtionship among the accepting powers of one-way (or two-way) alternating pushdown
automata, deterministic pushdown automata, nodeterministic pushdown automata, and alternating pushdown automata with
only universal states with sublogarithmic space.

Theorem 4.

weak-1APDA(loglogn) ~ ( weak-NSPACE(o(log n)) |y weak-USPACE(o(logn)) ) # @

Proof:

Let Ly = {Rulery(n)cujcuge-- - cugcu € {0,1,a,b, ¢, #}*]

n21&k>1&Vi(1<i<k)[u; € D(n)] &
u € D'(n) & Ir(1 < = < k)[h(n) = h(u,)]}.
To prove the theorem, we show that

(1) L4 € weak-1APD A(log log n),
(2) Ly ¢ weak-NSPACE(o(logn)), and
(3) Ly & weak-USPACE(o(logn))

(1): The set Ly will be accepted by a weakly loglogn space-bounded 1APDA M which acts as follows. Suppose that an
input string
z = wyFwaF - - #wqycu cuge- - cugcu
is presented to M, where d > 4, k > 1,and
(i) for each s (1 < 5 < d), w, = Ty ta1Toater - Tyt L, (where l, > 2, z,i's € {a,b}, and t,;'s € {0, 1}#),
(ii) for each i(1 <t < k), u; = Yy v Yiaviz + -+ Vi Vit (where [; > 2, ¥ij's € {a,b}, and v;;'s € {0,1}1),
(iii) u = y1viyavz-- -y (where ! > 2, y;'s € {a,b)}, and v;’s € {0, 1}4).

(Input strings of the form different from the above can be easily rejected by M.) Let n = |t;;]. M makes a universal
branch as follows.

(a) In the first branch By, M checks whether
Vs(1< s <dVi(l i< k)
ltal = ltaal = -+ = Jtat,| = Joar] = Joia| = - = Jyg| = |oa| = Jwo] = -+ = Juu| = n ].
This is universally done by using n space of the pushdown stack.

(b) In the second branch By, M checks whether -

(b-1) for each odd number s(1 < s < d)
[ta = B(n,1) =00---0, t,, = B(n,2") = 11--- 1L, and Vj(1 < j < I, — D[ num(t,jy,) = num(t,;) + 1],

n n
where for each string w € {0, 1}*, num(w) denotes the integer represented by the ‘binary number’ w with
the leftmost symbol as the most significant bit.
(b-2) for each even number s(1 < s < d)
{ta = B(n,1)"=00---0, ty, = B(n,2")* = 11---1, and Vi(l <j £ L= num(tyj ") = num(t,;®)+1},
n n
(b-3) Vi(1 < i < k)| vy = B(n,1), v = B(n,2"), and Vj(1< j < I - D[ num(vijs1) = num(vi;) +1}], and
(b-4) vi = B(n,1)?, vy = B(n,2")?, and Vj(1 < j < 1 - 1) num(vjy)) = num(v;) + 1|
(b-1) is universally checked as follows.
The check of ‘tsy = B(n, 1)’ and ‘t,, = B(n,2")' is straightforward. For each odd 5(1 < s £ d), in one branch,
M checks that num(t,j41) = num(t,;) + 1 for each 1 < j < I, — 1. To do so, M makes a universal branch. For
each j(1 < j <, — 1), in the j-th branch, M universally checks whether num(t,jq1) = num(t,;) + 1. That is, for
cach m(1 < m < |t,;]), in the m-th branch, M stores the symbol tsj(m) (where t,;(m) denotes the m-th symbol
(from the lcft) of ¢,;) in its finite control, stores Z™ in the pushdown stack (where Z is a pushdown stack symbol),
picks up the m-th symbol t,;,1(m) of t,;4; by using Z™ in the pushdown stack, and enters an accepting state
only if it finds out that if either (m = |t,;]) or (m # [ty] & tuj(m +1) = t,j(m +2) =--. = t.j(lts5]) = 1), then
toj+1(m) = t,;(m), and otherwise, t,j41(m) = t,j(m), where T=0and 0 = 1.
The checks of (b-2), (b-3),and (b-4) are similar to the check of (b-1).
(c) In the third branch B, M checks whether
(c-1) zn1z12 -z, = aa---a and zgzqy -+ g, = bb---b, and
(c-2) Vs(1 < s < d— 1) num(h(zy41,1Z441,2 Tt lyy)) = num(h(zaze o z,)) + 1)

The check of (c-1) is trivially done by using the finite control. On the other hand, (c-2) is universally checked as
follows.
For each 5(1 < s < d - 1), in the s-th branch , M checks whether

UMM (Tag 1180412 Tag1l,y, ) = num(h(zg T - Zo1,)) + 1



(2):

3):

To do so, M further makes a universal branch. For each j(1 < j < 1,), in the j-th branch, M stores the symbol
z,j in the finite control, and stores the “yardstick” string t,; (positioned just after 245) in the pushdown stack.
Then,by using t,; stored in the pushdown stack, M tries to pick up the symbol 2,41 ; and check that z,; and
To+1,j have a desired relationship. To do so, M again makes a universal branch. That is, for cach 'A< <),
in the j'-th branch, M stores the symbol z,41 j- in the finite control and compares ¢,; (stored in the pushdown
stack) with t,41 . If to41,jr # to;7, then M immediately enters an accepting state. If t,41 0 = t,;%, then M
enters an accepting state only if one of the following three conditions is true.

(i) J=1, & 34415 =T5j,
(i) j#L &z =42 = =T, =b & Tp41,j0 = T,
(i) j#L&IG+1<r <L) zer =a] & 2441, = 24j
where @ =b and b = a.

(d) In the fourth branch B4, M checks whether A(x,) = h(u), i.e. , Y1y - Yo, = Y1¥2 -+ Y1 for some r(l1<r <k)

~

To do so, M existentially chooses some r(1 < r < k), moves to the segment u,, and universally checks whether
yrj = yj foreach 1 < j < l’r. To check that y,; = y;, M stores the symbol y,; in the finite control, stores
the “yardstick” string v,; (positioned just after yr;) in the pushdown stack, existentially guesses j' (such that
vy = v,; ), picks up the symbol y;., and enters an accepting state only if it finds out that vj. = vrj" and y,j = yjr.
( Another method to check that y.; = y; is to use a technique similar to that in the last paragraph of (c) above.
That is, M stores the symbol y,; in the finite control, and stores the yardstick string v,; (positioned just after
yrj) in the pushdown stack. Then, M makes a universal branch as follows. For each j' (1 < j’ < 1), in the j'-th
branch, M stores the symbol y;. in the finite control and compares v,; (stored in the pushdown stack) with the
yardstick string vjr. If vj» # v,;®, then M immediately enters an accepting state. If vj» = v,; , then M enters

an accepting state only if y; = yjr. )

M accepts the input string z if and only if (a), (b), (c), and (d) above are all checked successfully if and only if z is in

Ly. It will be obvious that each computation path in an accepting computation tree of M on z is such that the space
of the pushdown stack is bounded by n = |¢};] < loglog |z|.

Suppose that there exists a weakly L(n) space-bounded 2NTM M accepting Ly, where L(n) = o(logn). We assume
without loss of generality that when M accepts z in Ly, it enters an accepting state on the right endinarker ‘$’. For
each n > 1, let

V{n) = { Rulery(n)yculy € W(n) & u € D'(n) }, where W(n) = { cujcuge- - cugan [Vi(1 < i £ 227) [u; € D(n)]}.
We consider the computation of M on the strings in V(n). Let r(n) be the length of each z in V(n). Then r(n) =
O(n-2"-2%"). Let s and k be the number of states (of the finite control) and storage-tape symbols of M. When M
uses at most L(r(n)) storage-cells, there will be at most u(n) = sL((r(n))k ("("D possible storage states. We denote

the set of these storage states by C(n) = {q1,92,**,qu(n)}. For each y € W(n), each g € C(n) and each d € {r,1}, let
M(q,d) be a subset of (C(n) x {r,1}) U{H} which is defined as follows(H is a new symbol):

(i) (¢'.d') € My(q,d) & when M enters y in storage state ¢ by moving right (if d = r) or by moving left (if
d = 1), there exists a sequence of steps of M in which M enventually exits y in storage state ¢’ by moving left (if d’ = 1)
or by moving right(if &' = r)

(ii) H € My(q,d) > when M enters y in storage state ¢ by moving right (if d = 7) or by moving left (if d = 1),
there exists a sequence of steps of M in which M never exits y. (Note the assumption that A/ never enters an accepting
state in y.)

Let y1, y2 be two strings in W(n). We say that y; and y; are M-equivalent if for each (g,d) € C(n)x {r,1}, M,,(q,d) =
My, (q,d). Clearly, M-equivalence is an equivalence relation on strings in W(n), and there are at most

E(n) = (22-u(n)+1)2-u(n)

M-equivalance classes denoted by Cy, Ca, -+, Cg(n).
For cach y = cujcug - -- cugan in W(n), let b(y) = {u € D'(n) |35(1 < j < 2%") [(u;) = h(n)]}.

Futhermore, for each n > 1, let R(n) = { b(y)ly € W(n) }. Then |R(n)| = 22" 1. Since limp—oo L(n)/logn=10, it
follows that lim,_.oo L(r(n))/logr(n)= 0, and thus lim,_,c, L(r(n))/2" = 0. From this, it follows that |R(n)] > E(n)
for large n. For such n, there must be some Q,Q'(Q # Q') in R(n) and some M-equivalance class Ci(1 < i < E(n))
such that the following statement holds:

“There exist two strings y,z € W(n) such that (i) b(y) = Q@ # Q' = b(2), and (ii) y, z € C; (i.e. , y and z are
M-equivalent.)”

Because of (i), we can, without loss of generality, assume that there is some u such that u € b(y) — b(z). It is clear that
y' = Rulery(n)ycu is in Ly V(n), so there exists an L(r(n)) space-bounded accepting computation tree of M on y'.
Because of (ii), from this tree , we can easily construct an L(r(n)) space-bounded accepting computation tree of M on
z' = Rulery(n)zcu. Thus, we can conclude that z' is also accepted by M. Since z’ is not in Ly, we get a contradiction.
This completes the proof of (2)

The proof of (3) is similar to that of (2). Q.E.D.
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From Theorem 4, we have the following corollary. -
Corollary 2.

(1) weak-1APD A(loglog n) — (weak-2N PDA(o(log n)) |J weak-2U PD A(o{log n))) # 0.
(2) For any function loglogn < L(n) = o(logn),

- weak-2NPDA(L(n)) Jweak-2UPD A(L(n))Gweak-2AP D A(L(n)),
- weak-1 NPDA(L(n))Uweak-lUPDA(L(n))gweak-lAPDA(L(n)).

Theorem 5.
strong-2APD A(loglogn) — (weak-NSPACE(o(log n)) Jweak-USPACE(o(log n)) ) # 0.
. Proof: Let L; be the set described in the proof of Theorem 1. By using the same technique as in the proof of Theorem
4, we can show that L; ¢ weak-NSPACE(o(logn)) Jweak-USPACE(o(logn)). On the other hand, it is shown in the
proof of Theorem 1 that L, is in strong-2APDA(loglogn). This completes the proof of the theorem. Q.E.D.
" From Theorem 5, we have the following corollary.
Corollary 3.

(1) strong-2APDA(loglogn) ~ ( weak-2N P.DA(o(log n)) U weak-2UPD A(o(log n))) # 0. ‘
(2) For any function loglogn < L(n) = o(logn), strong-2NPDA(L(n))U strong-2U PD A(L(n))Gstrong-2APD A(L(n)).

Theorem 6.

weak-1UP D A(loglog n) — weak-1NSPACE(o(logn) # @. Thus, weak-1U PD A(log log ) — weak-1N PD A(o(log n)) # 0.

Proof. Let L, = {Rulera{n)|n > 1}. It is implicitly shown in the proof of Theorem 4 that L; is accepted by a weakly
loglog n space bounded 1UPDA. On the other hand, we can show that L, is not in weak-1NSPACE(o(logn)) by using the
same idea as in the proof of Theorem 2. This completes the proof of Theorem 6. Q.E.D.

Statement (2} of the following corollary solves an open problem in [9).

Corollary 4. For any function loglogn < L(n) = o(log n),

(1) weak-1DPDA(L(n))Gueak-1U PDA(L(n)), and
(2) weak-1USPACE(L(n)) and weak-1NSPACE(L(n)) are incomparable.

Proof.

(1): This follows directly from Theorem 6.

(2): From Theorem 6, to prove (2), it is sufficient to show that weak-1NSPACE(log log n)—weak-1USPACE(o(log n)) #

90

It is known that the set L' = {0"10™ [n # m} is in weak-1NSPACE(loglogn) [6). We below prove that L' is not in
weak-1USPACE(o(log n)).

Suppose that there exists a weakly L(n) space-bounded 1UTM M, which accepts L', where L(n) = o(log n).

We first note that for each n > 1, there is at least one computation path of M on the input string 0710 in which M
never enters an accepting state, because of 0"10" ¢ L'. Fix such a computation path of M on 0"10", and denote it by p(n).
Let s(n) denote the storage state of M just after the point where in p(n) the input head left the symbol ‘1’ of 0710, Then,
the following proposition must hold.

Proposition 2. For any two different strings 0"10" and 0m10™(n # m), s(n) # s(m).

[ Proof. For otherwise, suppose that s(n) = s(m). Then, there would be a computation path of M on the string 010"
in which M never enters an accepting state. This means that 0710™ is rejected by M. This contradicts the fact that 0"10™
isin L'. }

Proof of Corollary 4 (continued).

For each n > 2, let V'(n) = {0°10]2 < i < n}, and let ¢'(n) denote the number of possible storage states of M Just after
the point where the input head left the symbol ‘1’ of strings in V'(n). Then it is easy to see that for infinitely many n,
¢'(n) < T+ (where r is a constant depending only on M). For each n > 2, let V(n) = {0'10/ |2 < i< n), and let g(n)
denote the number of possible storage states of M just after the point where the input head left the symbol ‘1’ of strings
in V(n). Noting that M is a one-way machine and has only universal states, we can easily sec that g(n) = ¢'(n). Since
L(n) = o(logn), it follows that n > g(n) for some large n. For such a large n, there must be two integers ny,n; such that
(i) 2 < n1 < ny < nand (i) s(m) = s(n2). This contradicts Proposition 2. Thus, we complete the proof of “ L' ¢ weak-
WWSPACE(o(logn)) . Q.E.D.

Unfortunately, it is unknown whether weak-1U PDA( L(n) ) and weak-1N PDA(L(n)) are incomparable for any loglogn <
L(n) = o(log n). ) :

5 Closure Prop erties

This section shows that for any function loglogn < L(n) =o(logn), (1) weak-1APDA(L(n)), weak-1UPDA(L(n)), and
X-YPDA(L(n)) (X € {strong,weak}, and Y € {2N,2U,2D}) are not closed under concatenation, Kleene closure, and
length preserving homomorphism, and (2) weak-1U PDA(L(n)) is not closed under complementation.

Lemma 1. Let
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. Ly = {Rulera(n)cucujcugc: - cux € {0,1,4a,b,c, #}*
n>1&k>1&Vi(l <i<k)uieD(n)]
& v € D'(n) & h(u) = h(ur)},

- Lg = {cprniyaza- - yrzx € {0,1,0,b,c} k22 &
Vi(1<j < k)ly; € {a,b} & z; €{0,1}"] }*,

- Ly =LsU L,

- Lg = {Rulery(n)cujcuge: - - cux € {0,1,a,b,c, #}*|
n>1& k>2&Vi(l1 <i<k)|u; €D(n)]}, and

- Ly = {Rulery(n)cucrurcaus - - - cru € {0,1,a,b,¢, d, #}*|
n>1&k>1&veD'(n) &Vi(l <i<k)u; € D(n) & ci€ {cd}] &
(1< < Bles = d & Wil 4 < by i 4 3)es = ] & h(w) = h(up)]).

Then, Ls, Lg, L7, Ls, Ly are all in weak-1UPDA(loglogn), and in strong-2DP D A(loglog n).

Proof. By using a technique similar to that in the proof of Theorem 4, we can easily show that cach Li(5 < i <9) is
accepted by a weakly loglog n space-bounded 1UPDA, and thus L; € weak-1UPD A(log log n).

The proof of “L; € strong-2DPD A(loglog n) for each i € {5,6,7,8,9}" is left to the reader. Q.E.D.

Lemma 2. Let

Lip = { Rulery(n)cucuycuzc: - - cuy € {0,1,a,b, G#IFIn21&k21&ueD'(n)&

CVi(1 i < k) [u; € D(n)) & 3r(1 <7 < k) [h(u) = h{x,)] }.

Then Ljo g weak-1APDA(o(log n))Jweak-2N PDA(o(log n)) U weak-2U P.D A(o(log n)).

Proof. By using the same technique as in the proof of Theorem 1 (Theorem 4), We can show that Lig ¢ weak-1APDA
(o(log n)) (L1g & weak-2NPD A(o(logn)) ) weak-2U P D A(o(logn)) ). Q.E.D.

Theorem 7. For any function loglogn < L(n) = o(logn), weak-1APDA(L(n)), weak-1U PDA(L(n)), and X-Y PDA
(L{n)) (where X € {strong, weak} and Y € {2N,2U,2D}) are not closed under concatenation, Kleene closure, and length
preserving homomorphism.

Proof. Let Ls, Lg, L1, Lg, Ly, L1g be the set described above. We first observe that

(i) LsLg () Lg = Lyg, and

(i) weak-1APDA(L(n)), weak-1UPDA(L(n)), and X-YPDA(L(n)) (where X €{strong, weak} and Y €{2N,2U,2D}) are
closed under intersection. .

Nonclosure under concatenation follows from this observation and Lemma 1 and 2. Nonclosure under Kleene closure
follows from (ii) above, Lemma 1, Lemma 2, and the fact that L7 (] Lg = Lio.
Let g be a length preserving homomorphism such that g(0) = 0, g(1) = 1, g(c) = ¢, 9(#) = #, and g(d) = c. Then,
9(Ly) = Lig. From this and from Lemma 1 and 2, nonclosure under length preserving homomorphism follows. Q.E.D.
Theorem 8. For any function loglogn < L(n) = o(log n), weak-1UPDA(L(n)) is not closed under complementation.
Proof. Let L = {Rulery(n)cuce’ [n>1 & u€ D(n) & v’ € D'(n) & h(u) = h(u')}. By using a technique similar to
that in the proof of Theorem 4, we can show that Ly is accepted by a weakly loglogn space-bounded 1lUPDA. On the other
hand, by using a technique similar to that in the proof of Theorem 3, we can show that Ly (the complement of Ly;) is
not in weak-1USPACE(o(log n)), and thus Ly, is not in weak-1UPDA(o(logn)). This completes the proof of the theorem.
Q.E.D.

6 Weak versus Strong

This section briefly discusses a relationship between ‘strongly’ and ‘weakly’.

It is shown in [4] that strong-1ASPACE(o(log n)) is equal to the class of regular languages. Let Lg be the set described
in Lemma 1. Clearly, Lg is not a regular language. On the other hand, Ls € weak-1UPDA(loglog n). From this observation,
we have the following theorem. i

Theorem 9. For any function loglogn < L(n) = o(log n),

(1) strong-1U PDA(L(n))Gweak-1U PDA(L(n)), and
(2) strong-1APDA(L(n))Gweak-1APDA(L(n)).

It is known that the set L' = {0"10™|n#m} is in weak-DSPACE(loglogn) (1], and L' is in weak-1NSPACE(loglogn)
[6], but L’ is not in strong-ASPACE(o(logn)) [15]. Thus, we have, for any function loglogn < L(n) = o(logn),

- strong-XSPACE(L(n))Gweak- XSPACE(L(n)) (X€{A, N,U, D}), and
- strong-1NSPACE(L(n))Gweak-1NSPACE(L(n)).

Unfortunately, it is unknown whether a similar result holds also for pushdown automata.
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7 Conclusions

We conclude this paper by giving several open problems. Below, L(n) denotes any function such that loglogn < L(n) =
o(logn). )

(1) - Isweak-1AP DA(L(n)) incomparable with weak-2DP D A(L(n)), weak-2N P DA(L(n)), and weak-2UP D A(L(n))?
- Is weak-1U PDA(L(n)) incomparable with weak-2DPDA(L(n)), and weak-2N PDA(L(n))?
- Is weak-1NPDA(L(n)) incomparable with weak-2DPDA(L(n)), and weak-2U PDA(L(n))?

(2) - weak-2DPDA(L(n))Gweak-2U PDA(L(n))?
- weak-2DPD A(L(n))Gweak-2NPDA(L(n))?
- Is weak-2U PDA(L(n)) incomparable with weak-2NPDA(L(n))?

3) - strong-2DPDA(L(n))Gstrong-2U PDA(L(n))?
- strong-2DPDA(L(n))Gstrong-2NPDA(L(n))?
- Is strong-2U PD A(L(n)) incomparable with strong-2NPDA(L(n})?

(4)  for each X € {D, N,U, A}, strong-2X PDA(L(n))Gweak-2X PDA(L(n))?

(5)  Are weak-2APDA(L(n)), weak-2U PDA(L(n)), weak-2N PD A(L(n)), and weak-1APDA(L(n)) closed under com-
plementation? (It is shown in [2] that weak-USPACE(L(n)) and weak-NSPACE(L(n)) are not closed under com-
plementation. )

(6) Are strong-2APDA(L(n)), strong-2UPD A(L(n)), strong-2NPDA(L(n)), and strong-2DPDA(L(n)) closed un-
der complementation? (It is shown in [2] that strong-DSPACE(L(n)) is closed under complementation. Whether
strong-ASPACE(L(n)), strong-USPACE(L(n)), and strong- NSPACE(L(n)) are closed under complementation is
still an open problem.)
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