0000000000 ,
9110 19950 104-121 104

On heat flows for a variational functional of degenerate type
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1 Introduction.

Let M, N be compact, smooth orientable Riemannian manifolds of dimension m, ! with
metrics g, h respectively and suppose that OM, N = §. Since N is compact, N may be
isometrically embedded into a Euclidean space R™ for some n. For a C*—map u : M —
N C R", we introduce a variational functional I(u) given by

I() = /M F(Duf?)dM, (L.1)

where, in local coordinates on M,

dM = +/|g|d=, |Du|2 = Z ZgaﬂDauiDﬁuf’ Do =8/0z* (a,f=1, - ,m)

o,f=11i=1

with (g"‘vﬂ) = (gap)~t, |lg| = det(gap)- and f is a scalar valued C?—function defined on
[0, +00) satisfying the following relations with uniform positive constants v; (i = 1,2,3)

and p > 2

QPP < sk (QELE < mlQPleP, al&,Q e R IQI <1,
(A1) Y

72'5'2 S gé%ga?’f(lle)fagjﬂ S 73‘6!2) all 6) Q € an) |Q| > L.

Here and in what follows, the summation notation over repeated indices is adopted. From
(A1), we obtain the relations:

[ S H) e st ST
72/2 < f'(7) + 2f" ()T < 73/2, T>1 '
and
(m/2(p = 1))r?>71 < f/(1) < (12/2(p — 1)) 7?7, 0<7<1,
(71/2(p — D)A/VT) + (72/2)(1 = 1//7) < f'(7) (1.3)
< (/2(p — D)V + (/2 (1 = 1//7), P> 1
(1.2) and (1.3) imply that there exists positive numbers y23, v2/2 < 723 < 7¥3/2, and a3
such that

fi(T) = 723, f(7) = 7237 — F23 (7 — S0). (1.4)
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We here assume that, with uniform positive constants a énd To,
(A2) =@/l <, allr>
By (1.2) and (1.3), we also observe that, with positive constants 7,3 > Y23, and 723 > 723,
V28T = Jo3 < f(7) < Foa7, T 2 0. (1.5)
The Euler-Lagrange equation of a variationsl functinal I is given by
| — A u+ Al (u)(Du, Du) = 0, (1.6)

where A{W denotes the differential operator on M :
Myu=—=Du(V/ls™ £ (Duf?) D)
Vsl
and, by the second fundamental form A(u) of N in R™ at u, A’ (u) is given as follows:

‘Af(u)(Du, Du) = f'(|Du|?) Z go‘ﬂA(u)(Dau;Dﬂu).

a,f=1

For ¢ > 1, we now define a space of Sobolev mappings between M and N, denoted by
W14 (M, N), as a space of maps belonging to usual Sobolev space W4(M, R") such that
u € N almost everywhere on M. To look for maps belonging to W2(M, N) satisfying
(1.6) in the distribution sence, we are concerned with heat flows u(t) € W-%(M, N),
0 <t < oo, for a variational functional (1.1) with a given map uo € W'2(M, N) where
the heat flows are prescribed by a system of nonlinear second order partial differential
equations of parabolic type:

Ou — A ju+ AT (w)(Du, Du) =0 in (0,00) x M, 7
u(0,z) = uo(z), =z € M. '

The partial regularity of minimizing harmonic maps was achieved in [17,24]. The
results were generalized to obtain the partial regularity of minimizing p-harmonic maps
(p > 1) in [19] and similar results were also treated in [15](also see references in [15,19)).
These results become fundamental to the regularity theory of harmonic maps. The partial
regularity of p—harmonic maps of C'—class (p > 2) was also investigated in [14, 23]. On
the other hand, Chen and Struwe established the global exstence and partial regularity
for heat flows for harmonic maps, based on a decay estimate analogous to the monotonic-
ity formula for minimizing harmonic maps (see [4,25]). The heat flows for p-harmonic
maps are prescribed by nonlinear degenerate parabolic system. The regularity of weak
solutions of degenerate parabolic systems with only principal terms was discussed and the
CY# —regularity of solutions was accomplished in [11,12,13] (also see [6,8] and [18,26] for
corresponding elliptic systems). The global existence of a weak solution to the heat flow
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for p-harmonic maps has recently shown in the case that the target manifold is a sphere[1].
However the partial regularity of heat flows for p-harmonic maps remains a difficult prob-
lem to be settled (for the scalar case see [10]). In this paper we make an extension of
Struwe’s results[25], which may be of some use for attacking the partial regularity problem
for heat flows for p-harmonic maps.

Now take an arbitrary positive number T. We are now interested in weak solutions of

(1.7): w € L*®((0,T); L3(M)) N L2((0, T'); WL2(M, N)) satisfying, for all £, 15, 0 < ¢, <
ty < T, and ¢ € L2((0,T); Wy >(M)) N L=((0, T) x M) the support of which is contained

in a coordinate chart for M,
ta to
/ % dM+/ / {—udip+f'(|Du|?)g*? DouDgp+pAf (u)(Du, Du)}dzdt = 0.
M)({t} ty t1 M
(1.8)

To state our results, we need some preminalies: Let us introduce the parabolic metric

t=

t=

(21, 29) = max{|e, — 29|, |t1 —12|V?}, zi=(t;,2:), i=1,2 (1.9)

and denote by dists(z, A) and H*(-,8) a distance between a point z and a set A and the
k-dimensional Hausdorff measure with respect to § respectively.
Then our main theorem is the following:

Theorem. Let {ug} be a sequence of weak solutions u € C2_((0,T); CL.(M)) to (1.7).

loc loc

Then there exist a subsequence {ur} and a map u:[0,T) x M — R such that

sup I(u(t)) < I(ug), Osue€ L2((0,T) x M), (1.10)
0<t<T v : .
u(t,z) € N almost everywhere (1, z) € (0,T) x M (1.11)

and

Duy — Du  weak-star in L™([0,T); L*(M)),
Oiur, — Opu  weakly in L([0,T) x M), - (1.12)
up — u  weakly in L2([0, T); Wh2(M)).

Moreover u is a weak solution to (1.7) and there exists an open set Qo C (0,T) x M (with

respect 1o a melric §) and a positive number a,0 < o < 1 such that u, Du are locally
Hélder continuous in Qo with an exponent a with respect to 6 and it holds that

Bu — Al yu + Al (u)(Du, Du) =0  almost everywhere in Qo (1.13)
and that
H™((0,T) x M\ Qo, ) < 0. (1.14)

In the forthcoming paper[22] we will treat the existence of weak solutions to (1.7) based
on such an approximate scheme as stated above.
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For simplicity we restrict ourselves to the case M = R™. Then note that, for u : [0, T)
xR™ —- N C R,

|Du| = (Dot D)2, Alyu = div(f'(IDul?) D),

, , (1.15)
A? (Du, Du) = f'(|Du|*) A(uw)(Dats, Dou).

Some standard notations: For zg = ({o,z0) € (0,T) x M and r,7 > 0
B,-(:Bo) = {:E € R”: |£B - mol < 'I'}, QT)T(Z()) = (to -7, to) X Br(:BO)

and @, (20) = Q- »2(20)- The center points zo, zo are omitted when no confusion may arise.

2 Energy estimates and monotonicity formula.

In this section we assume, for an initial data ug, [pm f(|Duo|?)dz < +oco and we give
a-priori estimates valid for weak solutions of (1.7) belonging to CQ,.((0, T); C{,.(R™)) and

satisfying fOT Jgm f(|Du|?)dzdt < +oo. Throughout this section let u € C2.((0,T); Croe
(R™)) be a weak solution to (1.7) with fOT Jrm F(|Du|?)dzdt < +o0.

First of all we have the following estimate (refer to [6,11,14]), the proof of which is
performed by Caccippoli estimate with the quotient method (see [16,20]).
Lemma 2.1. A function (min{|Du[?=2,1})}/2Du has weak derivatives which lie in L{,,

((0,T) x R™) and there exists a postlive constant y depending only on m,p, v (i=1,2,3)
and the geometry of N such that, for all Qa2 = Q2,(to, o) C (0,T) x R™,

sup / |Du|2da:+/ ID((min{IDulp_2,1})1/2Du)|2dz
B, x{t}

fomrstSte ® . (2.1)
< 721+ |Dul}e(g,,)) (1 + / |Du|pdz).
Q2r
The following estimate is fundamental(refer [1,4,25]).

Lemma 2.2. (Energy inequality) It holds
T

sup I(u(t)) +/ / |8, u|2dzdt < I(uo). (2.2)

0<t<T o Jrm

We also need the monotonicity type inequality(refer to [4,25]). This is the main estimate
in our arguments. Let us take zo = (to,20) € (0,T) x R™ arbitrarily and fix it. We also
set, for 0 < R < (t0)/2,

(R, z0,u) = R? / F(|Dul?)Grodz (2.3)
Rmx{t=to—R2}
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and, for 0 < R < (t0)'/%/2,

to—R2

W(R, 20, u) = /t

o—(2R)?

[ 1Dul)Gdeat, (2.4)
R™x{t} '
where, with a positive constant v23 in (A2),

Go(t, 2) = (4m(to — 1)) ™™/ exp(—|z — zo* /47as(to = 1)), 1 < to.

Lemma 2.3 (Monotonicity formula) There ezists a positive constant depending only on
m,p, Y2, 73 and Ya3 such that, for any 0 < Ry < Ry < (to)/?,

®(Ro, 20, u) < exp(7(R1 — Ro))®(Ry, 20, v) + vI(uo)(R1 — Ro), (2.5)

and, for any 0 < Ry < Ry < (to/2)'/2,
Y (Ro, 20, u) < exp(Y(R1 — Ro))¥(Ry, 20, u) + vE(uo)(R1 — Ro). (2.6)

Proof. We give the proof of (2.5). (2.6) is similarily proven. Let us fix zo = (to, z0) €
(0,T) x R™. For each 0 < R < (to)*/?, note the following facts. Using a scaling transfor-
mation: (¢,z) — (s,y) such that

t=1to+ R%, z=uz0+ Ry (2.7

and setting
ur(s,9) = ulto + R%s, 20 + Ry), (2.8)

the equation (1.7) on (0,%p) x R™ is rewritten as follows: On (—to/R?,0) x R™,
0sur — div(f'(R™*|Dugr|*)Dug) + f'(R™?|Dugr|*) A(ur)(Dug, Dug) = 0. (2.9)

Since Lemmata 2.1 and 2.2 implies that u satisfies (1.7) almost everywhere in (0, T) x R™,
(2.9) holds almost everywhere in (—to/RZ%,0) x R™. Also note that

@(R) Z07u) = Rz/ ' ' f(IDu|2)qudm
. m =ta— R2
| rdisto- ) (2.10)

=32/  F(R2|Dug|?)Gdy.
Rf"x{s:—l}
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We now calculate S£®(R, zo,u) for any 0 < R < (0)}/2. We demonstrate only formal
calculations for simplicity, the justification of which is made in [21].

4
dR

_ 2R / f(R™|Dur’)G
Rmx{s=-1}

®(R, zo‘, u)

d
+ R? /R ety f'(R'ZlDunlz)—dR(R_zIDURIZ)Gdy

=2R / f(R™?|Dug|*)Gdy — 2R / R7?|Dug|*f'(R™*|Dug|*)Gdy
Rmx{s=-1} Rmx{s=-1}
d . ,
+2/ DaE—Eu'RDau‘Rf'(R_HDuRP)Gdy
Rmx{s=-1}

=Il+12+13

(2.11)
We now make an estimation of I; and I. Split the integrations into four parts:

L +1 =2R/

| . f(R™*|Dug|")Gdy
Rmx{s=—1}n{R~2?|Dur|?<70o} '

+2R /  F(R~?|Dug|’)Gdy
Rmx{s=—1}n{R~2|Dur|?>7}

—2R/ R\ Duglf (R Dunf)Gdy  (P1D)
Rmx{s=-1}n{R~2|Dur|?<7o} ,

— QR/ _ R'2|DuR|2f'(R—2lDuR|2)Gdy
Rmx{s=—1}n{R~2|Dur|?>70}
=111 + I + I + I2o.

where 75 is a positive constant determined later. In virtue of (1.3), we have
I 11 2 0)

Iy = —2R / _ R Dugl’f'(R™?| Dug|*)Gdy
Rm™x{s=—1}n{R-2|Dur|?<7o} (2.13)

~ Y2 Y3
Z_QR/ T ( +—)Gdy.
Rm™x{s=—1}n{R-2|Dur|?<7o} \2(p-1) " 2/

To estimate I19 + Io9, we note by (1.4) that, for all positive numbers &g, there exists a
positive constant 71 = 71(€0) such that

|F(7) = (1287 — Fa3)| < €0, T>7 (2.14)
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and, by (A2), for all positive numbers ¢,
723 = f'(7)|7 = ya31 = (1) /128]7 <7257 */%7 < maser R,
7 > max{, (et R®) "%}

By (1.4) again, for all positive numbers ¢,0 < € < v23, we are able to take 7 = T2(€) such
that

er < f(r), 7> (2.15)
Thus we find that, for all 7 > max{ro, 71(e0), 7(e1), e] 7/ * R=28/4},
F(r) = 7' (7) = f(7) = (v237 — F23) + (7237 — Fa3) — 7f'(7)
= f(7) = (Y237 — F23) + (723 = f'(7))T — Fas
> —eo — 73R f(T) — Fas
so that, putting

7’:(’) = max{‘ro, 7'1(60), ‘Tg(é‘l), (61)-2/0'.3_26/“}, (216)
we have
Is + Ino
> — 2eo + F2s) R / Gdy — a5 RO~ R? / F(R™?| Du, |)Gdy.
) Rmx{s=-1} . Rmx{s=-1}
(2.17)
Substituting (2.13) and (2.17) into (2.12), we have
L+ 1,
> —2R / ( 72 )Gd
R"‘x{s:—l}n{R—ﬂDqu?STo} 2(p - ]-)
— 2(&‘0 + 323)R Gdy — 2723R6—1R2 / f(R—2|DuR|2)Gdy.
Rmx{s=-1} Rm™x{s=-1}

(2.18)
We now treat I3 in (2.11). Using (2.9) and noting DyG = —y*G/2723(—s), we have,
by integration by parts,

d
R=-2 e Da(f (R Durl?) Dau) Gy
Rmx{s=-1} R

—-2/ d —un f'(R™?| Dug|?)Doukn Do Gdy
Rmx{s=-1} 4R

d
:-—2/ —ulh0,uknGdy
Rmx{s=—1} AR T F

d _ y®
+ —up f'(R™?|Dug|?) Dyu ( )Gdy
/R"'x{s——l} ClR R.f( | RI ) R (_s)

=R} / |250,up + y*Dyugr|’Gdy
Rmx{s=-1} ( )

R by Daa) (L= (R Dul) a)y - DGy
mx S
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The latter is bounded from below by

-1 ‘
E——— / ——1——|2sc'93u3+y°‘DauR|2Gdy
2 Jrmx{s=-1} (—3)

R1 1
_E / L1 = (B Dugl?) [yasl?lyDurl? Gdy.
2 Rmx{s=-1} (_s)

For the purpose of an evaluation of the last term in (2.19), take positive numbers 6 and e,
0 < g2 < min{R™2%75%, 793} with a positive constant 7o in (A2) and let 7, > (€2 R?%)~ e,
In virtue of (1.3),

(2.19)

_ 1 -
R / 1L = /(R Durl®)/v2sl*ly Dugl? Gdy
R™x{s=—1}n{R-2|Dug|?<r1} (=)

(et 3)) e "y
<1+ ——( + BV AR Gdy.
{ v23\2(p—1) 2 Y JRmx (s=—1}0{R-2|Dur|?<m1} vl Gdy

Noting that 7 > 7o, we have, by (A2),

(2.20)

1
R [ 11 = £/(R"?|Dug]?)/ 725" lyDur|*Gdy
R™x{s=—1}n{R-2|Dug|*>n} (—5) -

< R‘1/ 1
- Rmx{s=—1}n{R-2|Dugr|?>:} (—5)

— R—1+26R2/ 1
‘ R’"x{s:—l}ﬂ{R‘leuR|2>r1} (——S)

((e2)*R®)?|y|*| Dur|*Gdy

82R_2|DuR]2|y|2Gdy.

Since 0 < €9 < 723, similarily as in‘(2.15) we find that
go < f(7), 7> m2(eq),

so that, if 7, is taken as

7 = max{(e2R?) 7/, my(e2)}, (2.21)
the latter is bounded from above by

R™1t¥R? / 1 F(R™?|Dug|?)|y|*Gdy. (2.22)
Rmx{s=-1} (—s)

We are able to proceed as follows: for a positive number 6 > 0 which is determined later,

/ L f(RDupP)ly*Gdy
Rmx{s=-1} (—S)

1
—f(R7?|Dup[))yl’Gdy = (2.23)

/Rmx{s=-1}n{|y|gR—5} (—3)

1
+/ ] F(R~2|Dug|?)|y|*Gdy.
Rmx{s=—1}n{ly|>R-5} (—5)
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The first term in (2.23) is estimated from above by

R / L f(R?| Dugl?)|y*Gdy. (2.24)
Rmx{s=—1}n{|y|<r-7} (—5) |

Noting that, if |y| > R~9,

[4I°G < 7(m) exp{~R™*/16723}
and exploiting our energy inequality (2.2), we have, for the second term in (2.23),
/ 1
Rmx {s==1}n{ly|>R-5} (—5)

< y(m) exp{~R25/16y53} R™™ F(|Dul?)dz
R™ x{t=to— R?)}

< y(m) F(IDuo|?)da.
Rmx{t=to—R?}

F(R™2|Dug|?)|y|*Gdy

(2.25)
Substituting (2.24) and (2.25) into (2.23) and combining the resulting ineqaulity with
(2.22), we obtain from (2.19) and (2.20) the estimate for I3 in (2.11):

(1)) 2
I 2——{1+—(-——+— nR | y|2Gd
° 2 723 \2(p—1) 2 ' R’"x{s:—l}ﬂ{R"2|DuR|2§rl}II Y

]_ -
—ER“””R?R“”/ ) L f(R™%|Dug|®)Gdy (2.26)
Rmx{s==1}n{|y|<R-%} (_—5)

— 7(m)R_1+2‘SR2/ f(IDu0]2)dm.
Rmx{tzto—RQ}

Gathering the estimates (2.18) and (2.26) with (2.11), we obtain

d
ER‘¢R(R; 20, u)
Z - 2723R6_1¢R(R) 20, 'LL) - R—1+25-26¢R(R) 20, u)/2
— R 9(m)I(uo) — 7(p, 72, 7s)(€0 + 723 + 7o) R Gdy
Rmx{s=-1}
— (P, 72, 73, 723)7'1R/ ~ ly|2Gdy
Rmx{s=-1}

from which the desired estimate follows, if § and § are taken so small with recalling settings
(2.16) and (2.21) of 7 and 7.

We have so-called Bochner estimate, the proof of which is similar as in [14,23,25].
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Lemma 2.4(Bochner estimate) It holds, for ¢ € L2((0,T); Wy *(R™)) nWH2((0,T); L2,
(R™)) with ¢ >0 in (0,T) x R™ and allty,15, 0 <11 <12 < T
t=to

/ \Duffeds| - / | D28y pdz
Rmx{t} t=ty Rmx(t1,t2)

+f (62 (| Duf2) + 2f7(|Dul?) Dot D) Dg| Dul? Doipdz
RmX(tl,tz)

(2.27)
w [ ap(DuPDPeds+ [ pODU)IDIDU s
Rmx(tl,tz) ’ R"‘x(tl,tz

! 2 ldAz( )
< [ £(DUNDs

(Du, Du) + 24’ (u)(DﬂDu Du))pDsu'dz.

3 Partial regularity

We adapt ideas of Schoen-Uhlenbeck and Schoen to have a decay estimate(refer to
[23,24,25]), where we need to derive Harnack type estimate by the technique of De-
Giorgi(Proposition 3.2).

Lemma 3.1 (e—regularity theorem) For all ¢, 0 < ¢ < T, there ex1sts a constant g9 > 0
depending only on m,p, v (i = 1,2,3), 23, t and I(ug) such that, for any weak solution
u to (1.7) belonging to C2 _((0, T); C’IOC(R"")) and satisfying fo me (|Du)?) dzdt < +oo
with an intial data uo, [pm f(|Duo|?) dz < +oo, the following holds: If, for some R,
0 < R < min{(£)'/2/2, &0}, there holds - ‘ :

- E-R? BT
W(R, (L, 7),u) = / / (I DuP)G z.ayddt < eo, (3.1)
Ji-(2R)? JRmx {1} e
theh , - o '
sup |Dul> <16(6R)™* (3.2)
Qsry2(t,7)

with constants § > 0 depending only on m;p, Y1, 73, 723, Y23 and min{t*/2/2,e0}.

Proof. We proceed our investigations similarily as in [4,25]. For simplicity we translate
(f,Z) to the origin. Set r; = §R with 6, 0 < & < 1/2, determined later. For positive
numbers r,0, 0 < r,0 <711 and r+ ¢ < 7y, and 20 € F;,

o / F(IDul?)dz < 7(m, 72s) / F(IDUP) Gt 20202
Qqs(z0) Qo(z0)

< 7(ma 723) / f(ll)ul2)G!(to+2¢72,-’130)d‘z (33)

(to—202,t0+02)x R™
= y(m, 723)¥(0, 10 + 207, u).
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We proceed to an estimation of the right hand side of (3.3). If t5 + 202 < 0, then we are
able to take p, 0 < p < R, such that

to+ 20% — p? = —R%.
Then, by Monotonicity formula (2.6), we have

¥(o,to + 202, u)
to+2¢72—p2

< exp((p — ) /| o FUDU) Gtz + 910} p =) (34)

to+202
< exp(y(p — 0))¥(R, 0 + 207, u) + vI(uo)(p — o).

If to + 202 > 0, Monotonicity formula (2.6) gives

U(o,to + 202, u) < exp(7(p — 0))¥(R, 1o + 202, u) + vI(uo)(p — o)
to+202—R? —~R? (3_5)
= / 4 / } / F(Du|?) G egr 207 gy dedt.
t R™x{t}

-R? 0+202—(2R)?

We now make an estimation of the first term in the right hand side of (3.5). For all 7 €
(—R?%,to + 20? — R?), Monotonicity formula (2.5) implies

(to+20° — 7) F(1Du|*)G 1o 4202,00)d8 = B(to + 20° = 7,10 + 207, u)
R™x{t=71}

< exp(Y(2(to + 202) — 7)Y — (to 4 202 — T)VD)B(2(to + 20°) — 7,10 + 202, u)
+ 71 (u0)((2(to + 20%) — T)H/2 — (1o 4 202 — 7)1/2),

so that

to+20%-R?
/ / . f(IDulz)G(to+262,Eo)dmdt
-R2 Rm x{t}

to+20’2—-R2
= / . (to + 202 — T)_I\I’(to + 202 — 7,19 + 202, u)dr
~-R
. pto+202-R2 (3.6)
< / (to + 202 — 7)1
-R?
- {exp(7(2(to + 20%) — )% — (to + 202 — T)V2)B(2(to + 202) — 7,10 + 202, u)

+ I(uo)((2(t0 + 20%) — )2 — (to + 202 — 7)/?)}dr.
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Since 2(tp + 20%) — 7 < 3R?, by changing of variables: 7 — ({g + 206%) — 7, the right hand
of (3.6) is bounded from above by

—R?

2exp(’y31/2R)/ / { }f(|DU|2)G(to+2a2,mo)d$dT
Rmx{t=r

R2- (to+20'2)

+721/2I(u0)/ (=7)"Y2dr
R2 (to+202)

=2 exp( 31/2R)/ f(‘Dulz)G(to+202,xo)dmdt + 731/2RI(U’0)

R2—(to+202) ~/Rm x{t}

Substituting this estimate into (3.6) and combining the resulting inequality with (3.5), we
have

(o, to + 207, u)

1/2 1/2 (37)
< (2exp(y3'/?R) + 1)/ / F(1Du}?)Gtot202,20)dzdt + 73 12 RI(up).
2R)? JRm x {1}

Now we shall make an " estimation of G (to+202,20) (refer to [4,5 25]) For (t,z) € (—4R?,
—R%*) x R™, if |z| < kR,

Glto+202,00) < (37r)_m/2R"m < 3—m/2gm exp(k? [4723) G. (3.8)
If |z| > kR, note that G(i4202,00) = %—G(Rz z0) and that
G(to+202,20) < (RZ —t)m/? |z — 2o/ |z — 2o }

Grray — (to+20% —t)m? X o T 207 =) | F7pa(B2 — 1)
R? + 4R2%)™/2 G RY—t—(to+ 202 — 1)
= ( 2 )m/z exp{— |z = @o|* 7 _ )
(3R /4 — t) 4793 (to + 20 ‘t)(R t)
k2 . .
180723}'

(3.9)

< (4/3)™25™/% exp{—

By (3.8) and (3.9) we have, for (¢,z) € (—4R?, R*) x R™,

G(to+2¢72,wo)(ta .'B)
< 371292 exp(k? [4723)G(t, z) + (4/3)™/25™ /2 (3.10)
. exp{—k2/180723}G(Rz,xo)(t, ).
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‘ A‘pplying (3.10) to (3.7), making an estimation of f__(};;)2 mex{t} F(|Dul*)G (g2 50)dz with
monotonicity formula (2.5) in the following manner:

/ / (DG k2 00y
@ Sz

< / (R? — 1) 1@ ((R? — 1)1/, (R?, 20), v)
—~(2R)?

[ _R?
< R?-)7! o
v 5 ‘ —»/;(2R)2( ) (3.11)

{exp(r{(R* + D)2 — (R? — )P })®((R* + 1)'/?, (R?, 20), v)

+ I (uo)((R? + D)M? — (R? —t)'/?)}dt
< (exp(y(B? + DY2)(B? + 1172 4 4(R? + §)12) (up) / :R i
~(2R)?
< T(uo) log(5/2)(exp(v(5Y/2 /)T 212 4 4(54/2 /2)7/?)

- and substituting the resulting inequality into (3.3), we have, for r,0, 0 < r,0 < r; and
" rd o <r,and 2 € Py,

o"m/ f(|Du|*)dz
Qd(zb)

< 1(m, 723){<2exp(7<3”2/2)t‘“2> T 1)3724m exp(k?/4723)

/ / (| Dul?)Gdadt
(2R)2 JR™x{t}
+ (2exp(7(34/2/2)14/2) 4 1)(4/3)™/25™/ % exp(—k? /18023)

- I(uo) log(5/2) (exp(y(5"/? /)T /A) I =12 4 (5112 /2)i/?)

+ 731/2R1(u0)}.

Eor any positive number ¢, take k as so large dependently on m,p, 72, 3, 723, 1, I(up) and
¢, so that we derive from the assumption (3.1) and the above inequality, with a positive
constant y depending only on m, p, v, ¥3, 723, ¢, I (uo) and ¢,

a'm/ f(|Du|*)dz < v +&. (3.12)
Qs (20) .
Since u € C’ﬁ)c((O T); CL.(R™)), there exists g, 0 < op < 71, such that
(ry — 00)?sup |Du|? = Lna&x {(r, — o)? sup|Du|?}. (3.13)
a9 T1 Qo
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Here, if 0y = 71, the desired estimate (3.2) immediately follows, so that we assume og < 71.
We find that there exists (¢o, o) € Q. such that

sup [ Dul® = | Dul?(to, 20)-

°0

Now set ep = |Du|?(t0, o) and po = (1/2)(r1 — 00). Noting a choice of ag and (¢, zo), we
have, by (3.13), ‘ »
: sup |Dul|®* < sup |Dul|? < 4eo. (3.14)

Qpo(to,z0) Qoo+ro

Introduce

To = \/%PO;
v(s,y) = u(to + s/eo, zo + y//eo).

We now show that 79 < 1. First note that, by Lemmata 2.1 and 2.2, the equation (1.7)
holds almost everywhere in Q,,(fo, Z0), so that v satisfies, almost everywhere in Q.,,

(3.15)

Osv ——‘div(f'(eole|2)Dv) + f'(eo|Dv|?) A(v)(Dv, Dv) = 0. (3.16)

Moreover (3.14) and (3.15) imply

e(v)(0,0) =1, sup|Do|*> <4. (3.17)

ro
Similarily as in Lemma 2.4 with (3.16), we have Bochner estimate for v : Set B = B,,.

v satisfies, for ¢ € L2((=(r0)%,0); WY2(B,,)) NWh2((—(r0)?,0); L2(B,,)) with ¢ > 0 in
Q-, and all intervals (¢,%2) C (—(r0)?,0), - ~ : : R
s=to

/ | Dv|*pdz —/ | Dv|? 8, pdyds
Bx{s} s=t, (tl,tz)XB

+ / (8% ' (eo| Do[?) + 2e0f” (0| Dv|2) Dat’ Dgv') Dg| Dv|? Dapdyds
(t1,t2)x B ‘

[ 2feol Do) D e pdyds + /
~J(t1,t2)xB t

( 1,t2)XB

dA

<[ flalD) s Y
(tl,tg)xB d

eof” (eo| Dv|*)| DI Dv|*|*pdyds

(Dv, Dv) + 2A(v)(DgDv, Dv)) - ¢ Dgudyds.

v

— —

: 3.18)
Now we assume that ro > 1. Then, we are able to derive Harnack type estimate from (3.18)

(see [21] for the proof).

Propositidn 3.2. There exisis a positive constant v depending only on v, vs3,p and m
such that '

sup |Do|* < y(m, 73,p,.m)(ko)"(p“)(mm“/ |Dv|*dz + 4(ko)? (3.19)
1 Q1
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holds for any ko, 0 < ko < 1.
Thus we have, by (3.19),

1 =|Dv[*(0,0) < (11,73, p, m) (ko) ~ (P (m+2)/2 / |Dv|*dz + 4(ko)* (3.20)

1

holds any for ko, 0 < ko < 1. Noting that 7o > 1 implies oo + 1/ /€0 < 00 + po < r1 and
adopting (3.12) with o = 1/,/eg, we have, by (3.17) and scaling back,

| Dv|*dz <4 | |Dv|*dz = 4(\/eo)™ Dul?dz
/1 I I / I Ll/ﬂ('o:xo) I l
= (4/725)(VEo)™ / (23} Duf? — Fpa)dz + (4 728)323(1//E0)?
Q1//75(t0,20) (3.21)
< (4/125) (Vo)™ / F(IDu?)dz + (4/725) 725 (5R/2)?

Q1/. /7520, x0)
< (4/723)(veo + €) + (4/723)723(6R/2)?,

where we used (1.5) )
Y23T — Y93 < f(1) forall 7 >0

and an estimation

1/veo < po < 11/2 < 6R/2.

Taking €o,e > 0, § > 0 and ko > 0 as so small, we obtain from (3.20) and (3.21) the
contradiction. Therefore we conclude that ro < 1. By choice of gp, this implies

max {(r; — o)?sup |Du|?} < 4p’ep = 4r% < 4. (3.22)
0<a<ry Q- 7

We choose ¢ = (1/2)r; = (6/2)R in (3.22) and divide the both side of the resulting
inequality by (§R/2)? to obtain (3.2).

Let {uz} C C2.((0,T); CL.(R™)) be a sequence of weak solutions to (1.7) with fo
Jam F(|Dul?) dedt < +o0. Recall that, for all ¢, € (0,T), £ is determined in Lemma 3.1,
depending on to. For to € (0,T) and 0 < R < min{(¢0)!/2/2, e0(t0)},

Etl‘t’ = {zg € R™: lim Y(R, 20, ux) > eo(to)},
Foroo (3.23)

nto — n Q.
0<R<min{(to)'/2/2,e0(t0)}

Now we also put
T = Uge(o.1)Z"°. (3.24)

We now give an estimation on Hausdorff measure of a set X.
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Lemma 3.2
loc(E) < +o0, | (3.25)

in addition, for ¢y € (0,7,
HI-2(2h) < +oo. (3.26)

loc

Proof. We proceed as in [5,25]. Let zo = (f0,20) be a point in (0,7) x R™ and R,
0 < R < min{(t0)*/?/2,e0(t0)}. Set v = uy.

¥(R,z0,v) = / £(1Do|?) G, d=
(t0—4R2 to— RZ)me

/ / leI )GZOdz + / f(|Du| )G, dz
to—(2R)? BKR(EO) to—(2R)? J{|z—=0|> KR}

< (4x)"™2R™™ / f(|Dv|*)dz
to—(2R)? BKR(:BO)

+ 5™/2 exp{—K?/80723} F(|1Dv)? )GUO+R2 20)d2

to—(2R)? ~/{|:D —z9|> KR}

<R™ / / f(1Dv|?)dz
to—(2R)? an(zo)

to—R

+ 5m/2 eXp{—K2/80723} / f(‘D'Ul )G(150+R2 "'«‘c))d‘z
. to (2R)2 {IZ}—30|>KR}

(3.27)
We now evaluate ft (2R)2 f{lw col> KR} F(1Dul*)G ¢+ R2,00)d% snmlanly as in (3.11) and
take K as large, depending on m, p, Y2, 3, 723, to and I(ug) to have, by (3.27),

U(R, z0,ug) < R™™ / / f(IDukl )dz+&:o/2 | (3.28)
to— —4R2 BkR(JJo)

The validity of (3.26) is shown by the arguments similar as in [5, Page 172-173] with (3.28).
(3.25) is shown similarly as the proof of (3.26).

Now we give the proof of our Theorem.

Proof of Theorem. We now demonstrate the proof of Theorem in the case M = R™.
Let {uz} € G2, ((0,7); CL.(R™)) be a sequence of weak solutions to (1.7) with fo Jpm
f(|Dug|?) dzdt < co. The validity of (1.11) and (1.12) immediately follows from our energy
inequality Lemma 2.2 and Sobolev imbedding theorem (see [20 Theorem 2.1, Page 61]).
(1.10) is obtained from (1.12). ‘
We now consider the validity of the latter statement in Theorem. For zy = (to, %0) € %,
there exists R > 0 such that

/ F(Dw)G oz < e
(t9—4R2,t0—R2)XRm
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holds for infinitely many k € N. By Lemma 3.1, we have that, with a uniform constant ~,
| Dug| < 4 in a uniform neighborhood @ of z. (3.29)

By Lemmata 2.1 and 2.2 available for {ux}, we find that
each uy satisfies the equation (1.7) almoét everywhere in (0,7) x R™. | (3.30)

We are able to proceed to the estimations with (3.29) and (3.30) similarily as in the proof
of Theorem 1.1 in [11] (see also [6,8] and the proof of Theorem 2 in [2]) to observe that each
Duy, is locally Holder continuous in ), independently on an approximating number k. On
the other hand, similarily as the proof of Theorem 1 in [2] (also see the proof of Theorem 1
in [7]) with (3.29) and (3.30), we also find that each uy is locally Holder continuous in Q,
independently on k. Thus we see by Ascoli-Arzela theorem that u, Du are locally Holder
continuous in @ and we are able to pass to the limit ¥ — oo in (1.8) for {uz} with ¢ the
support of which is contained in @), so that u is a weak solution to (1.7) in Q. We apply
(3.29) to (2.1) for {ur} with Q2 C Q to see that u satisfies (2.1) for Qs C Q (with a
subsequence {u} if necessary) and then we have (1.13). The validity of (1.14) is shown
by Lemma 3.2. At last, by a standard covering lemma(see[4,25]) with (1.13) and (1.14),
we find that u is a weak solution to (1.7).

Remark. If the domain M is compact, smooth orientable Riemannian manifold, we are
able to make simple modifications of the above arguments to have the validity of Theorem.

Here we observe by (1.5) that, if u € L2((0,T); WH2(M)), then fo Jur F(|Dul?)dMdt < oo

and the inverse is available.
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