goooboooobgon

906 0 19950 64-72 : 64

Alternation for Two-Way (Inkdot) Multi-Counter Automata
with Sublinear Space

WIEE F/KEZE (Tsunehiro YOSHINAGA) (IOKRZETEE H E3eE]l (Katsushi INOUE)

1 Introduction

Alternating Turing machines were introduced in [1] as a mechanism to model parallel computation, and in related papers
[8-17], investigations of alternation have been continued. Recently, several properties of Turing machines with small space
bounds were given in [6-10,14-18]. For example, von Braunmiihl et al. [16] showed that the alternation hierarchy of Turing
machines for sublogarithmic space is infinite. Ranjan et al. [18] introduced a slightly modified Turing machine model, called a
1-inkdot Turing machine. The 1-inkdot Turing machine is a Turing machine with the additional power of marking 1 tape-cell
in the input (with an inkdot). Inoue et al. [6-8] investigated some accepting powers of 1-inkdot Turing machines and extended
this model to that with multi inkdots. It is well known that counter automata without time or space limitations have the
same power as Turing machines; however, when time or space restrictions are applied, a different situation emerges. For
example, hierarchical properties in the accepting powers of one-way alternating multi-counter automata operating in realtime
and alternating multi-counter automata with small space are investigated in {11-13].

In this paper, we investigate an alternation hierarchy of multi-counter automata and 1l-inkdot alternating multi-counter
automata which have sublinear space. Section 2 gives the definitions and notations necessary for this paper. Let strong-2%,CA
(k, L(n)) (strong-2I;CA(k, L(n))) denote the class of sets accepted by strongly L(n) space-bounded two-way alternating k-
counter automata making at most / — 1 alternations with the initial state existential (universal), let weak-2%;CA(k, L(n))
(weak-21;CA(k, L(n))) denote the class of sets accepted by waekly L(n) space-bounded two-way alternating k-counter au-
tomata making at most [— 1 alternations with the initial state existential (universal), let strong-2%,CA*(k, L(n)) (strong-
2II;CA*(k, L(n))) denote the class of sets accepted by strongly L(n) space-bounded two-way l-inkdot alternating k-counter
automata making at most / — 1 alternations with the initial state existential (universal), and let weak-2%;CA*(k, L(n)) (weak-
2II,CA*(k, L(n))) denote the class of sets accepted by weakly L(n) space-bounded two-way l-inkdot alternating k-counter
automata making at most / — 1 alternations with the initial state existential (universal). We denote by strong-25;TM(L(n))
(strong-2I[; TM(L(n))) the class of sets accepted by strongly L(n) space-bounded two-way alternating Turing machines making
at most { — 1 alternations with the initial state existential (universal), denote by weak-2X;TM(L(n)) (weak-2I[;TM(L(n))) the
class of sets accepted by weakly L(n) space-bounded two-way alternating Turing machines making at most ! — 1 alternations
with the initial state existential (universal), denote by strong-2X;TM*(L(n)) (strong-2IL, TM*(L(n))) the class of sets accepted
by strongly L(n) space-bounded two-way l-inkdot alternating Turing machines making at most ! — 1 alternations with the
initial state existential (universal), and denote by weak-2X,;TM*(L(n)) (weak-2I;TM*(L(n))) the class of sets accepted by
weakly L(n) space-bounded two-way 1-inkdot alternating Turing machines making at most [— 1 alternations with the initial
state existential (universal). Section 3 investigates a relationship between the accepting powers of alternating multi-counter
automata with and without 1 inkdot. It is shown in [6,8], for example, that for any L(r) = oflogn), strong-2X;TM*(logn) —
weak-25,TM(L(n)) # ¢ and strong-2II; TM*(log n) — weak-2I1; TM(L(n)) # ¢. In correspondence to this result, we show,
for example, that for any L(n) such that log L(n) = o(log n), strong-2X,CA*(1,logn) — Ui ckcooweak-25:1CA(k, L(n)) # ¢
and strong-2I1;CA*(1,logn) — Uj<kcooweak-2II1CA(k, L(n)) # ¢. Section 4 investigates an infinite alternation hierarchy
of alternating multi-counter automata with sublinear space. It is shown in [16], for example, that for each ! > 1, and any
L(n) = o(logn), strong-25,TM(logn) — weak-2I;TM(L(n)) # ¢ and strong-25;TM(logn) — weak-2ILTM(L(n)) # 4.
In correspondence to this result, we show, for example, that for each [> 1, and any L(n) such that log L(n) = o(log n),
strong-2I,CA(1,logn) — Urcrcooweak-25CA(k, L(n)) # ¢ and strong-2T;CA(1,logn) ~ Usckcooweak-2IICA(K, L(n))
¢. Section 5 investigates a relationship between m-2X;CA*(k, L(n)) and m-211; CA*(k, L(n)) for each m € {weak, strong}
and each k > 1, and any L(n) such that L(n) > logn and log L(n) = o(log). We show, for example, that m-2;CA*(k, L(n))
is incomparable with m-2I1; CA*(k, L(n)). Section 6 concludes this paper by giving some open problems.

2 Preliminaries

A multi-counter automaton is a multi-pushdown automaton whose pushdown stores operate as counters, i.e., each storage
tape is a pushdown tape of the form Z* (Z fixed). (See [4,5] for formal definitions of multi-counter automata.)

A two-way alfernating multi-counter automaton (2amca) M is the generalization of a two-way nondeterministic multi-
counter automaton in the same sense as in [1-3]. That is, the state set of M is divided into two disjoint sets, the set of
universal states and the set of ezistential states. Of course, M has a specified set of accepting states. We assume that 2amca’s
have the left endmarker “¢” and the right endmarker “$” on the input tape, read the input tape right or left, and can enter
an accepting state only when falling off the right endmarker §. We also assume that in one step 2amca’s can increment or
decrement the contents (i.e., the length) of each counter by at most one. For each k > 1, we denote a two-way alternating
k-counter automaton by 2aca(k).

An instantaneous description (ID) of 2aca(k) M is an element of

T* x (N U {0}) X Su,

65

where X (¢,$ ¢ X) is the input alphabet of M, N denotes the set of all positive integers, and Sy = Q X ({Z}*)*, where Q is
the set of states of the finite control of M, and Z is the storage symbol of M. The first and second components, w and i, of
an ID I = (w,%,(q,(0a,...,04))) represent the input string and the input head position, respectively.! The third component
(g,(@1,...,ax)) of I represents the state of the finite control and the contents of the k counters. An element of Sas is called
a storage state of M. If ¢ is the state associated with an ID I, then I is said to be a universal (ezistential, accepting) ID if ¢
is a universal (existential, accepting) state. The énitial ID of M on w € E* is Ipr(w) = (w,0,(go, (},--.,A))), where gq is the
initial state of M and A denotes the empty string.

We write I kpr I' and say I’ is a successor of I if an ID I' follows from an ID I in one step, according to the transition
function of M.

A computation path of M on input w is a sequence Iy bpr Iy Far ... bpr I, (n > 0), where Iy = Ins(w). A computation
tree of M is a finite, nonempty labeled tree with the following properties:

1. each node 7 of the tree is labeled with an ID, ¢(r),

2. if 7 is an internal node (a non-leaf) of the tree, £() is universal and {I|é(r) Fps I} = {I1, Iz, ..., I, }, then 7 has exactly
r children pq, pa, ..., p, such that £(p;) = I;, and

3. if m is an internal node of the tree and £() is existential, then 7 has exactly one child p such that £(x) Far £(p).

A computation tree of M on input wis a computation tree of M whose root is labeled with Iys(w). An accepting computation
tree of M on w is a computation tree of M on w whose leaves are all labeled with accepting ID’s. We say that M accepts w
if there is an accepting computation tree of M on w. We denote the set of input words accepted by M by T(M).

If the state of the finite control of M changes from universal to existential or vice versa, we say that the computation path
has an alternation at this point.

A one-way alternating multi-counter automaton (lamca) is a 2amca which reads the input tape from left to right only.
For each k£ > 1, let laca(k) denote a one-way alternating k-counter automaton.

Let L : N — R be a function, where R denotes the set of all nonnegative real numbers. For each x€{1,2} and each k¥ > 1,
xaca(k) M is weakly (strongly) L(n) space-bounded if for any n > 1 and any input w of length n accepted by M, there is
an accepting computation tree ¢ of M on w such that for each node 7 of ¢, the length of each counter in £(w) is bounded by
L(n) (if for any n > 1 and any input w of length n (accepted or not), and each node 7 of any computation tree of M on
w, the length of each counter in £(r) is bounded by L(n)). A weakly (strongly) L(n) space-bounded xaca(k) is denoted by
weak-xaca(k, L(n)) (strong-xaca(k, L(n))). . _

Let T : N — N be a function. For each me{weak, strong}, each x€{1,2} and each k > 1, and any function L : N — R, we
say that an m-xaca(k, L(n)) M operates in time T(n) if for each input w accepted by M, there is an accepting computation
tree ¢ of M on w such that the length of each computation path of ¢ is at most T(|w|). An m-laca(k,L(n)) M operates in
realtime if T(n) = n + 1. For operating time, we are only interested in realtime in this paper.

For each me {weak, sirong} and each k > 1, and any function L : N — R, an m-2aca(k, L(n)) with 1 inkdot, denoted by
m-2aca*(k, L(n)), can mark 1 tape-cell on the input (with an inkdot). This tape-cell is marked once and for all (no erasing)
and no more than one dot of ink is available. The action of the machine depends on the current state, the currently. scanned
input, the current contents of counters, and the presence of the inkdot on the currently scanned tape-cell.

For each me{weak, strong}, each k > 1 and each I > 1, and any function L : N — R, we denote by m-20;cak, L(n))
(m-2mca(k, L(n))) a m-2aca(k, L(n)) making at most [— 1 alternations with the initial state existential (universal), denote
by m-lojca(k, L(n)) (m-1mca(k, L(n))) a m-laca(k, L(n)) making at most I — 1 alternations with the initial state existential
(universal), and denote by m-20ica*(k, L(n)) (m-2mca*(k, L(n))) a m-20ica(k, L(n)) (m-2mca(k, L(n))) with 1 inkdot.

For each me{weak, strong} and each x€{1,2}, we define

m-xACA(k, L(n)) = {L|L = T(M) for some m-xaca(k,L(n)) M},

m-xX;CA(k, L(n)) = {L|L = T(M) for some m-xoica(k, L(n)) M},

m-xI;CA(k, L(n)) = {L|L = T(M) for some m-xmca(k,L(n)) M},

weak-15;CA(k, L(n),real) = {L|L = T(M) for some weak-1oica(k, L(n)) M operating in realtime},
weak-1I;CA(k, L(n),real) = {L|L = T(M) for some weak-1mca(k,L(n)} M operating in realtime},
m-251CA*(k, L(n)) = {L|L = T(M) for some m-20;ca*(k,L(n)) M}, and

m-2I;CA*(k, L(n)) = {L|L = T(M) for some m-2mca*(k,L(n)) M}.

An alternating Turing machine (aTm) we consider in this paper has a read-only input tape with the left endmarker ¢ and
the right endmarker §, and a separate storage tape. (The reader is referred to [9,10] for the formal definition of aTm’s.) For any
L : N — R, we denote a weakly (strongly) L(n) space-bounded one-way aTm by weak-1aTm(L(n)) (strong-1laTm(L(n))), and
denote a weakly (strongly) L(n) space-bounded two-way aTm by weak-2aTm(L(n)) (strong-2aTm(L(n))). (See [6-10,14-18]
for the definition of weakly (strongly) L(n) space-bounded aTm’s.) For each m € {weak, strong}, and any L : N — R,
we denote a m-2aTm(L(n)) with 1-inkdot by m-2aTm*(L(n)). (The reader is referred to [6-8,18] for formal definition of
m-2aTm*(L(n)).) For each me{weak, strong} and each ! > 1, and any function L : N — R, we denote by m-26;Tm(L(n))
(m-2mTm(L(n))) a m-2aTm(L(n)) making at most ! — 1 alternations with the initial state existential (universal), denote
by m-10\Tm(L(n)) (m-1mTm(L(n))) a m-1laTm(L(n)) making at most { — 1 alternations with the initial state existential
(universal), and denote by m-20;Tm*(L(n)) (m-2mTm*(L(n))) a m-20;Tm(L(n)) (m-2mTm(L(n))) with 1 inkdot.

For each me{weak, strong}, each x€{1,2}, we define

!We note that 0 < i < |w| + 2, where for any string v, |v] denotes the length of v. “0*, “17, “lw| +1” and “|w|+ 2” represent the positions of the
left endmaker ¢, the leftmost symbol of w, the right endmarker $, and the immediate right to $, respectively.

66

m-xATM(L(n)) = {L|L = T(M) for some m-xaTm(L(n)) M},
m-x5;TM(L(n)) = {L|L = T(M) for some m-xo;Tm(L(n)) M},
m-xI;TM(L(n)) = {L|L = T(M) for some m-xmTm(L(n)) M},
m-2%,TM*(L(n)) = {L|L = T(M) for some m-20;Tm*(L(n)) M}, and
m-2ILTM*(L(n)) = {L|L = T(M) for some m-27;Tm*(L(n)) M}.

The following lemmas can be easily proved.

Lemma 2.1. For each m € {weak, strong}, each x € {1,2} and each ! > 1, and any function L : N — R,
Ur<k<oom-XACA(K, L(n)) C m-xATM(log L(n))? and U, cxcoom-2ACA*(k, L(n)) C m-2ATM*(log L(n)),
Ul<k<°° -xE;CA(k, L(n)) C m-xX;TM(log L(n)) and U1<k<mm-2210A*(k L(n)) C m-2%,TM*(log L(n)), an
Ur<k<oom-xILCA(, L(n)) C m-xI[;TM(log L(n)) and U1<k<mm 2IL;CA*(k, L(n)) C m-2ILTM*(log L(n)).

It is shown in [17] that for any functions F(n) = o(logn) and G(rn) = o(loglogn),
strong-1ATM(F(n)) is the class of regular sets, and weak-2ATM(G(n)) is the class of regular sets.

From this fact and Lemma 2.1, we can show that for any k£ > 1, any functions F : N — R such that log F(n) = o(log n) and
G : N — R such that log G(n) = o(loglogn),

strong-1ACA(k, F(n)) is the class of regular sets and weak-2ACA(k,G(n)) is the class of regular sets.

3 The power of 1 inkdot

This section investigates a relationship between the accepting powers of space-bonded 2amca’s with and without 1 inkdot.
This investigation is based on the results of 2aTm’s [6,8]. Inoue et al. [6,8] showed that for any function L(n) = o(log n),

strong-2X,TM*(loglog n) — weak-2X,TM(L(n)) # ¢,
strong-2I; TM*(loglogn) — weak-2II; TM(L(n)) # ¢, and
strong-2IIsTM*(loglogn) — weak-2ATM(L(n)) # ¢.

In correspondence to this result, we can show several results for 2amca’s. In order to do so, we first give the following two
lemmas. '

Lemma 3.1. Let L = {B(1)}B(2){...1B(n)cwiewsc...curccwln > 2 & r > 1 & w € {0,1}1°6"1 &3i(1 < i < r)[w = w;]},
and

= {B(){B(2)} ...} B(n)cwicwse. .. cwpccw|n > 2 & 7 > 1 & w € {0,1}1°8"1 & Vi(1 < i < r)[w; € {0,1}1°87] & w # w;]},
where for each positive integer ¢ > 1, B(i) denotes the string in {0,1}* that represents the integer : in binary notation (with
no leading zeros). Then,
(1) L; € strong-2X,CA*(1,logn), and
(2) Ly € strong-211;CA*(1,log n),
and for any function L : N — R such that log L(n) = o(log n),
(3) L1 ¢ Urckcoo weak-221CA(k, L(n)), and
(4) Lz ¢ Urckcooweak-2I1,CA(k, L(n)).
The proof of (1) (resp., (2)): We can construct a strong-201ca*(1,logn) (resp., strong-2myca*(1,logn)) M which acts as
follows. Suppose that an input string

¢l .. . fyncwicwae. .. cwpccws

(where n > 2, r > 1, and y;’s, w;’s and w are all in {0,1}*) is presented to M. (Input strings in the form different from the
above can easily be rejected by M.) For each i (1 < i < n), M can first check whether y; = B(i) and store ZM&" in jts
counter when y; = B(%), for example, by using the algorithm in [13]. (Of course, M never enters an accepting state if y; # B(¢)
for some 1 < ¢ < n.) If M successfully completes the action above, then it checks by using Z Mogn] stored in the counter
that |w| = [logn] (resp., |w| = [logn] and |w;| = {logn] for each i (1 < ¢ < r)). After that, M existentially guesses some j
(1 £ 7 £7)), and marks the symbol ¢ just before w; by the inkdot in order to check whether w = w; (resp., M universally
branches and marks the symbol ¢ just before w; by the inkdot in order to check whether w # w; for each j (1 < j < r)).
Finally, M checks by using Z1°67 in its counter that |w;| = [logn], and then deterministically checks by using the inkdot as
a pilot that w = w; (M deterministically checks by using the inkdot as a pilot that w # w;). That is, for example, M stores
Z' (1 <4 < |w| = |w;| = [logn]) in its counter when M picks up the symbol w;(i)® and by using Z' in its counter compares
w;(i) with w(¢) while moving its input head back and forth. (For the check, it is clear that log n space is sufficient.) M enters
an accepting state only if these checks above are all successful. It will be abvious that M accepts the language L; (resp., L2).
The proofs of (3) and (4): It is shoiwn in [6,8] that L, ¢ weak-2X,TM(L(n)) and L, ¢ weak-2II; TM(L(n)) for any
function L(n) = o(logn). From this result and lemma 2.1, (3) and (4) follow. o

Lemma 3.2. Let Lz = {B(I{B(2)}...1B(n)cwrcwac. .. cwrccuscuze...cupln > 2 & (r,7' > 1) & Vi(l <1 < r)Vj(1 <

2From now on, logarithms are base 2.
3For each string w, w(i) denotes the i-th symbol (from the left) of w.

67

7 <) wi,u; € {0,1}M°871] & Wi(1 < i < r)[FH(1 < § <)[w; =]}, and
Ly = {B(IB(2)}...§B(n)cwrcwse ... cwrccurcuze...cupln > 2 & (r,7' > 1) & Vi(l < i < r)Vi(1 £ § < #)[wi,u; €
{0, 1}M&l] & 3i(1 < i < 7)[V5(L < § < ')ws # u;]]}. Then,
(1) L3 € strong-211sCA*(1,logn), and
(2) Ly € strong-2X.3CA*(1,log n),
and for any function L : N — R such that log L(n) = o(log n),
(3) Ls ¢ Usgiccoweak 2ACA(k, L(n))
(4) Ls ¢ Urcpcooweak-2ACA(k, L(n)),
(5) Lz ¢ Urckcooweak-22,CA*(k, L(n)), and
(6) L ¢ Urcrcooweak-2I1; CA*(k, L(n)).
The proof of (1) (resp., (2)): One can construct a sirong-2rsca*(1,log n) (resp., weak-203ca*(1,logn)) M which accepts
L3 (resp., L4) as follows. Suppose that an input string

¢yifyad - . - fyncwicwac. . . cwrecurcuge. . . cum$
(where n > 2, (r, r* > 1), and g’s, w;’s and w are all in {0,1}*) is presented to M. (Input strings in the form
different from the above can easily be rejected by M.) As in the proof of (1) and (2) of Lemma 3.1, M first stores
ZMegn] in jts counter when y; = B(i) for each 1 < ¢ < n. M then checks by using Z['°6”1 stored in the counter that
lwr| = ... = |we| = |us| = ... = |um| = [logn]. After that, M universally checks that for all i (1 < i < 7), w; = u; for
some j (1 < j < ') (resp., M existentially checks that for some i (1 < i <), w; # u; for all § (1 £ j < r")). That is, for
example, in order to check that w; = u; for some j (1 < j <), M first branches, marks the symbol ¢ just before w; by the
inkdot for each i (1 < 7 < r), and then moves to the right to existentially choose u; (resp., in order to check that w; # u;
for all j (1 < j < 7'), M first guesses some i (1 < i < r), marks the symbol ¢ just before w; by the inkdot, and then moves
to the right to universally choose u;). After that, by universally cheking that w;(l) = u;(I) for all { (1 < I < [logn]) (resp.,
by existentially cheking that w;(l) # u;({) for some ! (1 < < [logn])), M can check that w; = u; (resp., w; # u;). For this
check, it is sufficient to use only one counter and use only its contents of length logn. It will be obvious that L3 (resp., Ls)
= T(M). .
The proofs of (3), (5) and (6): It is shown in [8] that for any function L(n) = o(logn), Ls ¢ weak-2ATM(L(n)),
L3 ¢ weak-25,TM*(L(n)), and L4 ¢ weak-2I1; TM*(L(n)). From this result and lemma 2.1, (3), (5) and (6) follow.
The proof of (4): For any function L(n) = o(log n), the proof of ‘L, ¢ weak-2ATM(L(n))’ is similar to that of ‘Lz ¢ weak-
2ATM(L(n))" in [8], and so it is omitted here. From this result and lemma 2.1, (4) follows. O

From these two lemmas, we give the following theorem.

Theorem 3.1. For any function L : N — R such that log L(n) = o(log n),
(1) strong-25,CA*(1,logn) — Uicrecooweak-221CA(k, L(n)) # ¢,

(2) strong-2I; CA*(1,log n) — Us<pccoweak-211; CA(k, L(n)) # ¢,

(3) strong-253TM*(1,logn) — Uy <rcooweak-2ACA(k, L(n)) # ¢, and

(4) strong-2l3TM*(1,log n) — U;<k<ooweak-2ACA(k, L(n)) # ¢.

Corollary 3.1. For each m € {strong,weak}, each k¥ > 1 and each I > 1 (I # 2), and any function L : N — R such
that L(n) > logn and log L(n) = o(log n),
m-25,CA(k, L(n)) G m-25;CA*(k, L(n)) and m-2I;CA(k, L(n)) G m-2I,CA*(k, L(n)).

4 An infinite alternation hierarchy without inkdots

It is shown in [16] that the alternation hierarchy for aTm’s with space-bounds between loglogn and logn is infinte. This
section investigates an infinite alternation hierarchy for amca’s with sublinear space (without inkdots). Throughout this
section, we need the languages in {16] described in the following.

For each ¢ € N, a special symbol fj is introduced. Let

Dy ={0,1}* and D;yy = (D;{é})“ - D; for each i > 1,

3D () = {0,1}* ~ {u} and VDy(u) = {u}, and for each i > 1,

i) = (W1 b ... § Win € Disa|33(1 < 5 < m)[W; € VDi(w)],m > 1} and
VDiy1(u) = {Wy § ... § Wi € Dipa]¥i(1 < 5 < m)[W; € IDs(w)],m > 1}.

Now, let us define the following witness languages: for each [> 2,
Li = U{3Dy(w) - {ku B(n)RB(n - 1)¥ .. B(1)PHH}"|u € {0,131, > 2}, and

LY = U{VDi(u) - {fu B(n)RIB(n — 1)RY.. . 4B(1)EHH}*lu € {0,1}°8"] n > 2}. The following lemma is shown in [16].
Lemma 4.1. For each [> 2,

(1) L} € weak-1%;TM(loglogn) and L} € weak-1II;TM(loglogn), and
(2) Lj € strong-2%;TM(loglogn) and L € strong-2II; TM(loglog),

“For each string w, w™ denotes the reversal of w

68

and for any function L{r) = o(logn),
(3) L} ¢ weak-2ITM(L(n)) and L} ¢ weak-25,TM(L(n)).

In correspondence to this result, we can show the following lemma.

Lemma 4.2. For each [> 2,
(1) L} € weak-1Z;CA(1,log n,real) and L € weak-1ILCA(1,logn,real), and
(2) L} € strong-2%,CA(1,logn) and Ly € strong-2I1;CA(1,logn),
and for any function L : N — R such that log L(n) = o(log n),
(3) L7 ¢ Ui<kcooweak-2IICA(k, L(n)) and LY ¢ U1<k<mweak-2ZICA(k L(n)).
The proof of (1): We prove (1) of this lemma by using induction for I (> 2).
1. (I) The following weak-1ooca(1,logn) M3 operating in realtime accepts the language

1 1 1
L3={wfwal...{ wnluB(r)PYB(n— 1)BY.. 4BURn >2& m>1&t2> 1 & ue {0,1}M6™ & Vi(1 < i < m)w; €
Dq] & 3j(1 < j < m)[w; = u]}.
Suppose that an input string

11 1
e=w fwzf...§ wnbubynlyna-1f...foaf’
(where n > 2, m > land ¢ > 1, and w;’s, ;’s and = are all in {0,1}*) is presented to M3. (Input strings in the form different
from the above can easily be rejected by Mj.)
M%I first existentially guesses some j, and runs to w;. Mza then makes a universal branch.

(A) In one branch, in order to check whether w; = u, M3 universally checks that w;(i) = u(i) for each i (1 < ¢ < |w]). That
is, to verify w;(4) = u(¢), M3 stores i in its counter when it picks up the symbol w;(i), compares the symbol w;(i) with
the symbol u(t) by using Z* in the counter, and enters an accepting states only if w;(¢) = u(s).

(B) In another branch, M3 branches to check the following two points:

(a) whether |u| = |yn|, and
(b) whether y; = B(i)F for each i (1 <% < n).

(a) above can easily be checked by using only one counter, and Mj enters an accepting state only if (a) is successfully checked.
(b) above can be checked as follows. M3 essentially uses the a.lgonthm in [9,13]. By using univeral branches and only one
counter, M3 can check in a way described below whether y; = B(i)® for each i (1 < i < n). M3 compares y;11 With yi,
and verifies that y;41® represents in binary notation (with no leading zeros) an integer which is one more than the integer
represented by »;® in binary notation (with no leading zeros). In doing so, M3 will compare the j-th symbols of y; and i1,
for all appropriate j. Observe that if y;41® is one more than 4;F, then (i) gi+1 = 0™1z and y; = 1™0z, where z is a string
(finishing with 1) over {0,1} and m is some non-negative integer, or (i) %41 = 0™1 and y; = 1™, where m is some positive
integer. Let C be the counter of M3. For each j (1 < j < [yi41]), M stores the symbol y;41(j) in its finite control and Z7 in
C just after it has read the symbol g;4+1(j), and makes a universal branch.

o In one branch, it compares y;41(j) with the symbol y;(j) using Z7 stored in C, and checks whether both the symbols
satisfy (i) or (i) above. (It determines whether they should be the same or not, by checking the first occurrence of 1
in giy1. If the symbol 1 has already occurred, then ;41(j) and y;(j) should be the same; otherwise, y;(5) and ys11(5)
should not be the same.)

o In another branch, it reads the next symbol y;(j + 1), stores it in the finite control, and adds Z to C in order to store
Zi+lip C,

In this way, M3 can check that ;41 is one more than #%® (1 €4 < n) using only universal branches and only one counter,
and operating in one-way. It will be obvious that if y,fyn—1f...§21 is such a string that y; = B(3)® for each i (1 < i < n),
then the length of y, (= B(n)) is equal to [logn], and thus the length of C' is bounded by logn. Furthermore, it is clear
that M3 operates in realtime.
(I LY = {wy n wy u ﬁ wnld Bn)RB(n — DRY..4BOPIn > 2& m> 1 &t > 1 & u e {01} & vi(1 < i <
m)w; € Dy & w; # u]} 1s accepted by a realtime weak-1myca(1,logn) MY as follows. Suppose that an input string
T=u ﬁ w2 ﬁ e ﬂ wrbubynbyn-1} ... fonf*

(where n > 2, m > 1 and t > 1, and w;’s, y;’s and u are all in {0,1}") is presented to MY. (Input strings in the form different
from the above can easily be rejected by My.)

MY moves on z while making a universal branch at the first symbol of each w; (1<i<m).

(A) In one branch, Mr}' continues the action above until it reads the first §, and then makes a univresal branch to check the
following two points:

(a) whether |u| = |ya|, and
(b) whether y; = B(:)R foreach i (1 <i < n)

(B) In another branch, M) immediately enters an existential state, guesses some j (1 < j < |w]) and compares wi(j) with
u(j) in order to check that w;(j) # u(j)-

69

(a) and (b) can be checked in a way as described in (I).
2. Assume that assertion (1) of this lemma holds for L? and LY (i = 3,4,...,1— 1). We shall prove assertion (1) of the lemma
holds for L} and LY, too. '

(I) An input string « in L} has the form & = WS with W in AD(u), W =W, lﬂl W3 Iﬂl ... lﬂl Wo, with W; in V.D;_4(u) for
some i (1 <4 < m),and § = fuf B(n)RY.. §B(1)RH, where u is in {0,1}M°671, ¢ > 1, m > 1 and n > 2. By the assumption
above, there is a realtime weak-1m;_jca(l,logn) My ; which accepts W;S iff W; is in VD;_1(u). L is accepted by a realtime
weak-1oca(l,logn) M7 acts as follows. Suppose that an input string

-1 -1 -1
s=Wi § W2 b ... § Walubynlbyn-af...fuif*

12 1-2
(where n > 2, m > 1,t > 1 and Wi’s are all in {0,1,4,4,..., § }*, and ;% are all in {0, 1}*) is presented to M7. (Input
strings in the form different from the above can easily be rejected by M, ,3) MlEl first guesses some 7 and runs on z to W;. M, 13

-1
then enters a universal state, and acts just like M,V_ 1 above, but ignores any symbols between the next { (just after W) and
the first §.

(II) An input string z in le has the form z = W§ with W in VDy(u), W = Wy lﬂl W lﬂl ‘ﬂl Wy, with W; in 3D;_;(u)
for all i (1 < i < m), and § = fu B(n)®...§B(1)7}*, where u is in {0,1}Me"1 t > 1, m > 1 and n > 2. By the assumption
above, there is a realtime weak-10;_yca(1,logn) M,E‘_1 which accepts W;S iff W; is in 3D;_;(u). There is a realtime weak-
1mca(l,logn) My which accepts LY as follows. Suppose that an input string « described in (I) above is presented to M.
MY moves on z while making a universal branch at the first symbol of each w; (1 < i< m).

(a) In one branch, M} continues the action above until it reaches the first §. After that, M) runs to the right endmarker §,
and enters an accepting state.

(b) In another branch, M’ enters an existential state, and acts just like M7, above, but ignores all the segments between

-1
thenext § and the first {.

Clearly, the lengthes of the counters of M,E’ and MIV are bounded by [logn], because those used in the computation are
basically equal to the lengthes of the counters of M2§| and My when they enter accepting states. Mza and MY on accepted
inputs use no more than [logn] space, which is shown as in 1 above.

The proof of (2): It is shown in [13] that the language {B(1){B(2)}...§B(n)|n > 1} is accepted by a strongly logn space-
bounded two-way deterministic 1-counter automaton. For each ! > 2, L7 (resp., LY) can be accepted by strong-20;ca(l,logn)
(resp., strong-2mca(l,logn)) M as follows. M begins by examining whether the suffix of a given input is of the form
B(n)?{B(n —)R} .. 4B(1)F (= (B(1)}B(2)f...4B(n))R) in a way as in [13]. If this examination is successful and M stores
ZMoen] in its counter, then M can check by using the same technique as in the proof of (1) of this lemma whether the given
string is a desired one. _

The proof of (3): It is shown in [16] that for any function L(n) = o(logn), L} and LY are not in weak-2I[;TM(L(n)) and
weak-2X,TM(L(n)), respectively. (3) follows from this result and Lemma 2.1. ‘ , o

From this lemma, we have the following theorem and corollaries.

Theorem 4.1 For each I > 2, and any function L : N — R such that log L(n) = o(logn),
(1) weak-1%;CA(1,log n,real) N strong-2Z;CA(1,logn) — Ur<k<ooweak-2ICA(k, L(n)) # ¢, and
(2) weak-11I;CA(1,log n,real) N strong-2I1;CA(1,logn) — Uir<k<ooweak-25,CA(k, L(n)) # ¢.

Corollary 4.1. For each [> 2, each k > 1 and each m € {weak,strong}, and any function L : N — R such that
L(n) > logn and log L(n) = o(logn),

(1) m-25;CA(k, L(n)) is incomparable with m-2I[;CA(k, L(n)),

(2) weak-1%,CA(k, L(n)) is incomparable with weak-11[;CA(k, L(n)), and

(3) weak-1%;CA(k, L(n), real) is incomparable with weak-1II,CA(k, L(n), real).

Corollary 4.2. For each I > 1, each k > 1, each m € {weak, strong} and each X,Y€{%,1I}, and any function L : N — R
such that L(n) > logn and log L(n) = oflogn),

(1) m-2X;CA(k, L(n)) G m-2Y;;1CA(k, L(n)),

(2) weak-1X,CA(k, L(n)) G weak-1Y;41CA(k, L(n)), and

(3) weak-1X,;CA(k, L(n),real) G weak-1Y 41 CA(k, L(n),real).

We then show a relationship between one-way and two-way, and strongly and weakly space-bounds.

Theorem 4.2. For each X€{X, 1T}, and any function L : N — R such that L(n) > logn and log L(n) = o(log n),
strong-2X,CA(1,logn) — Ui<kcoweak-1ACA(k, L(n)) # ¢.

proof. Let Ly = {B(1)}B(2)}...§B(n)2wewicwse...cwpfn > 2 & v > 1 & w € {0,1}1°6"] & Vi(1 < i < r)[w; €

{0,13*]1& 35(1 < j < r)fw = w;]}, and Lg = {BIB(2)} ...} B(n)2wewrcwse. ..cw|n > 2& 1 > 1 & w € {0,1}1°871 & v4(1 <

i < r)[w; € {0,1}°6"] & w # w;]}. Then, (1) Ls € strong-25;CA(1,log n) and (2) Ls ¢ weak-1ACA(k, L(n)) are essentially

proved in [13]. (3) Lg € strong-2l[;CA(1,logn) and (4) Ls ¢ weak-1ACA(1,L(n)) can be proved in the same way as the

70

proof of Lemma 4.1 in [13]. So, the proof is omitted here. O

Corollary 4.3. For each / > 2 and each k > 1, and any function L : N — R such that L(n) > logn and log L(n) = o(log n),
weak-1%CA(k, L(n)) G weak-2X;CA(k, L(n)), and weak-1IL,CA(k, L(n)) G weak-2IGCA(k, L(n)).

Let weak-2DCA(k, L(n)) denote the class of sets accepted by weakly L(n) space-bounded two-way deterministic k-counter
automata. It is shown in [13] that for any function L : N — R such that L(n) > logn and log L(r) = o(log n),

weak-2DCA(4,log n) — Uycrcoostrong-2ACA(k, L(n)) # ¢, and
weak-221CA(3,log n) — Uycrcoostrong-2ACA(k, L(n)) # 4.

From this result and Theorem 4.1, the following corollary is shown.

Corollary 4.4. For each [> 1, each ¢ > 3 and each j > 4, and any function L : N - R such that L(n) > logn and
log L(n) = o(logn), ,

(1) strong-25,CA(i, L(n)) G weak-25,CA(i, L(n)), and

(2) strong-2II;CA(4, L(n)) G weak-2I[;CA(j, L(n)).

5 An alternation hierarchy on the first level with 1 inkdot

Inoue et al. [8] showed that for any function L(n) = o(logn),

strong-2l3TM*(loglogn) — weak-2X,TM*(L(n)) # ¢, and
strong-2X3TM*(loglog n) — weak-2II; TM*(L(n)) # ¢.

In correspondence to this result, from Lemma 3.2 (1), (2), (5) and (6), it follows that for each k£ > 1, and any function
L : N — R such that log L(n) = o(logn),

strong-2I3CA*(1,log n) — U, cpcooweak-2E1CA*(k, L(n)) # ¢, and
strong-253CA*(1,log n) — Ur<kcooweak-2I11CA*(k, L(n)) # ¢.

We can strengthen this result as Theorem 5.1 below shows. We need the following key lemma.

Lemma 5.1. Let Ly = {B()iB(2)}...§B(n)cwiicwizc. .. cWiy cCUICW21CWanC . . . CWarycCUa|n > 2 & (11,72 > 1) & (ug,ug €
{0, 1} M8 & Wi(1 < & < 2)[V5(1 < 5 < ri)[wi; € {0,1318™ & w; # wyj]]}, and

Lg = {wiiewzc. .. cwy, cougewg cwgac . . . ewar, ceuge B(n)EB(n—-1)% ... B(1)B|n > 2& (11,72 > 1) & (u1,ug € {0,1}F) & Vi(1 <

i < QML < < ro)lwg € 0,11]] & Fi(1 < § < [F(1 < j € r3)[ws = wi; & |w] = |wiz] = ogn]]]}. Then,
(1) L7 € strong-2II;CA*(1,log n),
(2) Lg € strong-25,;CA*(1,logn),
(3) L7 € strong-2II3CA(1,log n) and L7 € weak-1II;CA(1,log n real), and
(4) Ls € strong-2X3CA(1,logn) and Lg € weak-1%,CA(1,logn,real),
and for any function L : N — R such that log L(n) = o(log n),
(8) L7 ¢ Urcrcooweak-221CA*(k, L(n)), and
(6) Ls ¢ Urckcooweak-2I1CA*(k, L(n)).
The proofs of (1), (2), (3) and (4): The proofs are similar to those of Lemmas 3.1, 3.2, and 4.2. We leave the proofs to
the reader as an exersice.
The proof of (5): Suppose that there exists a weak-201ca*(k,L(n)) M accepting L7 for some k£ > 1, where log L(n) =
o(log n). For each n > 2, let

V(n) = {B(§B(2)} ... §B(n)eysccurcysecus| (31,92 € W(n)) & (u1,u3 € {0,1}1%6™)}, where

W(n) = {wicwsc. .. cwynogm |Vi(1 < i < 20087 [w; € {0,1}ognl]},
We consider the computations of M on the strings in V(n). Let I(n) be the length of each element in V(n). Then
I(n) = O(nlogn). Let C(n) denote the set of all possible storage states of M when the length of each counter of M in
the computation is bounded by L(I(n)), and let u(n) be the number of elements of C(n). Then, u(n) = tL(I(n))*, where
t denotes the number of states of the finite control of M. Let z, y be any two strings in W(n). We say that z and y are
M-equivalent, if for each pair of storage states ¢, ¢’ € C(n), and d, d' € {right left},

there exists an L(I(n)) space-bounded computation in which M enters z in ¢ with 1 inkdot from the d edge, and after-
wards exits z in ¢’ from d’ edge without consuming the inkdot on the way.

Al ’

there exists an L({(n)) space-bounded computation in which M enters y in ¢ with 1 inkdot from the d edge, and afterwards
exits y in ¢’ from d' edge without consuming the inkdot on the way.

Clearly there are at most e(n) = O(s*™*“(")) M-equivalent classes of strings in W(n), where s is a constant. For each
Y = wic...cWynegm in W(n), let b(y) = {w|Ji(1 < i < 2M°6")[w = w;]}. Furthermore, for each n > 2, let R(n) = {b(y)y €
W(n)}. Then, |R(n)| = 925" _ 1 From the assumption that log L(n) = o(logn) and from the fact that I(n) = O(nlogn),
it follows that |R(n)| > e(n) for n large enough, and so there must exist two M-equivalent elements y, 3’ in W(n) such that

71

b(y) # b(y’). We can, without loss of generality, assume that there is a string » € {0,1}1°67] such that u € b(y") — b(y)-
Consider the following string 2:
2z = B(1)}§B(2)} ...} B(n)eyrccucycen, :

where y1 = y2 = y. As is easily seen, z is in L7, and so there exists an L(I(n)) space-bounded accepting computation of M on
z. We denote the accepting computation by comp(z). Since M has 1 inkdot, it follows that there is some string y; (¢ € {1,2})
such that M never consumes the inkdot on y; in comp(z). Let 2’ be the string obtained from z by replacing y; (= y) by ¥'.
From comp(z), we can construct an L(I{n)) space-bounded accepting computation of M on 2’. This is a contradiction, since
7 is not in Ly.
The proof of (8): The proof is similar to that of (5) of this lemma. Suppose, to the contrary, that there exists a weak-
2mca*(k, L(n)) M accepting Lg for some k > 1, where log L(n) = o(log n). For each n > 2, let

V(n) = {grccurcyzceuze B(n)BEB(n — V)Y . 4B(1)F|(31,42 € W(n)) & (u1,uz € {0,1}en1)},
and W(n), I(n), C(n) and u(n) be defined as in the proof of (5) of this lemma. We consider the computations of M on the
strings in V(n). Furthermore, for each y € W(n), let b(y) be the set described in the proof of (5). Let z, y be any two strings
in W(n). We say that = and y are M-equivalent, if for each pair of storage states g, ¢’ € C(n), and d, d' € {right,left},

(1) there exists an L(!(n)) space-bounded computation in which M enters z in ¢ with 1 inkdot from the d edge, and af-
terwards exits z in ¢’ from d' edge without consuming the inkdot on the way.

~—

there exists an L(l(n)) space-bounded computation in which M enters y in ¢ with 1 inkdot from the d edge, and afterwards
exits y in ¢’ from d’ edge without consuming the inkdot on the way.

(2) there exists a computation in which M enters z in g with 1 inkdot from the d edge, and afterwards exits z in ¢’ from d’
edge using some counters of length larger than L({(n)) without consuming the inkdot on the way.

A

there exists a computation in which M enters y in g with 1 inkdot from the d edge, and afterwards exits y in ¢’ from d’ edge
using some counters of length larger than L(I(n)) without consuming the inkdot on the way.

(3) there exists a computation in which M enters z in ¢ with 1 inkdot from the d edge, and never exits z without con-
suming the inkdot.
—

there exists a computation in which M enters y in ¢ with 1 inkdot from the d edge, and never exits y without consuming the
inkdot.

For large n, and two M-equivalent elements y, ¥ in W(n), and u € b(y") — b(y), let
z = yrceucyzccucB(n)ByB(n — 1B, . §B(1)E, :
where y; = y3 = y. Clearly, z is not in Lg, and so z is never accepted by M, that is, there is at least one computation path
Iy(z)=htrmhtml...bp In (m > 1) of M on z with the following properties (P1), (P2) and (P3):

(P1) For each i (0 < ¢ < m— 1), I; is not an accepting ID and the length of each counter in I; is bounded by L(]z|);
(P2) Foreach i,j (0<i,j <m—1,i#j), I; # I;; and

(P3) I, is such that (i) I, is a non-accepting halting ID, (ii) In, = I; for some ¢ (0 < 4 < m — 1), or (jii) the length of some
counter is larger than L(|z|). :

Fix such a computation path of M on z with the properties (P1), (P2) and (P3) above, and denote it by comp(z). Since M
has 1 inkdot, it follows that there is some string y; (¢ € {1,2}) such that M never consumes the inkdot on y; in comp(z). Let
be the string obtained from z by replacing y; (= y) by ¥'. From comp(2), we can easily construct a computation path of
M on 2 with the properties (P1), (P2) and (P3). Thus, z' is rejected by M. This is a contradiction, because 2' is in Lg. O

From this lemma, we have the following theorem.

Theorem 5.1. For any function L : N — R such that log L(n) = o(log n),

(1) strong-2I1; CA*(1,log n) — U<k ooeak-25,CA*(k, L(n)) # ¢,

(2) strong-25,CA*(1,logn) — Uckccoweak-2I1;CA*(k, L(n)) # &,

(3) strong-2,CA(1,log n) N weak-1I1;CA(1,log n,real) — U <xcooweak-281CA*(k, L(n)) # ¢, and
(4) strong-25,CA(1,log n) N weak-15,CA(1,log n,real) — Uycicooweak-2I1CA*(k, L(n)) # ¢.

Corollary 5.1. For each k > 1, each m € {strong,weak}, and each X € {X,II}, and any function L : N — R such
that L(n) > logn and log L(n) = olog n),

(1) m-21; CA*(k, L(n)) G m-2X,CA*(k, L(n)), and

(2) m-2%,CA*(k, L(n)) G m-2X2CA*(k, L(n)).

For the standard 2amca model, a relationship between m-2II;CA(k, L(n)) and m-2E,CA(k, L(n)) is unknown for each
k > 1, each m € {strong, weak}, and any function L : N — R such that L(n) > logn and log L{n) = o(logn). On the other

72

hand, for the inkdot 2amca model, we have the following result.

Corollary 5.2. For each k¥ > 1 and each m € {strong,weak}, and any function L : N — R such that L(n) > logn
and log L(n) = o(log n), m-211; CA*(k, L(n)) is incomparable with m-2X; CA*(k, L(n)).

6 Conclusion

We conclude this paper by listing up some open problems.

For each X € {&,1I}, and any function L : N — R such that log L(n) = o(logn),
(1) strong-2X;CA*(1,logn) — Uycrcootweak-2ACA(k, L(n)) # ¢ for each X € {X,1I} and each [= 1,2 7
(2) m-2I;CA*(1,log n) — Us<kecoom-251CA*(k, L(n)) # ¢, and

m-25,CA*(1,log 1) — Uy cpcoom-2IICA*(k, L(n))} # ¢ for each I > 2 and each m € {weak, strong} ?

Let m € {weak,strong}, X € {3,11},1>1,and L: N — R be a function such that L(n) > logn and log L(n) = o(log).
(3) What is a relationship between m-2X;.1CA(k, L(n)) and m-2X;CA*(k, L(n)) ?
(4) strong-2%,CA(i, L(n)) G weak-25;CA(i, L(n)) for each i = 1,2 7, and

strong-2IL,CA(j, L(n)) G weak-2IL,CA(j, L(n)) for each j = 1,2,3 7

Let strong-2DCA(k,L(n)) denote the class of sets accepted by strongly L(n) space-bounded two-way deterministic k-
counter automata, let weak-2DCA*(k, L(n)) (strong-2DCA*(k, L(n))) denote the class of sets accepted by weakly (strongly)
L(n) space-bounded two-way l-inkdot deterministic k-counter automata, let weak-2DTM(L(n)) (strong-2DTM(k, L(n)))
denote the class of sets accepted by weakly (strongly) L(n) space-bounded two-way deterministic Turing machines, and let
weak-2DTM*(L(n)) (strong-2DTM*(L(n))) denote the class of sets accepted by weakly (strongly) L(n) space-bounded two-
way l-inkdot deterministic Turing machines. It is shown in [18] that

m-2DTM*(L(n)) = m-2DTM(L(n))

for each m € {weak, strong}, and any L : N — R such that L(n) > loglogn and L(n) = oflogn).

For each m € {weak, strong} and each k > 1, and any L : N — R such that L(n) > logn and log L(n) = o(log n),
(5) m-2DCA*(k, L(n)) = m-2DCA(k, L(n)) ?

References

[1] A.K. Chandra, D.C. Kozen and L.J. Stockmeyer, “Alternation”, J. ACM, vol. 28, no. 1, pp. 114-133, 1981.

[2] R.E. Ladner, R.J. Liptom and L.J. Stockmeyer, “Alternating pushdown automata”, in Proc. 19th IEEE Symp. on Found.
Comput. Sci., (Ann Arbor, ML), pp. 92-106, 1978.

[3] K.N. King, “Alternating multihead finite automata”, in Theoret. Comput. Sci., vol. 61, pp. 149-174, 1985.

[4] P.C. Fisher, A.R. Meyer and A.L. Rosenberg, “Counter machines and counter languages”, Math. Systems Theory, vol. 2,
pp- 265283, 1968.

[5] R. Book and S. Ginsburg, “Multi-stack-counter languages”, Math. Systems Theory, vol. 6, pp. 37-48, 1972.

[6] K. Inoue, A. Ito, and I. Takanami, “A. relationship between nondeterministic Turing machines and 1-inkdot Turing ma-
chines with small space”, Inform. Process. Lett., vol. 43, pp. 225-227, 1992.

[7] K. Inoue, A. Ito, I. Takanami and T. Yoshinaga, “A note on multi-inkdot nondeterministic Turing machines with small
space”, Inform. Process. Lett., vol. 48, pp. 285-288, 1993.

[8] K. Inoue, A. Ito and I. Takanami, “On l-inkdot alternating Turing machines with small space”, Theoret. Comput. Sci.,
vol. 127, pp. 171-179, 1994.

[9] K. Inoue, I. Takanami and R. Vollmar, “Alternating on-line Turing machines with only universal states and small space
bounds”, Theoret. Comput. Sci., vol. 41, pp. 331-339, 1985.

[10] A. Ito, K. Inoue and I. Takanami, “A note on alternating Turing machines using small space”, Trans. IECE Japan, E70,
10, pp. 990-996, 1987. .

[11] K. Inoue, A. Ito and I. Takanami, “A note on real-time one-way alternating multicounter machines”, Theoret. Comput.
Sei., vol. 88, pp. 287-296, 1991.

{12] T. Yoshinaga, K. Inoue and I. Takanami, “Hierarchical properties of realtime one-way altrnating multi-stack-counter
automata”, Trans. IEICE Japan, ETT-A, 4, pp. 621-629, 1994.

[13] T. Yoshinaga and K. Inoue, “A note on alternating multi-counter automata with small space”, Tec. Report of IEICE,
COMP94-36, pp. 1-10, 1994.

[14] J.H. Chang, O.H. Ibarra, B. Ravikumar and L. Berman, “Some observations concerning alternating Turing machines
using small space”, Inform. Process. Lett., vol. 25, pp. 1-9, 1987.

{15] M. Liskiewicz and R. Reischuk, “Separating the lower levels of the sublogarithmic space hierarchy”, STACS, pp. 17-27,
1993.

[16] B. von Braunmiihl, R. Gengler and R. Rettinger, “The alternation hierarchy for sublogarithmic space is infinite”, Comput.
Complezity, 3, pp. 207-230, 1993.

[17] K. Iwama, “ASPACE(o(loglog n)) is regular”, STAM J. Comput., vol. 22, pp. 136-146, 1993.

[18] D. Ranjan, R. Chang and J. Hartmanis, “Space bounded computations : review and new separation results, Thoret.
Comput. Sei., vol. 80, pp. 289-302, 1991.

