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Inverse semigroups and permutation properties

Kunitaka Shoji
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Department of Mathematics, Shimane University

The purpose of this talk is to introduction a theorem on permutation properties of inverse semigroups,

appearing in Okniriski’s book|[2] and to give a comment on the proof of a lemma for the theorem.

Definition. A semigroup S has the permutation property B,, if there exists an integer n > 2 such that

UMW ... Wp = We1)Wo(2) -+ Wo(n) for some o # 1 € S,.

Definition. A ring R satifies a polynomial identity p(z1, s, ... Z,) if all coefficients of p(z1, z2, ... Zr)
are + 1 and p(ry, 72, ... 7,) = Ofor all 7; € R.
In this case, R is called a PI-ring.

Problem [3, Restivo and Reutenauer).
Does the semigroup ring k[S] of a semigroup S has the permutation property satisfy a polynomial
identity?

Theorem (]2, Theorem 23]). Let S be an inverse semigroup. Then the following are egivalent :
(1) S is finitely generated and satisfies the permutation property.
(2) S has finitely many idempotents, and all subgroups of S are finitely generated and abelian-by-finite.
(3) K[S] is a left and right noetherian PJ-algebra.

A proof of the theorem is based on Shirshov’s results concerning combinatorics on words, Blyth's
results concerning groups with the permutation property, and structure theorems in semigroup ring
theory.

We shall give a semigroup theoretical proof of the following lemma used for the proof of the theorem
above.

Lemma ([2, Lemma 22|). Let S be a finitely generated inverse semigroup. If S has the permutation
property, then S has finitely many idempotents.

Proof. Let a € S. Then the principal factor semigroup S, = J,/I(a) is a O-simle (or simple) semigroup
(see [1]). By [2, Theorem 17], S, is a completely O-simple (or simple) semigroup. Here we assume that
S has B,,, where n is a positive integer. By [2, Proposition 19], the number of R [L] of S, is less than
m = %. Thus, each D of S has at most m R [(]-classes. By the way of Shiizenberger representation, S
is embedded in the direct product of row-monomial or column-monomial matrix semigroups S, of less
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than m over groups G; with zero. Then each S has idempotent-separating congruence p such that S/p
is embedded in the direct product of row-monomial or column-monomial matrix semigroups S; of rank
less than m over a single-element groups {e} with zero. Then for any s € S, s™ is an idempotent. So,
S/p is periodic. Thus, by Restivo and Reutenauer’s result, S/p has only finitely many idempotents, and
so does S.

Remark. In the proof above, row-monomial matrix semigroups of rank m over a single-element group

are the partial transformation semigroups of a set of m elements.
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