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Abstract
Interaction of surface waves in both shallow water and deep water with a vertical

vortex is studied analytically. A dislocated wave may exist on the vortex and its
strength (degree of dislocation) is characterized by the circulation of the vortex and
the frequency and speed of the wave. Using an analogy between Aharonov-Bohm effect
in the quantum mechanics and this hydrodynamic system, a scattering problem with
the incident dislocated wave is solved and scattering amplitudes are derived.

1 Shallow water

We consider a scattering problem of $\mathrm{s}\mathrm{h}\mathrm{a}\mathrm{U}\mathrm{o}\mathrm{W}$ water waves of inviscid incompressible
fluid by a vertical vortex. The coordinate system is expressed by $(x,y)=x$ in the
horizontal direction and by $z$ in the vertical. The velocity and the surface displacement
are denoted by $v(t, x, z)=(v_{\perp}, w)$ and $\eta(t,x)$ , respectively.

The equation of motion is

$\partial_{t}v+(v\cdot\nabla)v=-\rho^{-1}\nabla p-g$, (1)

where $\rho$ is a density of the fluid, $p$ a pressure, $g$ an acceleration due to gravity, $\partial_{t}=$

$\partial/\partial t$ and $\nabla$ a three-dimensional gradient. The kinematic boundary condition at the
surface is given by

$w=\partial_{t}\eta+v\perp\cdot\nabla\perp^{\eta}$ (2)

where $\nabla_{1}$ is a horizontal gradient.
In the shallow water case we may write the velocity as

$v= \sum_{n}v_{n}(X,t)(\frac{z}{h})^{n}$ . (3)

The equation of continuity $\nabla\cdot v=0$ leads to

$h\nabla_{\perp}\cdot v_{1n}+(n+1)w_{n+1}=0$, $n=0,1,$ $\cdots$ . (4)

At the lowest order, the expressions of the velocity and the pressure become

$v=(v_{\perp}(x,t),$ $\frac{z}{h}w(x,t))$ , (5)
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$p=p \mathrm{o}(X,t)+\frac{z}{h}p1(x,t)$. (6)

From $z$-component of (1) and the pressure condition at the surface, we have

$p=\rho g(\eta-z)+pa$ ’
(7)

where $p_{a}$ is the atmospheric pressure. The $x$-component of (1) is written as

$\partial_{t}v_{1}+(v_{\perp}\cdot\nabla_{\perp})v\perp=-g\nabla_{1}\eta$ . (8)

The kinematic boundary condition leads to

$\partial_{t}\eta+h\nabla\perp\cdot v_{1}+\nabla\perp(\eta v\perp)=0$ . (9)

The existence of vortices with a non-zero total circulation produce a steady solenoidal

background flow $U(x)$ and a surface deformation $\eta \mathrm{o}(x)$ . Substituting $v_{\perp}=U(x)+$

$u(x,t)$ and $\eta=\eta_{0}(x)+\eta_{1}(x,t)$ into (8) and (9) leads to

$-g \nabla_{\perp\eta_{0}}=(U\cdot\nabla_{\perp})U=\frac{1}{2}\nabla_{\perp}U^{2}-U\mathrm{X}$ rotU, (10)

$\partial_{t}u+(U\cdot\nabla_{\perp})u+(u\cdot\nabla\perp)U+g\nabla_{1\eta_{1}}=-(u\cdot\nabla_{\perp})u$ (11)

and
$U\cdot\nabla_{\perp}\eta 0=0$ , (12)

$\partial_{t\eta_{1}\dagger}h\nabla_{\perp}\cdot u+\eta_{01}\nabla\cdot \mathrm{u}+(u\cdot\nabla\perp)\eta 0+(U\cdot\nabla\perp)\eta 1=-\eta 1\nabla\perp\cdot u-u\cdot\nabla_{\perp^{\eta_{1}}}$ . (13)

(10) and (12) are equations for the background field. Using (10), we can express $\eta_{0}$ by

$U$ . Linearizing (11) and (13) with respect to $u$ leads to

$\partial_{t}u+(U\cdot\nabla\perp)u=-(u\cdot \mathrm{v}_{\perp})U-g\nabla_{\perp}\eta 1$ , (14)

$\partial_{t}\eta_{1}+(U\cdot\nabla\perp)\eta_{1}+h\nabla_{\perp}\cdot u=-[\eta 0\nabla\perp\cdot u+(u\cdot\nabla\perp)\eta 0]$ . (15)

Taking the divergence of (14), we obtain

$\partial_{t}\nabla_{\perp}\cdot \mathrm{u}+g\triangle_{1}\eta 1=-\nabla\perp\cdot[(U\cdot\nabla_{\perp})u+(u\cdot\nabla_{\perp})U]$ , (16)

where $\triangle_{1}=\nabla_{1}^{2}$ . Using an alternative expression of the right hand side of (16),

$\nabla_{\perp}\cdot[(U\cdot\nabla_{1})u+(u\cdot \mathrm{v}_{\perp})U]=2(\partial_{i}U_{j})(\partial jui)+(U\cdot\nabla 1)(\nabla_{\perp}\cdot u)$,

we have
$D_{t}\nabla_{\perp}\cdot u+g\triangle\perp\eta 1=-2(\partial iU_{j})(\partial jui)$ , (17)
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where $D_{t}=\partial_{t}+U\cdot\nabla_{\perp}$ Taking $D_{t}(15)-h\cross(17)$ , we have

$D_{t}^{2}\eta_{1}-\mathrm{c}^{2}\triangle\perp\eta 1=-D_{t}[\eta 0\nabla_{\perp}\cdot u+(u\cdot\nabla_{\perp})\eta 0]+2h(\partial_{i}U_{j})(\partial jui)$, (18)

where $c=\sqrt{gh}$ is a phase velocity of shallow water waves.
We consider the case that the Mach number $M=U/c$ is much smaller than 1. The

square of $M$ is also called Froude $\mathrm{n}\dot{\mathrm{u}}$mber. We denote a typical length scale of vortex
by $a$ and a wavelength and a frequency of shallow water waves $\lambda$ and $f$ where $c=\lambda f$ .
We also assume that $a/\lambda\equiv\beta\gg 1$ . Then the right hand side of (18) will be order of
$M$ or $\beta^{-1}$ compared with the left hand side. Neglecting them, we have a final equation

$D_{t}^{2}\eta_{1^{-}}c\triangle_{1}2\eta_{1}=0$ . (19)

The localized vortex with the circulation $\Gamma$ produces the background flow $U\approx\Gamma/(2\pi r)\hat{\theta}$ .
The assumption $\beta\ll 1$ is complementary to the condition for the Born approximation
(e.g. Kambe (1982)) to hold.

2 Deep water

We may treat the scattering of dislocated waves in deep water as follows. First, we
write the velocity, the surface displacement and the pressure as

$v=(U+u, w)$ , (20)

$\eta=\eta_{0}+\eta_{1}$ , (21)

$p=P+p_{1}$ , (22)

where $U,$ $\eta 0$ and $P$ denote a steady field due to a vertical vortex and depend only
on $x$ , and surface-wave components $u,$ $w,$ $\eta_{1}$ and $p_{1}$ are functions of $x,$ $z$ , and $t$ . The
steady flow field satisfies the same equations as (7), (10) and (12).

The linearized equations of motion are given by

$\partial_{t}u+(U\cdot\nabla_{1})u+(u\cdot\nabla_{1})U=-\rho^{-1}\nabla_{\perp p_{1}}$ , (23)

$\partial_{t}w+U\cdot\nabla_{1}w=-\rho^{-1}\partial_{Z}p_{1}$ , (24)

and the equation of continuity is

$\nabla_{\perp^{u+}}\partial_{z}w=0$ . (25)

The boundary condition at the surface is

$w=\partial_{t}\eta_{1}+U\cdot\nabla_{\perp\eta_{1}}+u\cdot\nabla_{\perp^{\eta 0}}$ (26)

42



and
$p(z=\eta)=p_{a}$ . (27)

Here we may assume that the wave components are given in a form of separation

of variables as
$u=u_{0}(x,t)+\hat{u}(x,t)\cosh k(z+h)$ , (28)

$w=\hat{w}(X,t)\sinh k(z+h)$ , (29)

$p_{1}=p\mathrm{o}(_{X,t)(x}+\hat{p},t)\cosh k(z+h)$ . (30)

Substituting these into the equations of motion leads to

$D_{t}u_{0}+(u0^{\cdot}\nabla_{\perp})U=-\rho^{-}\nabla_{\perp}1p0$ , (31)

$D_{t}\hat{u}+(\hat{u}\cdot\nabla_{\perp})U=-\rho-1\nabla_{\perp}\hat{p}_{1}$ , (32)

$D_{t}\hat{w}=-\rho^{-1}k\hat{p}1$ . (33)

The continuity equation reduces to

$w=-k^{-}1\nabla_{\perp}\cdot$ \^u, (34)

$\nabla_{\perp}\cdot u_{0}=0$ . (35)

Thus the flow $u0$ is incompressible. The kinematic boundary condition is replaced by

$\hat{w}(x)\sinh kh=D_{t}\eta_{1}+(u_{0}+\hat{u}\cosh kh)\cdot\nabla\perp\eta 0$, (36)

where we assumed $k\eta\ll 1$ . The pressure condition becomes

$-\rho g\eta_{1}+p0+\hat{p}1\cosh kh=0$ . (37)

Here we assume $\beta\gg 1$ and $M\ll 1$ . Then we can neglect the second term in the left

hand side of (31), (32) and in the right hand side of (36). Under these assumption, it

can be shown that $p_{1}$ satisfies the Laplace equation. Then we have $\triangle_{1p_{0}}=0$ . Taking

the laplacian of (37) leads to

$\triangle_{\perp\hat{p}_{1}}=(\rho g/\cosh kh)\triangle\perp\eta_{1}$ . (38)

Taking the divergence of (32), neglecting $\mathrm{O}(\beta^{-1})$ term, and eliminating $\nabla_{\perp}\cdot u$ by using

(34) and (36), we have the same equation as (19) with $c=\sqrt{(g/k)\tanh kh}$, which is a

phase velocity of deep water waves.
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3 Dislocated wave and scattering

As is already pointed out by Berry et al. (1980) and Cerda and Lund (1993), the equa-
tion (19) possesses a close analogy to the $\mathrm{w}\mathrm{e}\mathrm{U}$-known quantum mechanics of Aharonov-
Bohm effect, in which a potential gives physical effects without accessible electromag-
netic fields. It is a scattering problem of a beam of particles with charge $q$ and mass
$m$ incident normally on a long thin cylinder containing a magnetic field $B(x)$ parallel
to its axis. The Schr\"odinger equation in the presence of the magnetic vector potential
$A$ due to the magnetic field is given by

$\frac{1}{2m}(-i\hslash\nabla-qA(X))2\psi(x)=\frac{\hslash^{2}k^{2}}{2m}\psi(x)$ , (39)

where $h$ is a Plank constant, $A(x)=(\Phi/2\pi r)\hat{\theta},$ $\Phi$ is a magnetic flux and $\hat{\theta}$ is an
azimuthal unit vector.

Equations (19) and (39) have a solution of a dislocated wave of the form $\exp[-\dot{i}(k\cdot$

$x+\alpha\theta+\nu t)]$ , where $\alpha=\nu\Gamma/(2\pi c^{2})$ in the fluid mechanics and $\alpha=-q\Phi/h,$ $(h=2\pi h)$

in the quantum mechanics. It is noted that, while this dislocated wave is an exact
solution in quantum mechanics, it is an approximate one in the water wave problem
valid if $M\ll 1$ . We are now interested in the case that the effect of dislocation is
significant, i.e. $\alpha=$ 0(1). Using $\Gamma=2\pi Ua$ , we have a relation $\alpha=2\pi M\beta$ .

As an example, we consider a scattering problem by a circular uniform vortex with
vorticity $\omega$ and a radius $a$ surrounded by an irrotational flow. Using polar coordinates
$(r,\theta)$ , the background flow is given by

$U= \frac{1}{2}\omega r\hat{\theta}$, $r\leq a$ ; $\frac{\mathrm{I}}{2\pi r}\hat{\theta}$ , $r>a$ ; $\Gamma=\pi\omega a^{2}$ . (40)

Inside the vortex we have from (19)

$[(\partial_{t}+(\omega/2)\partial_{\theta})^{2}-C2(\partial_{r}^{2}+(1/r)\partial_{r}+(1/r^{2})\partial_{\theta}^{2})]\eta 1=0$ . (41)

Assuming the solution of the form $\eta_{1}=\sum_{n}\tilde{\eta}_{1n}\mathrm{e}^{i(n}\theta-\nu t$), we obtain

$( \partial_{r}^{2}+\frac{1}{r}\partial_{r}-\frac{n^{2}}{r^{2}}+k_{n}2)\tilde{\eta}1n=0$ , $k_{n}= \frac{|\nu-n\omega/2|}{c}$ . (42)

Equation (42) has solutions of Bessel and Neumann functions. The non-singularity at
the origin will exclude the latter. Thus we have

$\eta_{1}=\sum_{n}a_{n}j\mathrm{I}n|(k_{n}r)^{i}\mathrm{e}(n\theta-\nu t)$ . (43)

Outside the vortex, $r>a$ , the assumption $U^{2}/c^{2}\ll 1$ may reduce (19) into

$[ \partial_{t}^{2}+\frac{\Gamma}{\pi r^{2}}\partial_{\theta}\partial_{t}-c(2\partial_{r}2+(1/r)\partial_{r}+(1/r2)\partial\theta 2)]\tilde{\eta}_{1n}=0$. (44)
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Assuming the above form of solutions, we have

$( \partial_{r}^{2}+\frac{1}{r}\partial_{r}-\frac{n^{2}+2n\alpha}{r^{2}}+k2)\tilde{\eta}1n=0$ , $k= \frac{\nu}{c}$ . (45)

Since $\partial_{r}\eta_{1}\gg\alpha^{2}\eta_{1}/r$ , we may replace (45) by

$( \partial_{r}^{2}+\frac{1}{r}\partial_{r}-\frac{(n+\alpha)^{2}}{r^{2}}+k2)\tilde{\eta}_{1}n=0$ . (46)

The replacement of (45) by (46) is based on the assumption $n\gg\alpha$ . Since $(1/r)\partial_{\theta\eta}\approx$

$(n/a)\eta\approx k\eta$ , the representative value of $n\approx ka=a/\lambda$ is much larger than $\alpha=0(1)$ .
Then the surface elevation can be given in the form of

$\eta_{1}={\rm Re}(\psi_{AB}+\psi_{R})$, (47)

where ${\rm Re}$ denotes a real part and

$\psi_{AB}=\sum_{n}b_{n}J_{m}(kr)\mathrm{e}^{(-})in\theta\nu t$ , $m=|n+\alpha|$ , (48)

$\psi_{R}=\sum_{n}C_{n}H^{1}m(kr)\mathrm{e}^{i}\mathrm{t}n\theta-\nu t)$ . (49)

In order to obtain the coefficients $a_{n},$
$b_{n}$ and $c_{n}$ , we first require the continuity of

$\eta$ and $\nabla_{\perp}\eta$ at $r=a$ . It gives two relations:

$a_{n}J_{|n|(a)}k_{n}=b_{n}J_{m}(ka)+c_{n}H_{m}^{1}(ka)$, (50)

$a_{n}k_{n}J’|n|(k_{n}a)=k(b_{nm}J’(ka)+c_{n}H_{m}^{1’}(ka))$ . (51)

The last condition comes from that the asymptotics of $\psi_{AB}$ should coincide with the

dislocated wave, which leads to

$b_{n}=(-i)^{m}=\mathrm{e}^{-}i\pi|n+\alpha 1/2$ . (52)

The limit $rarrow\infty$ gives the wave function in the form

$\psi_{AB}arrow \mathrm{e}^{i\langle t)}-kr\cos\theta-\alpha\theta-\nu-\frac{\mathrm{e}^{i\mathrm{t}^{kt})_{\sin\pi}}r-\nu\alpha}{(2\pi ikr)1/2\cos(\theta/2)}(-1)[-\alpha]\mathrm{e}\mathrm{t}i[-\alpha]+1/2)\theta$ , (53)

$\psi_{R}arrow[\frac{2}{T\dot{i}kr}]1/2\mathrm{e}\langle ikr-\nu t)_{\sum_{n}C_{n}}\mathrm{e}^{\mathrm{t}n}i\theta-\pi|n+\alpha|/2$), (54)

where $[x]$ is a notation of Gauss. If $\alpha$ is an integer, the second term of (53) vanishes.

Figure 1 shows the dislocated wave given by (48) and (52). This asymptotic is valid

except in a narrow sector centered at $\theta=\pi$ , where we cannot separate $\psi_{AB}$ into
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incident and scattered waves. The scattered wave $\psi s$ can be defined by the sum of the
second term of (53) and (54). The general asymptotic form of $\psi_{S}$ is

$\psi_{S}\sim f(\theta)r^{-}\mathrm{e}^{i}1/2\mathrm{t}kr-\nu t)$ , (55)

where $f(\theta)$ is a scattering amplitude

$f( \theta)=\frac{1}{\sqrt{2\pi ik}}\tilde{f}(\theta)$ ,

$\tilde{f}(\theta)=-\frac{\sin\pi\alpha}{\cos(\theta/2)}(-1)[-\alpha 1i([-\alpha]+1/2)\theta 2\mathrm{e}+\sum_{n}C_{n}\mathrm{e}i(n\theta-\pi|n+\alpha|/2).$ (56)

The coefficients $c_{n}$ are

$c_{n}=b_{n}[-(k_{n}/k)J_{|n|(ka)(k}\prime nJma)+J_{|n|}(k_{n}a)j’m(ka)]/\triangle$ , (57)

where
$\Delta=(k_{n}/k)J’(|n|k_{n}a)H^{1}(mka)-J_{||(}nk_{n}a)H_{m}^{1’}(ka)$. (58)

Using a notation $\gamma_{n}=|1-\delta n|$ , with $\delta=\omega/2\nu=M/(2\pi\beta)=\alpha/(4\pi^{2}\beta^{2})$ , we may
simplify the formula of $c_{n}$ as

$c_{n}=-(-i)|n+ \alpha|\frac{\gamma_{n^{j_{1n}’}}|(\beta\gamma n)J_{m}(\beta)-J_{1}|(n\beta\gamma n)J^{;}(m\beta)}{\gamma_{n}J_{1n}’(|\beta\gamma_{n})H_{m}^{1}(\beta)-J||n(\beta\gamma_{n})H_{m}^{1’}(\beta)}$ . (59)

The coefficients $c_{n}$ are parametrized by only two dimensionless numbers $\alpha$ and $\beta$ .
Figure 2 shows absolute values of $c_{n}$ versus $n$ for $\alpha=1$ and $\beta=0.1,1,5$ and 10. We
can evaluate the convergence of the sum (49) from this figure.

According to the scattering theory, the differential cross section may be defined by

$\frac{d\sigma}{d\theta}=|f(\theta)|^{2}=\frac{1}{2\pi k}|\tilde{f}(\theta)|^{2}$ . (60)

Figure 3 shows polar plot of $|\tilde{f}(\theta)|^{2}$ for $\alpha=1$ and $\beta=10$ . It is extremely anisotropic;
the amplitude is very large in the forward direction $(\theta\approx\pi)$ and oscillates in the
backward direction.
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(a) $\alpha=0$ (b) 0.5 (c) 1

(e) 2 (f) 2.5

Figure 1. Density plots of incident dislocated waves for $\alpha=(\mathrm{a})0,$ $(\mathrm{b})0.5,$ $(\mathrm{c})1,$ $(\mathrm{d})$

$1.5,$ $(\mathrm{e})2$ and (f) 2.5 The summation in (48) is truncated at $n=\pm 20$ . The plotted
region is-10 $\leq x\leq 10$ and-10 $\leq y\leq 10$ . Lines denote the zero displacement.

Figure 2. Absolute values of $c_{n}$ versus $n$ for $\alpha=1$ and $\beta=0.1$ (denoted by solid

circle), 1 (open circle), 5 (triangle) and 10 (square).
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Figure 3. Polar plot of differential cross section for $\alpha=1$ and $\beta=10$ . The incident
wave comes from the right side.
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