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CR of a reduction for classical natural deduction

B E—HEY RE#H (ANDOU, Yuuki)

In [1], we introduced a reduction-procedure for first order classical natural deduction with full logical
symbols, and proved the weak normalization theorem of the reduction. The reduction defined in [1] is
simple, and it is a natural extension of Prawitz’s reduction for intuitionistic natural deduction [5][6]. In
this note, we show the fact that Church-Rosser property (CR) holds for the reduction introduced in 1.
We give an outline of a proof of the theorem. For the details, see [2].

1 Basic definitions and notations

1.1 System

In this paper, we investigate the natural deduction system for the first order classical logic. Our system
contains all logical symbols, that is; & (and), V (or), D (implies), = (not), ¥ (for all), and 3 (there exists).
The inference rules are the introduction and elimination rules for each logical symbol, and the classical
absurdity rule shown by the following schema.

Classical absurdity rule

[ﬁLA]
g (L)

Regularity of (L.) . It is assumed that any assumption formula discharged by any application of
(L¢) in a derivation is the major premiss of an application of (=E). Notice that if a derivation which
does not satisfy the regularity of (L.) is given, then we can easily transform it to a regular one [1]. By
definition of our reduction which will be stated in the next section, it will easily be verified that; if II’ is
the derivation obtained by our reduction from a derivation IT satisfying the regularity of (L.), then IT’
is also regular.

1.2 Notational conventions

(1) Small Greek letters @, 3, ... are used as syntactical variables for formula-occurrences in deriva-
tions. If o is an formula-occurrence of a formula A, Form(a) denotes the formula A. We make a
distinction between inference rules and applications of inference rules in derivations. If I is an applica-
tion of an inference rule in a derivation, Inf(I) denotes the inference rule applied at I. For example,
if T is an application of (VE) in a derivation, then Inf(I) is the inference rule (VE). When [ is an
application of an inference rule in a derivation, we call I a D-inference [3] (in [10]).

(2) Let IT be a derivation. FO(II) denotes the set of all formula-occurrences in II. Notations oa(IT),
OA(II), end(IT), END(II), li(IT), and LI(II) are defined by the following;:



oa(lT) = {o € FO(II) | « is an open assumption of I}
OA(IT) = {Form(a) | a € oa(IT)}
end(II) is the end formula-occurrence of II.
END(Il) = Form(end(II))
li(II) is the last D-inference of II.

Namely, li(IT) is the D-inference whose conclusion is end(IT).
LI(IT) = Inf(ii(IT))

li(IT) and LI(IT) are defined in the case that the length of IT is greater than 1, that is, there is at least
one D-inference in /7. For a formula-occurrence « in IT, sbhd() denotes the subderivation of IT satisfying
end(sbd(a)) = a. Let I be an D-inference in I7. Notations pm(I), ¢l(I), and de(I) are defined by the
following:

pm(I) = {a € FO(II) | o is a premiss of I}
cl(I ) is the conclusion of I.
{a € FO(II | « is discharged by I}

Moreover, in the case that Inf(I) is an elimination rule, notations mj(I), M J(I), an'd mn(I) are defined
by the following:

mj(I) is the major premiss of I.
MJ(I) = Form(mj(I))
mn(I) = {a € FO(II) | a is a minor premiss of I}

(3) Let I, a, and ¢ be a derivation, a free variable, and a term respectively. If the figure obtained
by substltutlng t for all occurrences a in I7 is a der1vat1on we denote the derivation by IT(¢/a). Let A

be a formula. The notation (4] ; is used in the following situation, that is, [4] in Al denotes a subset,

say O, of oa(II) satisfying that Form(a) = A holds for all o in II. Let X be a derivation satisfying
END(Z) = A. If the figure obtained by substituting X for all elements of the subset of oa(II) denoted

b))
by [4] in [}4}] is a derivation, we denote the derivation by [A]. When a derivation IT is denoted by

7
HQ—(IQ___Q it means that IT equals to ZD HOAHI, or 11 ]le
I, ().
A

T2 it the cardinality of pm(li(I))

1s 1, 2, or 3 respectively. The notation is used similarly.

(4) Z, N° and N'* denote the set of all integers, the set of all non-negative integers, and the set of
all positive integers respectively. For a finite set .S, Card(S) denotes the cardinality of 5. We use U and
L] to denote disjoint sums.

2 Reduction and theorems

In this section, we define our reduction and state theorems about it. The aim of the reduction is to
remove maximum formulae in a derivation and to obtain a normal derivation. Maximum formulae and
normal derivations are defined as follows.

2.1 Definition (Maximum formula)

Let II be a derivation. A formula-occurrence g in I is a maximum formula in I7 iff it satisfies the
following conditions.

(1)  is the conclusion of an application of an introduction rule, (VE), (3E), or (L,).

(2) p is the major premiss of an application of an elimination rule.



2.2 Definition (Normal derivation)

A derivation IT is normal iff it contains no maximum formula.

2.3 Definition (Contraction)

To define our reduction, first we define the contraction of II where II is a derivation satisfying that
mj(li(IT)) is a maximum formula. Let I be the D-inference in II satisfying cl(I) = mj(li(II)). The
contraction of IT is defined according to Inf(I). In the case that Inf(I) # (L.), the contraction is the
same with Prawitz’s reduction for the intuitionistic logic [5][6].

2.3.1 L. -contraction

[~M]
Let T= £2 1 (1 1) | here nf(D) = (L), Inf(K) s an climination rule, and [+] in s

denotes de(I). Singe IT satisfies the regularity of (L.), any element of dc(I) is the major premiss of an
application of (=E). Let Ji, ..., Jn be all the applications of (~E) whose major premiss is discharged
by I, if they exists. Let IT; be the derivation obtained from Iy by the transformation represented by
the following diagram:

M (L 1) .,
- "‘C C JI

T P
where Inf(K,) = Inf(K), Inf(J;) = (=E), and dc(K}) is defined naturally according to de(K).

-M M
4 Tr

These replacements are done simultaneously for all p € {1,...,n}. We denote by [-C] in [;YC] the set

/
0
-C] -C]
{mj(J}),...,mj(J})}. Then IT contracts to IIj , where Inf(I') = (L.) and de(I') is [-C] in I
C I 0
Example of L -contraction
1
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TR =B ° -A
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contracts to



4 3
A B
(A& B) A&B
1 L5 4
A -B —A 6 5
2 AV-oA -AV-B —|A\/—|B4 A B
-(~AV-B) -AV-B (A& B) A&B
L L 6
A , B A
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In the figures above, the formula-occurrences indexed by a natural number are discharged by the D-
inference indexed by the same number.

2.4 Immediate reducibility and Reduction sequence

We say that a derivation I is immediately reduced to a derivation [T’ iff IT’ is the derivation obtained
from II by replacing a subderivation, say I", of II by the derivation to which I" contracts. A sequence
II,, Iy, ... is called a reduction sequence iff for all ¢, II; is immediately reduced to IT;;;.

2.5 Theorems
Now we state our theorems.

Theorem 1. (Weak normalization theorem) For every derivation II, we can construct a finite
reduction sequence from II to a normal derivation.

Theorem 2. (Church-Rosser property) If two finite reduction sequences IT, ..., X and II, . ..,
X' are given, then we can construct two finite reduction sequences X, ..., A and X', ..., A for some
derivation A. '

A proof of theorem 1 was given in [1]. The rest of this paper is devoted to a proof of theorem 2.

3 Segment, segment-tree, and segment-wood

3.1 Segment

We extend the definition of segment introduced by Prawitz [5] in order to treat (L.)-contraction. Let
II be a derivation.

3.1.1 Definition(ssg(o): segment successor of «)

A partial function on FO(IT) denoted by ssyr is defined as follows. Let « be a formula-occurrence in IT.

(1) If « is a minor premiss of an application, say I, of (VE) or (3E); then ssj(«) is the conclusion of
I

(2) If a is the minor premiss of an application of (—E) whose major premiss is discharged by an
application, say I, of (L.); then ssy(«) is the conclusion of T.

(3) Otherwise, ssyr(«) is undefined.
Clearly it holds that Form(ssg(a)) = Form(a) if ssjg(a) is defined.



3.1.2 Definition (sp;(a): segment predecessor of «)

Let « be a formula-occurrence in I7. sp(a) is the subset of FO(II) defined by
sp(e) = {B € FO(IT) | ssp(B) = a}.

3.1.3 Definition (segment)

A finite sequence of formula-occurrences ai,...,a, in II is a segment in II iff it satisfies the following
conditions (1), (2), and (3).

(1) spplon) =¢
(2) For all ¢ < n, sspp(o) = 041
(3) ssp(ay) is undefined.

Our definition of segment is equivalent with that introduced in [1].

3.1.4 Definition (sdj(a,S): segment distance from o to )
sdy7 is a function from FO(II)x FO(IT) to ZU{oc} defined as follows. Let o and 8 be formula-occurrences
in II.

(1) If there exists a segment 81,...6, in IT satisfying {o,8} C {61,...,8,}, then sdpg(e,8) =y —=
where o = é; and § = 4.

(2) Otherwise, sdp(a, ) = co.

Note that sdp is well-defined. Because if two segments 61,...,6, and 71,..., 7y include the same
formula-occurrence, say 6, = 7,, then the sequences 6é,,...,6, and 7, ..., 7, are identical.

3.2 Segment-tree

To prove theorem 2, we will introduce in the next section an extended reduction (i.e. the structural
reduction) which consists of VE-, 3E-, or L.-contractions applied continually for a tree of formula-
occurrences in a derivation. Next we give the precise definition for the notion free mentioned above.

3.2.1 Notation (FO*(II))
We denote the set FO(II) x {0,1} by FO*(II).

3.2.2 Definition (sgt : segment-tree)

Let o be a formula-occurrence in I, and T a subset of FO*(II'). The relation ‘T is a segment-tree at o
in IT ” holds iff one of the following conditions (a), (b), or (¢) holds. It is defined by induction on the
number of formula-occurrences above o.

(a) T={< a,0>}

(b) spg(a) ={P1,...,Pn} # ¢ where §; # B; if i # j; and
T={<a0>} UUi<p<n Tp Where T}, is a segment-tree at 8, in II for each p € {1,...,n}.

(¢c) « is the conclusion of an application of (L.); spy(a) = ¢; and
T={<a0><al>}

We use the notation sgt for the abbreviation of segment-tree.



3.2.3 Some definitions

If T'is a sgt at o in T, then the construction of T' is uniquely determined. Let T be a sgt at o in I7. We
define two subsets of FO(IT) denoted by top(T') and nf(T'), and also define a natural number denoted by
len(T'); by induction on the construction of T In the following definitions of top(T), nf(T), and len(T);
(a), (b), and (c) means respectively (a), (b), and (c) in the Definition 3.2.2.

Definition (top(T): tops of T')

Case (a): top(T) = {a}

Case (b): top(T) = Ui<p<n tor(Tp)

Case (c): top(T) = ¢

Definition (nf(T): negation-friends of T)
Case (a): nf(T) = ¢
Case (b): Let I be the D-inference satisfying ci(I) = a.
o= (B0 iy 2 O
1<p<n 2 ¢
Case (c): nf(T) = ¢
Definition (len(T): length of T)
Case (a): len(T) = 1
Case (b): len(T) = 1 + maxj<p<n len(T))
Case (c): len(T) = 2

3.3 Segment-wood
We will introduce a notion segmeni-wood. This is used for the inductive definition of the continual
reduction for a sgt at a maximum formula in a derivation.
3.3.1 Definition (connectable formula-occurrence)
A formula-occurrence « in IT is connectable in IT iff it satisfies one of the following conditions (1) or (2).
(1) a = end(Ill)
(2) There exists a D-inference I in IT; such that Inf(I) = (=E), mn(I) = {a}, and mj(I) € oa(II).

3.3.2 Definition (sgw: segment-wood)

Let W be a subset of FO*(IT). W is a segment-wood in IT iff it satisfies one of the following conditions
(a) or (b). :
(a) W=¢

(b) There exists mutually distinct formula-occurrences as,...,a, in IT @nd subsets T3,...,T, of
FO™(IT) such that;

(b1) for all p,g € {1,...,n}, Form(a,) = Form(ay);



(b2) for all p € {1,...,n}, ap is connectable in IT, and T} is a sgt at ap in IT;

We use the notation sgw for the abbreviation of segment-wood.

3.3.3 Definition (cmp(W): component of W)
For a sgw W in II, cmp(W) is the finite set of formulae defined by

emp(W) = { Form(a) | There exists & € {0,1} such that < a,k>€ w}

3.3.4 Definition (rt(W): roots of W)
For a sgw W in II, rt(W) is the subset of FO(II) defined by

rt(W) = {a € FO(II) |< 2,0 >€ W and o is connectable in I}

3.3.5 Definition (W)

Let W be a sgw in IT and I' a subderivation of II. W[ is the subset of FO*(II) defined by W[r=
W nFO*(I).

3.3.6 Fact
Let W be a sqw in IT and I' a subderivation of I. Then, W([r is a sgw in I' and cmp(W[r) C emp(W).

3.3.7 Some definitions

Let W be a sgw in II. We define three subsets of FO(IT) denoted by top(W), on(W), and nf (W). In
the following definitions of top(W), on(W), and nf(W); (a) and (b) means respectively (a) and (b) in
the definition 3.3.2.

Definition (top(W) : tops of W)
Case (a): top(W)=¢

Case (b): top(W) = U, <p<n tor(Tp)

Definition (on(W): open negation of W)

Case (a): on(W)=1¢

Case (b): For any 3 € FO(II), B € on(W) is equivalent to the following condition. That is, there exists
a € ri(W)\ {end(IT)} such that 8 = mj(I) where I is the D-inference satisfying mn(I) = {a}.

Definition (nf(W): negation-friends of W)

Case (a): nf(W) =

Case (b): nf(W) = on(W) Ul cpcn 2f(Tp)



4 Structural reduction

In this section, we define the structural reduction. It is applied for a sgt T at a maximum formula in a
derivation where len(T) > 1. The structural reduction is an extension of VE-, 3E-, and L.-contractions
in the following meaning. One application of VE-, 3E-, or L -contraction removes a maximum formula
4 in a derivation IT up to the elements of sp;(u). The structural reduction for a sgt 7' at a maximum
formula g in a derivation where len(T) > 1 removes g up to the elements of top(T'). In order to define
the structural reduction, we introduce a method to substitute a derivation for a sgw in a derivation.

4.1 Substitution-sequence
4.1.1 Definition (substitution-sequence)

Let IT and @ be derivations and W a sgw in IT. We call the sequence < II, W,© > a substitution-
sequence iff it satisfies the following conditions (a), (b), and (c).

(a) Any eigenvariable occurring in one of the derivations II and © does not occur in the other.
(b) LI(®) is an elimination rule, and mj(li(O)) € 0a(O).
(c) emp(W) C {MI(ii(6))}

4.1.2 Definition (Ps, £, &2, ¥, F2)

Let S be a substitution-sequence < II, W,® >. By the following clauses from Case 0 to Case 2, we
define a derivation denoted by Pg; two subsets of FO(Ps) denoted by 839 and Sg; and two injection from
FO(IT) to FO(Ps) denoted by F§ and F2; where they satisfy the following conditions (a), (b), (c), and

(d). Suppose @ = MJ(li(gj)\;D((QQ; 92), and let @ = Card(mn(l(0))).
(a)

END(©), if < end(I),0 > W,

END(Ps) = { END(II), otherwise.

(b) If @ > 1, then for all & € £3 it holds that sbd(«) is identical with ©1; otherwise, £ = ¢. If Q = 2,
then for all B € £2 it holds that sbd(f) is identical with ©@,; otherwise, £2 = ¢.

—(END(0@)), if & € on(W),

U —
(c) For all & € oa(Il), Form(Fg (a)) = { Form(a), otherwise.

(d) 0a(Ps) = {F§(a) | @€ 0a(I1)} U193 Useey, 0a(sbd(e))
Ps, £&, E2, fg, and .7:? are defined by induction on the length of II.

Case 0. f W = ¢:
Ps=1I.

£k =EL = ¢.
f'g and .7-'5? are the identity mapping on FO(IT).
Case 1. If W # ¢ and the length of IT is 1:

Ps = 6.
Eh=gl=4, it Q =0,
£l = {end(©1)} and £2 = 4, ifQ=1,
E: = {end(©1)} and &% = {end(@,)}, Q=2

FY (end(Il)) = mj(li(Ps)).
F2(end(IT)) = end(Ps).



Case 2. If W # ¢ and the length of II is greater than 1:

I
H—DE—]-%%—EL Let S, be the substitution-sequence defined by S, =< II,, W[, ,0 >
for each r € {0,1,2}.
Case 2-1. If < end(II),0 >¢ W:

Case 2-1-1. If end(Ily) ¢ on(W):

Suppose IT =

Pso (Psx PS:)

Ps =—Znp(m)

where Inf(K) = LI(IT) and

de(K) = |J {F¥.(o) | @ € de(li(1T)) N FO(IT)}.

0<rL2

Forall 1€ {1,2},6k= |J &,
0<r<L2

FY(end(I)) = FL (end(II)) = end(Ps).
For all r € {0, 1,2}, and for all @ € FO(II,);
FY(a) = .7-'5Ur(a) and F2(a) = TSDr(a).

Case 2-1-2. If end(Ilo) € on(W):
_~(END(®) Ps,

P
s I

where Inf(K) = (-F).
For all 1 € {1,2}, &5 = &5,
FY(end(IT)) = F2 (end(IT)) = end(Ps).
FY (end(Iy)) = FE (end(Ilp)) = mj(K).
For all o € FO(IT,), F§ (@) = F5,(a) and F2(a) = 75 (a).

Case 2-2. If < end(IT),0 > W:

Case 2-2-1. If end(II) ¢ top(W):
Pss (psl PS;)

END(©)

Ps = K

where Inf(K) = LI(IT) and

de(K) = | {F§.(0) | @ € de(li(1)) N FO(IT,)}.
0<r<2

Foralll€{1,2},&5= |J &,.
0<r<L2
FY(end(II)) = FP(end(Il)) = end(Ps).
For all r € {0,1,2}, and for all « € FO(II,);
FY(a) = F{ (a) and FL(a) = F2 (o).

Case 2-2-2. If end(IT) € top(W):

Pso (PSI 7)52) ,
K

Ps= END(I) CRED
END(O)

I
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where Inf(K) = LI(II),

de(K)= | {F§.(a) | € de(li(i)) n FO(IT,)},
0<r<2

Inf(I) = LI(O®), and dc(I) is identical with dc(1(©)) as the subset of |J; ¢ ;<o FO(Oy).

55—85—(]5, if @=0,
El = mn(I) UUo< <2 &5 and £ = ¢, ifQ=1,

For all [ € {1,2}, SS—{aI}UUD<r<2 &, fQ=2,

- where, in the case of @ = 2, a; and ay are formula-occurrences of Pg satisfying that mn(I) =
{1, a2} and o stands on the left hand of a,.

{fg(end(]'l)) = mj(I). F2(end(IT)) = end(Ps).
For all » € {0,1,2}, and for all « € FO(II,);
F(a) = fgr( ) and fg(a) f’D (o).

4.2 Structural reduction
4.2.1 Definition (structural reduction)

Let II be a derivation satisfying that mj(li(II)) is a maximum formula in II, and let T be a sgt at
mj(l(I)) in IT satisfying len(T) > 2. Then, the structural reduction of I7 with T is the transforma-
tion of II to the derivation Pg where the substitution-sequence S is defined by the following. Suppose

= %TH—Z—Z K . Let @ be a derivation defined by @ = END(I;(;\)TD((]IYY; I12)
Inf(K') = Inf(K), and dc(K') is identical with dc(K) as a subset of FO(II;) U FO(II3). Then, the
substitution-sequence S is defined by S =< I, T,0 >. We call this substitution-sequence the accom-
panying substitution-sequence of the structural reduction of II with T'.

K’ where

4.2.2 Notation

I SED) IT’ denotes the fact that the derivation II’ is obtained by the structural reduction of IT with 7.

4.2.3 Facts
We have the following facts (1) and (2) by definition.

(1) Let « be a formula-occurrence in a derivation II satisfying that o is the conclusion of an application
of (VE), (AE), or (L.). Then, there exists ezactly one sgt T at « in II such that len(T) = 2.

(2) Let II be a derivation satisfying that mj(li(II)) is a mazimum formula and is the conclusion of an

application of (VE), (IE), or (L.). Suppose II contracts to II'. Then, it holds that IT SR(T)
where T' is the sgt at mj(li(IT)) in II satisfying len(T) = 2.

SR
At the end of this section, we will state the fact that; if I7 R) II’ holds, then there exists a reduction
sequence from II to II’ consisting of VE-, 3E-, and .L -contractions (for subderivations).

4.2.4 Notation
For a derivation II, we denote the set of all sgw’s in IT by SGW (II).



4.3 Mappings

When 17 2% 1/ holds, we often need to use the natural mappings from SGW (II) to SGW(H’) and
from oa(H ) to oa(II"). In order to represent such mappings, we define the mappings CS%, 0S%, CS%,
and 0S% for a substitution-sequence S.

4.3.1 Definition (CS%, 0S%, CS%, 0S%)

Let S be a substitution-sequence < I, W,© >. For U € SGW (II) satisfying UNW = ¢, CS5(U) is the
subset of FO™(Ps) defined by ‘

CSL(U) = {< FR(0),k >|< 8,k > U}

For o € oa(IT)\ on(W), 0Ss(a) is the subset of 0a(Ps) defined by 0S%(a) = {FY(a)}. For V e
SGW (©), CS%(V) is the subset of FO*(Ps) defined by

U2y Uneer (< ia(8),k >|< 0,k >€ V[a,}
CSL(V) = U{< FZ(0), k>|< 0,k >e W}, if < end(©),0 >€ V,
2(V) =

Ureq1,23 U)\Eglq{< ix(0),k >|< 0,k >€ V(e,}, otherwise,

where for each I € {1,2} and for each X € £}, i, is the canonical bijection from FO(Er) (C FO(O)) to
FO(sbd(X)) (C FO(Ps)). For 8 € 0a(O)\ {mj(1(0))}, 05%(p) is the subset of oa(Pg) defined by

) Useer {ix(8)},  if B € FO(6n),
055(8) = {UAGS§ {ix(8)}, if B € FO(O2),

where ) is defined as above.

4.3.2 Definition (CSp,T, OSH,T)

Let II' be the derivation obtained from a derivation IT by the structural reduction of II with T', i.e.
SR(T) Iy (Hl Hz)

n .S In=——"-"
—> uppose END(ID)

structural reduction of IT with T. For W € SGW (IT), CSp (W) is the subset of FO*(II") defined by

, and let S be the accompanying substitution-sequence of the

CSmr(W) = CS5(W[m,) U CS5(W \ Wm,).
For o € oa(IT), OSyr,r(a) is the subset of oa(/I’) defined by

_ [ 0S%(a), ifa € FO(IIy),
OSmz(a) = { 05%(a), otherwise.
4.4 TRelationship between structural reductions and contractions
4.4.1 Fact

Let S be a substitution-sequence < II,W,0 >. Let Vi and V3 be sgw’s in Il satisfying V1 U Vo = w
and ViNVo = ¢. Let S* and S? be the substitution-sequences defined by St =< I,V1,0 > and
52 =< Pg1, CS5:(Va), O >. Then, it holds that Ps = Psz.

Proof. By induction on the length of II.

11
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4.4.2 Definition (supp(W): support of W)
Let W be a sgw in II. supp(W) is the sgw in II defined by

supp(W) = {< o,0 > FO*(II) | o € rt(W)}

4.4.3 Fact

Let S be a substitution-sequence < II,W,0 >. If S’ is the substitution-sequence defined by S' =<
11, supp(W),© >; then, it holds that there exists a reduction sequence from Pg: to Pg consisting of VE-,
AE-, and L.-contractions (for subderivations).

MI(E(©) (61 6,)

Proof. By induction on Card(W). Suppose @ = END(O)

Case 0. If W = ¢: Clear.
Case 1. If Card(rt(W)) = 1: Without loss of generality, we can assume that rt(W) = {end(II)}.
Case 1-1. If supp(W) = W: Clear.

: 1Ty
Case 1-2. If supp(W) # W, l(IT) = (L.), and < end(IT),1 >¢ W: Suppose IT = END(TT) Then,

there exists a sgw Wy in [Ty, such that W = {< end(II),0 >} UW,. Let Sy and S} be the
substitution-sequences defined by Sy =< Iy, Wy, > and S) =< II, supp(Wp),® >. Now, Pgs: is
1l
of the form END(II) (01 ©3). Let I’ be the derivation obtained from Pg: by (L.)-contraction.
END(O)

I

. S . . . . .
Then, I’ is of the form EWE@) , and by induction hypothesis, there exists a reduction sequence

from I’ to the derivation = Ps, consisting of VE-, JE-) and L.-contractions.

So
END(O)
Case 1-3. If supp(W) # W, li(II) = (L.), and < end(IT),1 >€ W; ie. if W = {< end(II),0 >,<

end(Il),1 >}: Easy.

Case 1-4. If supp(W) # W and li(IT) = (VE) or (3E): Similarly to the case 1-2.

Case 2. If Card(rt(W)) > 1: Take two sgw’s in IT, say V; and Va, satisfying that W = ViUV, V1NV, =
¢, V1 # ¢, and V3 # ¢. Let X be the substitution-sequence defined by X =< II,V; Usupp(V2), @ >.
Let Y1, Y2, and Y3 be the substitution-sequence defined by

Y1 =< II,supp(V2),0 >, Y2 =< Py,, CS%,I(supp(Vl)), o >,

and
Ys =< Py,, CSy,(V1),0 > .

Using fact 4.4.1, we have Ps: = Py, and Px = Py,. It holds that Card(CSy, (V1)) = Card(V4) and
that supp(CS%,l(Vl)) = CS%,I (supp(V1)). Hence, by induction hypothesis, there exists a reduction
sequence from Py, to Py,, i.e. from Ps/ to Px, consisting of VE-, IE-, and L.-contractions.
Similarly, we have the existance of a reduction sequence from Px to Ps, consisting of VE-, 3E-,
and L .-contractions. This leads the result.0



4.4.4 Fact

Let I’ be the derivation obtained from a derivation IT by the structural reduction of II with T, i.e.

o D Then, there exists a reduction sequence from II to II' consisting of VE-, 3E-, and L.-
coniractions (for subderivations).

Proof. By fact 4.4.3.

5 1-reduction and Church-Rosser property

In this section, we define 1-reduction to prove the Church-Rosser property of our reduction. The defini-
tion of 1-reduction is an extension of that of Girard [4, pp135].

5.1 Mappings for essential reduction

5.1.1 Notation (IT 25 I1')

When a derivation IT’ is obtamed from a derivation I by &1-, &s-, Vi-, V2 , O-, =, V-, or F-contraction;
we denote the fact by IT ER .

5.1.2 Definition (CEp, OFp)

Let IT and II’ be derivations satisfying II EE . For W e SGW (IT) and for « € oa(Il), CEg(W)
and OEz(a) are the subset of FO*(II') and the subset of oa(II’) respectively, defined by the following
clauses (1),...,(6).

I, I,
(1) If II' is obtained from I by &;-contraction (I = 1 or 2): Suppose I = A; & Ay . Then, IT' = II; .

A
Let i be the canonical bijection from FO(II;) (as a subset of FO(IT)) to FO(II'). Then, CE (W)
and OF 7(«) are defined as follows.

{<i(0),k>|< 0,k > W[} ,
CE (W) = u{< end(I"),0 >}, if < end(IT),0 >€ W,
{< i(0), k >|< 6,k >c W[H;}, otherwise.
OEn(a) = {;i(a)}, if « € FO(IIY),

otherwise.

. , , To  [Ai] [42]
(2) If II’ is obtained from II by V;-contraction (I = 1 or 2): Suppose II = A, VA, II, I .
: C
Iy
Then, I’ = [A4;] . Let ¢ be the canonical bijection from FO(II;) (as a subset of FO(I)) to FO(II;)

I
(as a subset of FO(II')). Let A be the subset of FO(II') defined by
A={i(6) | 0 € de(ti(IT)) N FO(IL,)}.

13
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For each A € A, let iy be the canonical bijection from FO(IIy) (as a subset of FO(II)) to
FO(sbd())). Then, CEz(W) and OE () are defined as follows.

{<i@),k>|< 0,k >e Wl }u [ J{<ir(8),k >|< 6,k > W[p,}
AgA
u{< end(II),0 >}, if <end(Il),0>eW,
CEH(W) = ‘ :
{<i(0),k>|< 6,k >eW[m}u |J{<ir(0),k>|<0,k>e W[g,},
Ae4A
otherwise.
{i{a)}, if a € FO(IT}),
OFp(a) =1 ¢, if a € FO(II,,) where {I,m} = {1,2},
Urealir(@)},  if a« € FO(ITo).
A n
(3) If II' is obtained from IT by D-contraction: Suppose II = o I Then, IT' = [4]
ADB II; I,

Let ¢ be the canonical bijection from FO(II,) (as a subset of FO(H% to FO(IIy) (as a subset of
FO(II')). Let A be the subset of FO(IT') defined by A = {i(0) | 6 € de(I)}. For each A € A, let iy
be the canonical bijection from FO(II1) (as a subset of FO(IT)) to FO(sbd())). Then, CE (W)
and OFp(«) is defined as follows.

{<i@),k>|< 8,k >e W[} u [ J{<ir(0),k>|< 6,k > W[y}
AEA

Ui< end(I1'),0 > 1, if <end(Il),0>€ W,
Conmy =) VLS endm)0) ()

{<i(0),k>|< 0,k >e W[g,} U | J{<ir(0),k >|< 8,k > W[p,},
A€A

otherwise.
_ [ (@)} if « € FO(IIo),
OFm(a) = {UAEA{iA(a)}, if a € FO(IL,).
(4) If 1" is obtained from IT by —-contraction: Similarly to the case (3).
(5) If I’ is obtained from IT by V-contraction: Similarly to the case (1).

(6) If I' is obtained from IT by 3-contraction: Similarly to the case (2).

5.2 1-reduction
5.2.1 Definition (1-reduction)
Let I and II' be derivations satisfying END(II') = END(IT) and OA(II') C OA(II). The transforma-

tion of IT to II" is called 1-reduction iff it satisfies one of the conditions (1), (2), (3), or (4) below. We

denote by IT —L, IT the fact that the transformation of IT to IT' is a l—redulction. 1-reduction is defined
inductively with a mapping from SGW (IT) to SGW (II'), denoted by CH’, and with a mapping from

oa(IT) to the power set of oa(I1'), denoted by 01177/; where CI' and 01117’ satisfy the following conditions
(a), (b), and (c).
(a) For all o € oa(II) and for all 8 € 0F'(«), Form(a) = Form(8) holds.
(®) |
()= || OF (a)

o€ oa(Il)



(c) For all W € SGW(II), emp(CE'(W)) C cmp(W) and on(CH (W)) = Uyeonw) OFf (@)
hold.

(1) II and II’ are identical. In this case, CE' and OF' are defined as follows.
For each W € SGW (IT), CEF (W) =W.
For each a € oa(Il), OF (o) = {a}.

7 1 /
_H_o_(_fil__nﬁ EQ__(%_@ K respectively, where I, N 1T,
- - Jigd .
(for all p’E {0, 1,2}), Inf(K') = Inf(K), and de(K') = Upcp<2 Uneaexynroar,) Oy (a). In this
case, CIITI and OF are defined as follows.
For each W € SGW (IT),

(2) IT and II’ are of the form K and

cHFw)= |J Crr(Wlm,)U{< end(T'),k >|< end(Il),k >€ W} UE
0<p<L2

where

= { {< end(II'),1>}, if Inf(K) = (Lc), de(K) N nf(W) # ¢, and de(K') = 4,
otherwise.

)

For each p € {0,1,2} and for each « € oa(I) N FO(II,), OIIII/(a) = OIIIII’? (o).

I, (II)
(3) IT is of the form = M I (II, IIs) K where Inf(I) is an introduction rule and Inf(K) is
A
an elimination rule; and
(I
b, .

U M) ., — m

A

where IT, = IT} (for all p € {0,...,8}), Inf(I') = Inf(I), de(I") = Uneaon) 055(a), Inf(K") =
Inf(K), and de(K') = Uaep<cs Uneacx)nroqr,) Og:(a). In this case, CZ and OZ are defined
o, (M) ,
as follows. Let A be the derivation M I (115, ) . For each W € SGW(II),
KI
A

CE'(W) = CEA(W") where

o {UosPss Co? (W, U {< end(4),0 >}, if < end(IT),0>€ W,

Uogpgs CIIII: Wlm,) ' otherwise.

For each p € {0,...,3} and for each « € 0a(JT) N FO(II,), o0T'(a)=U OF A(6).

nl
g€ On:(a)

(4) I is of the form H_O_(_Hl_iz)

or (L¢); and

K where Inf(K) is an elimination rule and LI(Ily) is (VE), (3E),

nl
i (Ijl{ m) ., SR

Hl

15

1 . , b1l
where IT, — IT} (for all p € {0,1,2}), Inf(K') = Inf(K), de(K") = Ui <p<a Uee dexynro,) Oms (@),

and T is a sgt at end(Ily) in Il satisfying len(T) > 1 and len(Cgé(T)) > 1. In this case, CF and
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4 ! / !
OF' are defined as follows. Let A be the derivation H—O._(Hl—ﬂil + and T” the sgt Cje (T) at
I 2 K o

end(IIy) in ITj. For each W € SGW (IT), CiF' (W) = CS aq:(W') where

— {U05p52 C”(Wlm,) U {< end(4),0>}, if < end(IT),0 >€ W,

! X
Uogpsz CH: Wm,), otherwise.

For each p € {0,1,2} and for each a € oa(I1) N FO(II,), OF'(a) = 0Sar:(6).

9€0,7(a)
5.2.2 Notice

When derivations IT and II’ satisfying II L I are given; it is assumed that the construction of
I = IT' is also given, and so, the number of the clauses in definition 5.2.1 used in the construction of
oL mis uniquely determined.

5.2.3 Notation (|IT — II'|, LC(II 2> IT"))

Let IT and II' be derivations satisfying IT L, II'. We denote by IH IR II', the number of the clauses
in definition 5.2.1 used in the construction of II — IT’. Also we denote by LC(II SN II') the last

clause in definition 5.2.1 used in the construction of IT. —— IT'.

5.2.4 Fact
If a derivation II is immediately reduced to a derivation II', then it holds that IT — IT'.

Proof. By fact (2) of 4.2.3.

5.2.5 Fact

If a derwation IT is I-reduced to a derivation I, i.e. IT SN I, then there ezists a reduction sequence
from II to II'.

Proof. By fact 4.4.4.

5.2.6 Notation

Let II, II', and II" be derivations. For a mapping f from SGW (II) to SGW(II') and a mapping
g from SGW(II') to SGW(II"), go f denotes the mapping from SGW (II) to SGW(II") defined by
gof(W) = g(f(W)). Also, for a mapping F from oa(II) to the power set of oa(II') and a mapping G
from oa(II’) to the power set of oa(II"), GoF denotes the mapping from oa(I) to the power set of
oa(II") defined by GoF(a) = User(a) G(6). We use these notations also in the case of partial mappings.

5.2.7 Main Lemma.

IfII -5 I and 1T -2 11 hold, then there exists a derivation I such that IT' — o, o L, gm,
Cfp oC = Cl o Cf", and OF" 0 0F = 0L 008",

Main Lemma will be proved in the next section. Theorem 2, i.e. the Church-Rosser property of our
reduction, can be easily proved using fact 5.2.4, fact 5.2.5, and Main Lemma. Here, we state theorem 2
again.
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Theorem 2. (Church-Rosser property) If two finite reduction sequences II, ..., X and II, ...,
' are given, then we can construct two finite reduction sequences X, ..., A and X, ..., A for some
derivation A.

6 Proof of Main Lemma

6.1 Lemmata

It now remains for us to establish the proof of Main Lemma. The essential parts of the proof are obtained
from Lemma A (6.1.2) and Lemma B (6.1.3).

6.1.1 Notation (W < V)

Let W and V be sgw’s in a derivation. We denote by W < V the fact that W C V and rt(W) = rt(V)
hold.

6.1.2 Lemma A

g -, Lo - 1) is (2), 125 5, end ' 5 27 hold; then, T = 5, CF 0 CEg =
CEioCH', and OF' 0OEr = OE:0OF' hold.

6.1.3 Lemma B

Let S be a substitution-sequence < II, W,0 >, and let V be a sqw in II satisfying W < V. IfII 2

and @ == @' hold, and let S’ be the substitution-sequence defined by S’ =< II',V', @ > where V' =
CIITI’(V); then, the following facts (a),. .., (e) hold.

(a) Ps - Ps:

() For allU € SGW (IT) satisfying U NV = ¢, it holds that Cp%' 0 CS5(U) = CS%, 0 CF (V).
(c) For all a € oa(IT) \ on(V), it holds that O35 0 OS§(a) = 0S50 O (a).

(d) CB5'0CS% = CS%0CE’

(¢) For all o € 0a(©)\ {mj(li(©))}, it holds that O} 0 0S%(a) = 05% 00§ ().

6.1.4 Remark

Lemma A and Lemma B are proved using some facts stated in the following. We state these facts in an
abbreviated form. Namely, the commutativity of mappings on sgw’s and on open assumptions (e.g. (b),
(¢), (d), and (e) in Lemma B) is not represented in these statement. But all these facts stated in the
following are hold with such commutativity.

6.2 Some facts

6.2.1 Fact »

If i L. IT" holds and let a and t be a free variable and a term respectively satisfying II(t/a) becomes a
derivation; then II'(t/a) is a derivation, and II(t/a) BN II'(t/a) holds.

Proof. By induction on |II N H'l.D
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6.2.2 Fact

(4]

Let 3 and be derivations satisfying END(X) = A. Let P be the subset of oa(II) denoted by [A] in

[ﬁ] . Suppose that X L. 5 and [11%] N [Iffl’] hold where [A] in [];1/] denotes the subset of oa(Il'), say P’,
1 2 !

defined by P' = J,cp OF (). Then, we have [ﬁ] BRI [AJ .
I

Proof. By induction on |II N IT'|. In the case that LC(IT SN II') is (4), we use the following fact.
A A

That is, if S and X are substitution-sequence defined by S =< [?], W, [g] > and X =< [B],W,[B] >,
I e

x
then it holds that Px = [B] where we define [B] in ,[;3] using 0S§ and 0S%.0
Ps 5

6.2.3 Fact

Let S be a substz’tution-sequence <II,W,0 >, and let V be a sgw in II satisfying W < V. If © Lo
holds, and let S be a substitution-sequence defined by S' =< II,V, @' >; then, Ps —— Ps: holds.

Proof. By induction on the length of IT. We prove this fact in the case that end(II) € top(W) and
end(IT) ¢ top(V) hold, since other cases are straight-forward. Now we assume that. Suppose IT and

O (I 1) qA (61 )

O are of the form and K respectively. Then, Ps and Ps: are of the

B
PSO (7)51 psz)
form A (6; 6,)and Ps, (,Pgl Psy) respectively, where S, =< II,,, W([p,,© > and

S, =< I,,V|nm,,0 >?or each p € {0,1,2}. Let Vo and V; be sgw’s in IT satisfying that V = V, U V4,
VoNVi = ¢, and rt(Vy) = {end(IT)}. Define substitution-sequences X and X, for each p € {0,1,2} by
X =< 1I,V1,0" > and X, =< IIp,Vi[m,,0 > for each p € {0,1,2}. Denote sbd(mj(li(Ps))) by Ag.
From the condition end(IT) € top(W) and the definition of V5 and Vi, we have W (g, < Vi[g, for each

p € {0,1,2}. Hence, by induction hypothesis, we have Ps, N Px, for each p € {0,1,2}. Therefore, we
have Ag — Px using the clause (2) for LC(Ap = Px), since Px is of the form P, (Pil Pxa) .
Let T be the sgt at end(Ap) in Ay defined by

T = {< end(Qo), k >|< end(II),k > o} U | CS§ (Volm,),
0<p<2

and let T” be the sgt at end(Px) in Px defined by T = C’Z‘)" (T'). Define a substitution-sequence Y’
by Y =< Px,T’,0" >. By induction hypothesis (about commutativity of mappings) for II,, we have

T" = CS% (Vo). Hence, by fact 4.4.1, Ps: = Py holds. On the other hand, we have Ps —— Py because

! / 1 ') /
.PXL;;_?_) SEZ) Px holds where we suppose @' = M . Therefore, Ps — P holds.O
6.2.4 Fact

Let II and X be derwvations satisfying IT PR 5. Let S be a substitution-sequence < II, W,© >, and X
the substitution-sequence defined by X =< X, CEg(W),0 >. Then, Ps ELA Px holds.

Proof. By definition of CE .0



6.2.5 Fact

Let S, X, and Y be substitution-sequences < I,W,0 >, < II,Vi,A >, and < ©,V3, A > respectively;
satisfying WOV = ¢. Let S and X be the substitution-sequences defined by S =< Px, CS% (W), Py >
and X =< Ps, CS5(V1) U CS%(Va), A >. Then, Py = Px holds.

Proof. By induction on the length of I1.0

6.3 Proof of lemmata

Now we prove Lemma A, Lemma B, and Main Lemma.

6.3.1 Proof of Lemma A

1, (1)
Since IT 2% X, IT is of the form M I (II, II3) _ where Inf(I) is an introduction rule and
1 K
My (1)
Inf(K) is an elimination rule. Then, I’ is of the form M (I, 1I%) where II,, N HI’, for each

A
p €{0,...,3}, because LC(II -1, IT") is (2) and Inf(I) is an introduction rule. Then, using fact 6.2.1
and fact 6.2.2, we have the result.0
6.3.2 Proof of Lemma B

By induction on IH L, H’|.

Case 1. LC(II N ") is (1): Use fact 6.2.3.

Case 2. LC(II — IT') is (2): Similarly with the proof of fact 6.2.3.
Case 3. LC(II L, IT') is (3): Use fact 6.2.4.

Case 4. LC(IT = IT') is (4): Use fact 6.2.5.0

6.3.3 Proof of Main Lemma.
By induction on |H LI H’l + IH BN H”|.~

Case 1. LC(II L, I’y is (1): Take 11" for "
Case 1°. LC(IT L, 1"} is (1): Similarly to the case 1.

Case 2. LC(II -, IT') and LC(IT - IT") are (2): Suppose II, II', and II" are of the form

! / 14 1 1" 1
o (Iil 115) , I (]le 113) , and T (]il 2/ respectively, where for each p € {0,1,2},

I, LN I, and II, L, 1)) hold. Then by induction hypothesis, for each p € {0,1,2} there
exists a derivation II,” such that II, SN my, I} BN Iy, Cgf’ o CIITT: = Cgﬁ oCIIII:, and
o Jeld Jraddd o X . Ht n
Op? 00y = Oph 00p” hold. Let I be the derivation of the form oy’ (n
4 P P 4 A

the result holds for this II"".

P
12
115) . Then,

19



20

Iy (II,)
Case 3. LC(IT = 'y and LC(IT — II") are (3): Suppose IT is of the form ~ A7 (I, II3) ,
A
and suppose [T’ and II" satisfy that
I, (I7) s Iy (1Iy)
M (y m)SMed” M (my oS,
A A
where for each p € {0,...,3}, I, N I, and II,, R IT;) hold. Then by induction hypothesis, for
each p € {0,...,3} there exists a derivation IT;" such that 1T, LN I, I LN Iy, gl,:’ oCIIIT: =

H”, " HIII
CH;’,‘ oCp’, and On?

m’ bs N s i o e
00p? = Opl 0Op” hold. Let II" be the derivation satisfyin
1, oy °Yn, g

g ()
——M— (Hé” Hé") Eﬁ H/II
A
Then, by Lemma A (6.1.2), the result holds for this 17",

Case 4. One of the LC(IT — II') and LC(IT - I") is (2) and the other is (3): Similarly to the
case 3.

Case 5. LC(I1 L I’y and LC(IT IR II") are (4): Suppose II is of the form —..__HO (11{11 1T2) and
suppose I’ and IT” satisfy that

nl
Iy (I 1) SR(g,i(Tl)) ot
A
and
. Feadl
myrp my sepiay
A
; where for each p € {0,1,2}, II, L, I, and II, IR T} hold, and where T} and T} are sgt’s
at end(ITo) in Iy satisfying len(T}) > 1, len(CH2(T1)) > 1, len(T5) > 1, and len(CT (1)) > 1.
Then, by induction hypothesis, for all p € {0,1,2} there exists a derivation 11" such that I, L
H’III HII 1 H/I/ H}I’” CH;’ —_ H;‘” CH;’I d OHII’“ OH;' —_ OIIII’” OII}I’I h ld L b
po y — 7, Cpy ol = Cpfi oCp), and Oy 0Op! = Opl 0Op? hold. Let T be the sgt

at end(Ily) in Iy defined by T = T:U T3, and let T'" be the sgt at end(II§") in ITY' defined by
T — IIII'S(JIIO CIIII;IJ(T) = CIIIIL,:I)HOCIIIIE(T)

n " 1
Let ©"” be the derivation of the form END(II3") (3" 1T , and S the substitution-sequence

A
defined by S =< II}",T",0" >. Let II"" be the derivation Ps. Then by Lemma B (6.1.3), the
result holds for this IT"”.

Case 6. One of the LC(IT N 'y and LC(IT - IT") is (2) and the other is (4): Similarly to the
case 5.0
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